Abstract

Aluminum nitride on insulator (AlNOI) photonics platform has great potential for mid-infrared applications thanks to the large transparency window, piezoelectric property, and second-order nonlinearity of AlN. However, the deployment of AlNOI platform might be hindered by the high propagation loss. We perform thermal annealing study and demonstrate significant loss improvement in the mid-infrared AlNOI photonics platform. After thermal annealing at 400°C for 2 hours in ambient gas environment, the propagation loss is reduced by half. Bend loss and taper coupling loss are also investigated. The performance of multimode interferometer, directional coupler, and add/drop filter are improved in terms of insertion loss, quality factor, and extinction ratio. Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray diffraction spectroscopy suggest the loss improvement is mainly attributed to the reduction of extinction coefficient in the silicon dioxide cladding. Apart from loss improvement, appropriate thermal annealing also helps in reducing thin film stress.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics

Bowei Dong, Xianshu Luo, Shiyang Zhu, Mo Li, Dihan Hasan, Li Zhang, Soo Jin Chua, Jingxuan Wei, Yuhua Chang, Guo-Qiang Lo, Kah Wee Ang, Dim-Lee Kwong, and Chengkuo Lee
Opt. Lett. 44(1) 73-76 (2019)

Silicon photonic platforms for mid-infrared applications [Invited]

Ting Hu, Bowei Dong, Xianshu Luo, Tsung-Yang Liow, Junfeng Song, Chengkuo Lee, and Guo-Qiang Lo
Photon. Res. 5(5) 417-430 (2017)

Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum

Tsung-Ju Lu, Michael Fanto, Hyeongrak Choi, Paul Thomas, Jeffrey Steidle, Sara Mouradian, Wei Kong, Di Zhu, Hyowon Moon, Karl Berggren, Jeehwan Kim, Mohammad Soltani, Stefan Preble, and Dirk Englund
Opt. Express 26(9) 11147-11160 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zou, S. Chakravarty, C.-J. Chung, X. Xu, and R. T. Chen, “Mid-infrared silicon photonic waveguides and devices [Invited],” Photon. Res. 6(4), 254–276 (2018).
    [Crossref]
  2. H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: A perspective,” Nanophotonics 7(2), 393–420 (2017).
    [Crossref]
  3. T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5(5), 417–430 (2017).
    [Crossref]
  4. B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42(22), 8683–8699 (2013).
    [Crossref] [PubMed]
  5. P. T. Lin, H. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
    [Crossref]
  6. P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
    [Crossref] [PubMed]
  7. E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Biomed. Opt. Express 5(5), 1636–1648 (2014).
    [Crossref] [PubMed]
  8. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
  9. A. A. Leonardi, M. J. Lo Faro, S. Petralia, B. Fazio, P. Musumeci, S. Conoci, A. Irrera, and F. Priolo, “Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors,” ACS Sens. 3(9), 1690–1697 (2018).
    [Crossref] [PubMed]
  10. F. Seichter, A. Wilk, K. Wörle, S. S. Kim, J. A. Vogt, U. Wachter, P. Radermacher, and B. Mizaikoff, “Multivariate determination of 13CO2/12CO2 ratios in exhaled mouse breath with mid-infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 405(14), 4945–4951 (2013).
    [Crossref] [PubMed]
  11. L. Tombez, E. J. Zhang, J. S. Orcutt, S. Kamlapurkar, and W. M. J. Green, “Methane absorption spectroscopy on a silicon photonic chip,” Optica 4(11), 1322–1325 (2017).
    [Crossref]
  12. N. Singh, A. Casas-Bedoya, D. D. Hudson, A. Read, E. Mägi, and B. J. Eggleton, “Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide,” Opt. Lett. 41(24), 5776–5779 (2016).
    [Crossref] [PubMed]
  13. L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, and R. J. Griffin, “Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing,” Opt. Express 24(6), A528–A535 (2016).
    [Crossref] [PubMed]
  14. Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
    [Crossref] [PubMed]
  15. S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4(7), 707–712 (2017).
    [Crossref]
  16. M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).
    [Crossref]
  17. Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W. C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39(10), 3070–3073 (2014).
    [Crossref] [PubMed]
  18. P. T. Lin, V. Singh, H. Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
    [Crossref]
  19. P. Tai Lin, V. Singh, L. Kimerling, and A. Murthy Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102(25), 251121 (2013).
    [Crossref]
  20. J. Kang, M. Takenaka, and S. Takagi, “Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits,” Opt. Express 24(11), 11855–11864 (2016).
    [Crossref] [PubMed]
  21. T.-H. Xiao, Z. Zhao, W. Zhou, C.-Y. Chang, S. Y. Set, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared high-Q germanium microring resonator,” Opt. Lett. 43(12), 2885–2888 (2018).
    [Crossref] [PubMed]
  22. C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penadés, C. G. Littlejohns, A. Z. Khokhar, D. Pérez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016).
    [Crossref] [PubMed]
  23. M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. E. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm,” Opt. Express 25(22), 27431–27441 (2017).
    [Crossref] [PubMed]
  24. W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109(24), 241101 (2016).
    [Crossref]
  25. J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26(2), 870–877 (2018).
    [Crossref] [PubMed]
  26. Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, J. Frigerio, A. Ballabio, E. T. Simola, C. Alonso-Ramos, D. Benedikovic, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “On-chip Bragg grating waveguides and Fabry-Perot resonators for long-wave infrared operation up to 8.4 µm,” Opt. Express 26(26), 34366–34372 (2018).
    [Crossref] [PubMed]
  27. J. S. Penadés, A. Sánchez-Postigo, M. Nedeljkovic, A. Ortega-Moñux, J. G. Wangüemert-Pérez, Y. Xu, R. Halir, Z. Qu, A. Z. Khokhar, A. Osman, W. Cao, C. G. Littlejohns, P. Cheben, I. Molina-Fernández, and G. Z. Mashanovich, “Suspended silicon waveguides for long-wave infrared wavelengths,” Opt. Lett. 43(4), 795–798 (2018).
    [Crossref] [PubMed]
  28. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics J. 4(5), 1510–1519 (2012).
    [Crossref]
  29. J. Kang, Z. Cheng, W. Zhou, T.-H. Xiao, K.-L. Gopalakrisna, M. Takenaka, H. K. Tsang, and K. Goda, “Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides,” Opt. Lett. 42(11), 2094–2097 (2017).
    [Crossref] [PubMed]
  30. V. Mittal, M. Nedeljkovic, D. J. Rowe, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopy,” Opt. Lett. 43(12), 2913–2916 (2018).
    [Crossref] [PubMed]
  31. P. Su, Z. Han, D. Kita, P. Becla, H. Lin, S. Deckoff-Jones, K. Richardson, L. C. Kimerling, J. Hu, and A. Agarwal, “Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector,” Appl. Phys. Lett. 114(5), 051103 (2019).
    [Crossref]
  32. B. Dong, X. Luo, S. Zhu, M. Li, D. Hasan, L. Zhang, S. J. Chua, J. Wei, Y. Chang, G.-Q. Lo, K. W. Ang, D.-L. Kwong, and C. Lee, “Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics,” Opt. Lett. 44(1), 73–76 (2019).
    [Crossref] [PubMed]
  33. W. H. P. Pernice, C. Xiong, and H. X. Tang, “High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics,” Opt. Express 20(11), 12261–12269 (2012).
    [Crossref] [PubMed]
  34. M. Gillinger, M. Schneider, A. Bittner, P. Nicolay, and U. Schmid, “Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films,” J. Appl. Phys. 117(6), 065303 (2015).
    [Crossref]
  35. M. Mahmoud, A. Mahmoud, L. Cai, M. Khan, T. Mukherjee, J. Bain, and G. Piazza, “Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes,” Opt. Express 26(19), 25060–25075 (2018).
    [Crossref] [PubMed]
  36. X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3(10), 1126–1131 (2016).
    [Crossref]
  37. B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact low loss mid-infrared for arbitrary power wplitting ratio enabled by rib waveguide dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 4500108 (2018).
    [Crossref]
  38. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
    [Crossref]
  39. X. H. Ji, Q. Y. Zhang, Z. Y. Ling, and S. P. Lau, “Stress and its effect on optical properties of AlN nanorods,” Appl. Phys. Lett. 95(23), 233105 (2009).
    [Crossref]
  40. R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 292–296 (2000).
    [Crossref] [PubMed]
  41. N. Matsunami, H. Kakiuchida, M. Sataka, and S. Okayasu, “XRD characterization of AlN thin films prepared by reactive RF-sputter deposition,” Adv. Mater. Phys. Chem. 03(01), 101–107 (2013).
    [Crossref]
  42. J. Gangwar, B. K. Gupta, S. K. Tripathi, and A. K. Srivastava, “Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis,” Nanoscale 7(32), 13313–13344 (2015).
    [Crossref] [PubMed]
  43. S. Zhu and G. Lo, “Vertically-stacked multilayer photonics on bulk silicon toward three dimensional untegration,” J. Light. Technolgoy 34(2), 386–392 (2016).
    [Crossref]
  44. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
    [Crossref]
  45. S. Ghosh and G. Piazza, “Elasto-optic modulator integrated in high frequency piezoelectric MEMS resonator,” in MEMS 2016 Shanghai (2016), (January), pp. 9–12.
  46. S. Zhu and G.-Q. Lo, “Aluminum nitride electro-optic phase shifter for backend integration on silicon,” Opt. Express 24(12), 12501–12506 (2016).
    [Crossref] [PubMed]
  47. M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
    [Crossref]
  48. M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, M. Banakar, W. Cao, J. S. Penades, D. T. Tran, F. Y. Gardes, D. J. Thomson, G. T. Reed, H. Wang, and G. Z. Mashanovich, “Silicon-on-insulator free-carrier injection modulators for the mid-infrared,” Opt. Lett. 44(4), 915–918 (2019).
    [Crossref] [PubMed]
  49. B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D.-L. Kwong, G.-Q. Lo, and C. Lee, “Wavelength-flattened directional coupler based mid-infrared chemical sensor using bragg wavelength in subwavelength grating structure,” Nanomaterials (Basel) 8(11), 893 (2018).
    [Crossref] [PubMed]
  50. N. Chen, B. Dong, X. Luo, H. Wang, N. Singh, G.-Q. Lo, and C. Lee, “Efficient and broadband subwavelength grating coupler for 3.7 μm mid-infrared silicon photonics integration,” Opt. Express 26(20), 26242–26256 (2018).
    [Crossref] [PubMed]
  51. J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
    [Crossref] [PubMed]
  52. Y. Ma, B. Dong, B. Li, K.-W. Ang, and C. Lee, “Dispersion engineering and thermo-optic tuning in mid-infrared photonic crystal slow light waveguides on silicon-on-insulator,” Opt. Lett. 43(22), 5504–5507 (2018).
    [Crossref] [PubMed]
  53. Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24(6), 6101608 (2018).
    [Crossref]
  54. Y. Chang, D. Hasan, B. Dong, J. Wei, Y. Ma, G. Zhou, K. W. Ang, and C. Lee, “All-dielectric surface-enhanced infrared absorption-based gas sensor using guided resonance,” ACS Appl. Mater. Interfaces 10(44), 38272–38279 (2018).
    [Crossref] [PubMed]
  55. W. D. Sacher, Y. Huang, G. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lit. Technol. 33(4), 901–910 (2015).
    [Crossref]
  56. C. Chen, D. A. Mohr, H.-K. Choi, D. Yoo, M. Li, and S.-H. Oh, “Waveguide-integrated compact plasmonic resonators for on-chip mid-infrared laser spectroscopy,” Nano Lett. 18(12), 7601–7608 (2018).
    [Crossref] [PubMed]
  57. Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
    [Crossref] [PubMed]
  58. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
    [Crossref] [PubMed]

2019 (3)

2018 (16)

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D.-L. Kwong, G.-Q. Lo, and C. Lee, “Wavelength-flattened directional coupler based mid-infrared chemical sensor using bragg wavelength in subwavelength grating structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

N. Chen, B. Dong, X. Luo, H. Wang, N. Singh, G.-Q. Lo, and C. Lee, “Efficient and broadband subwavelength grating coupler for 3.7 μm mid-infrared silicon photonics integration,” Opt. Express 26(20), 26242–26256 (2018).
[Crossref] [PubMed]

J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
[Crossref] [PubMed]

Y. Ma, B. Dong, B. Li, K.-W. Ang, and C. Lee, “Dispersion engineering and thermo-optic tuning in mid-infrared photonic crystal slow light waveguides on silicon-on-insulator,” Opt. Lett. 43(22), 5504–5507 (2018).
[Crossref] [PubMed]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24(6), 6101608 (2018).
[Crossref]

Y. Chang, D. Hasan, B. Dong, J. Wei, Y. Ma, G. Zhou, K. W. Ang, and C. Lee, “All-dielectric surface-enhanced infrared absorption-based gas sensor using guided resonance,” ACS Appl. Mater. Interfaces 10(44), 38272–38279 (2018).
[Crossref] [PubMed]

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact low loss mid-infrared for arbitrary power wplitting ratio enabled by rib waveguide dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 4500108 (2018).
[Crossref]

C. Chen, D. A. Mohr, H.-K. Choi, D. Yoo, M. Li, and S.-H. Oh, “Waveguide-integrated compact plasmonic resonators for on-chip mid-infrared laser spectroscopy,” Nano Lett. 18(12), 7601–7608 (2018).
[Crossref] [PubMed]

M. Mahmoud, A. Mahmoud, L. Cai, M. Khan, T. Mukherjee, J. Bain, and G. Piazza, “Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes,” Opt. Express 26(19), 25060–25075 (2018).
[Crossref] [PubMed]

V. Mittal, M. Nedeljkovic, D. J. Rowe, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopy,” Opt. Lett. 43(12), 2913–2916 (2018).
[Crossref] [PubMed]

T.-H. Xiao, Z. Zhao, W. Zhou, C.-Y. Chang, S. Y. Set, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared high-Q germanium microring resonator,” Opt. Lett. 43(12), 2885–2888 (2018).
[Crossref] [PubMed]

J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26(2), 870–877 (2018).
[Crossref] [PubMed]

Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, J. Frigerio, A. Ballabio, E. T. Simola, C. Alonso-Ramos, D. Benedikovic, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “On-chip Bragg grating waveguides and Fabry-Perot resonators for long-wave infrared operation up to 8.4 µm,” Opt. Express 26(26), 34366–34372 (2018).
[Crossref] [PubMed]

J. S. Penadés, A. Sánchez-Postigo, M. Nedeljkovic, A. Ortega-Moñux, J. G. Wangüemert-Pérez, Y. Xu, R. Halir, Z. Qu, A. Z. Khokhar, A. Osman, W. Cao, C. G. Littlejohns, P. Cheben, I. Molina-Fernández, and G. Z. Mashanovich, “Suspended silicon waveguides for long-wave infrared wavelengths,” Opt. Lett. 43(4), 795–798 (2018).
[Crossref] [PubMed]

Y. Zou, S. Chakravarty, C.-J. Chung, X. Xu, and R. T. Chen, “Mid-infrared silicon photonic waveguides and devices [Invited],” Photon. Res. 6(4), 254–276 (2018).
[Crossref]

A. A. Leonardi, M. J. Lo Faro, S. Petralia, B. Fazio, P. Musumeci, S. Conoci, A. Irrera, and F. Priolo, “Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors,” ACS Sens. 3(9), 1690–1697 (2018).
[Crossref] [PubMed]

2017 (6)

2016 (10)

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109(24), 241101 (2016).
[Crossref]

X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3(10), 1126–1131 (2016).
[Crossref]

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penadés, C. G. Littlejohns, A. Z. Khokhar, D. Pérez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016).
[Crossref] [PubMed]

J. Kang, M. Takenaka, and S. Takagi, “Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits,” Opt. Express 24(11), 11855–11864 (2016).
[Crossref] [PubMed]

N. Singh, A. Casas-Bedoya, D. D. Hudson, A. Read, E. Mägi, and B. J. Eggleton, “Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide,” Opt. Lett. 41(24), 5776–5779 (2016).
[Crossref] [PubMed]

L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, and R. J. Griffin, “Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing,” Opt. Express 24(6), A528–A535 (2016).
[Crossref] [PubMed]

P. T. Lin, H. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

S. Zhu and G. Lo, “Vertically-stacked multilayer photonics on bulk silicon toward three dimensional untegration,” J. Light. Technolgoy 34(2), 386–392 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

S. Zhu and G.-Q. Lo, “Aluminum nitride electro-optic phase shifter for backend integration on silicon,” Opt. Express 24(12), 12501–12506 (2016).
[Crossref] [PubMed]

2015 (5)

W. D. Sacher, Y. Huang, G. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lit. Technol. 33(4), 901–910 (2015).
[Crossref]

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

M. Gillinger, M. Schneider, A. Bittner, P. Nicolay, and U. Schmid, “Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films,” J. Appl. Phys. 117(6), 065303 (2015).
[Crossref]

J. Gangwar, B. K. Gupta, S. K. Tripathi, and A. K. Srivastava, “Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis,” Nanoscale 7(32), 13313–13344 (2015).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

2014 (5)

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Biomed. Opt. Express 5(5), 1636–1648 (2014).
[Crossref] [PubMed]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W. C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39(10), 3070–3073 (2014).
[Crossref] [PubMed]

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

2013 (6)

N. Matsunami, H. Kakiuchida, M. Sataka, and S. Okayasu, “XRD characterization of AlN thin films prepared by reactive RF-sputter deposition,” Adv. Mater. Phys. Chem. 03(01), 101–107 (2013).
[Crossref]

P. T. Lin, V. Singh, H. Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

P. Tai Lin, V. Singh, L. Kimerling, and A. Murthy Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102(25), 251121 (2013).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).
[Crossref]

F. Seichter, A. Wilk, K. Wörle, S. S. Kim, J. A. Vogt, U. Wachter, P. Radermacher, and B. Mizaikoff, “Multivariate determination of 13CO2/12CO2 ratios in exhaled mouse breath with mid-infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 405(14), 4945–4951 (2013).
[Crossref] [PubMed]

B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42(22), 8683–8699 (2013).
[Crossref] [PubMed]

2012 (3)

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics J. 4(5), 1510–1519 (2012).
[Crossref]

W. H. P. Pernice, C. Xiong, and H. X. Tang, “High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics,” Opt. Express 20(11), 12261–12269 (2012).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

2009 (1)

X. H. Ji, Q. Y. Zhang, Z. Y. Ling, and S. P. Lau, “Stress and its effect on optical properties of AlN nanorods,” Appl. Phys. Lett. 95(23), 233105 (2009).
[Crossref]

2000 (1)

R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 292–296 (2000).
[Crossref] [PubMed]

1994 (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Aassime, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Adibi, A.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Agarwal, A.

P. Su, Z. Han, D. Kita, P. Becla, H. Lin, S. Deckoff-Jones, K. Richardson, L. C. Kimerling, J. Hu, and A. Agarwal, “Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector,” Appl. Phys. Lett. 114(5), 051103 (2019).
[Crossref]

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: A perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

P. T. Lin, H. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

Agarwal, A. M.

P. T. Lin, V. Singh, H. Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Alonso-Ramos, C.

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

Anantha, P.

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109(24), 241101 (2016).
[Crossref]

Ang, K. W.

B. Dong, X. Luo, S. Zhu, M. Li, D. Hasan, L. Zhang, S. J. Chua, J. Wei, Y. Chang, G.-Q. Lo, K. W. Ang, D.-L. Kwong, and C. Lee, “Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics,” Opt. Lett. 44(1), 73–76 (2019).
[Crossref] [PubMed]

Y. Chang, D. Hasan, B. Dong, J. Wei, Y. Ma, G. Zhou, K. W. Ang, and C. Lee, “All-dielectric surface-enhanced infrared absorption-based gas sensor using guided resonance,” ACS Appl. Mater. Interfaces 10(44), 38272–38279 (2018).
[Crossref] [PubMed]

Ang, K.-W.

Apuzzo, A.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Baets, R.

Bain, J.

Ballabio, A.

Banakar, M.

Bao, S.

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109(24), 241101 (2016).
[Crossref]

Becker, A.

R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 292–296 (2000).
[Crossref] [PubMed]

Becla, P.

P. Su, Z. Han, D. Kita, P. Becla, H. Lin, S. Deckoff-Jones, K. Richardson, L. C. Kimerling, J. Hu, and A. Agarwal, “Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector,” Appl. Phys. Lett. 114(5), 051103 (2019).
[Crossref]

Benedikovic, D.

Bittner, A.

M. Gillinger, M. Schneider, A. Bittner, P. Nicolay, and U. Schmid, “Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films,” J. Appl. Phys. 117(6), 065303 (2015).
[Crossref]

Blaize, S.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Bockstaele, R.

Bouville, D.

Cai, L.

Cao, W.

Cardenas, J.

Carpenter, L. G.

Casas-Bedoya, A.

Chakravarty, S.

Chamanzar, M.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Chang, C.-Y.

Chang, Y.

B. Dong, X. Luo, S. Zhu, M. Li, D. Hasan, L. Zhang, S. J. Chua, J. Wei, Y. Chang, G.-Q. Lo, K. W. Ang, D.-L. Kwong, and C. Lee, “Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics,” Opt. Lett. 44(1), 73–76 (2019).
[Crossref] [PubMed]

Y. Chang, D. Hasan, B. Dong, J. Wei, Y. Ma, G. Zhou, K. W. Ang, and C. Lee, “All-dielectric surface-enhanced infrared absorption-based gas sensor using guided resonance,” ACS Appl. Mater. Interfaces 10(44), 38272–38279 (2018).
[Crossref] [PubMed]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24(6), 6101608 (2018).
[Crossref]

J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
[Crossref] [PubMed]

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D.-L. Kwong, G.-Q. Lo, and C. Lee, “Wavelength-flattened directional coupler based mid-infrared chemical sensor using bragg wavelength in subwavelength grating structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

Cheben, P.

Chelnokov, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Chen, C.

C. Chen, D. A. Mohr, H.-K. Choi, D. Yoo, M. Li, and S.-H. Oh, “Waveguide-integrated compact plasmonic resonators for on-chip mid-infrared laser spectroscopy,” Nano Lett. 18(12), 7601–7608 (2018).
[Crossref] [PubMed]

Chen, N.

Chen, R. T.

Chen, X.

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics J. 4(5), 1510–1519 (2012).
[Crossref]

Chen, Y.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Cheng, Z.

Choi, H.-K.

C. Chen, D. A. Mohr, H.-K. Choi, D. Yoo, M. Li, and S.-H. Oh, “Waveguide-integrated compact plasmonic resonators for on-chip mid-infrared laser spectroscopy,” Nano Lett. 18(12), 7601–7608 (2018).
[Crossref] [PubMed]

Chong, M. H.

Chua, S. J.

Chung, C.-J.

Conoci, S.

A. A. Leonardi, M. J. Lo Faro, S. Petralia, B. Fazio, P. Musumeci, S. Conoci, A. Irrera, and F. Priolo, “Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors,” ACS Sens. 3(9), 1690–1697 (2018).
[Crossref] [PubMed]

Dagens, B.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Deckoff-Jones, S.

P. Su, Z. Han, D. Kita, P. Becla, H. Lin, S. Deckoff-Jones, K. Richardson, L. C. Kimerling, J. Hu, and A. Agarwal, “Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector,” Appl. Phys. Lett. 114(5), 051103 (2019).
[Crossref]

Delacour, C.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Dong, B.

B. Dong, X. Luo, S. Zhu, M. Li, D. Hasan, L. Zhang, S. J. Chua, J. Wei, Y. Chang, G.-Q. Lo, K. W. Ang, D.-L. Kwong, and C. Lee, “Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics,” Opt. Lett. 44(1), 73–76 (2019).
[Crossref] [PubMed]

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact low loss mid-infrared for arbitrary power wplitting ratio enabled by rib waveguide dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 4500108 (2018).
[Crossref]

Y. Chang, D. Hasan, B. Dong, J. Wei, Y. Ma, G. Zhou, K. W. Ang, and C. Lee, “All-dielectric surface-enhanced infrared absorption-based gas sensor using guided resonance,” ACS Appl. Mater. Interfaces 10(44), 38272–38279 (2018).
[Crossref] [PubMed]

N. Chen, B. Dong, X. Luo, H. Wang, N. Singh, G.-Q. Lo, and C. Lee, “Efficient and broadband subwavelength grating coupler for 3.7 μm mid-infrared silicon photonics integration,” Opt. Express 26(20), 26242–26256 (2018).
[Crossref] [PubMed]

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D.-L. Kwong, G.-Q. Lo, and C. Lee, “Wavelength-flattened directional coupler based mid-infrared chemical sensor using bragg wavelength in subwavelength grating structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
[Crossref] [PubMed]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24(6), 6101608 (2018).
[Crossref]

Y. Ma, B. Dong, B. Li, K.-W. Ang, and C. Lee, “Dispersion engineering and thermo-optic tuning in mid-infrared photonic crystal slow light waveguides on silicon-on-insulator,” Opt. Lett. 43(22), 5504–5507 (2018).
[Crossref] [PubMed]

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5(5), 417–430 (2017).
[Crossref]

Dong, L.

Eggleton, B. J.

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

Fazio, B.

A. A. Leonardi, M. J. Lo Faro, S. Petralia, B. Fazio, P. Musumeci, S. Conoci, A. Irrera, and F. Priolo, “Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors,” ACS Sens. 3(9), 1690–1697 (2018).
[Crossref] [PubMed]

Fetter, L.

R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 292–296 (2000).
[Crossref] [PubMed]

Février, M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Frigerio, J.

Gaeta, A. L.

Gangwar, J.

J. Gangwar, B. K. Gupta, S. K. Tripathi, and A. K. Srivastava, “Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis,” Nanoscale 7(32), 13313–13344 (2015).
[Crossref] [PubMed]

García De Abajo, F. J.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

Gardes, F. Y.

Gawith, C. B. E.

Gillinger, M.

M. Gillinger, M. Schneider, A. Bittner, P. Nicolay, and U. Schmid, “Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films,” J. Appl. Phys. 117(6), 065303 (2015).
[Crossref]

Goda, K.

Gogol, P.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Gopalakrisna, K.-L.

Green, W. M. J.

Griffin, R. J.

Griffith, A. G.

Gu, T.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: A perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

Guo, T. X.

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact low loss mid-infrared for arbitrary power wplitting ratio enabled by rib waveguide dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 4500108 (2018).
[Crossref]

Guo, X.

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D.-L. Kwong, G.-Q. Lo, and C. Lee, “Wavelength-flattened directional coupler based mid-infrared chemical sensor using bragg wavelength in subwavelength grating structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3(10), 1126–1131 (2016).
[Crossref]

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109(24), 241101 (2016).
[Crossref]

Gupta, B. K.

J. Gangwar, B. K. Gupta, S. K. Tripathi, and A. K. Srivastava, “Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis,” Nanoscale 7(32), 13313–13344 (2015).
[Crossref] [PubMed]

Halir, R.

Han, S.

Han, Z.

P. Su, Z. Han, D. Kita, P. Becla, H. Lin, S. Deckoff-Jones, K. Richardson, L. C. Kimerling, J. Hu, and A. Agarwal, “Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector,” Appl. Phys. Lett. 114(5), 051103 (2019).
[Crossref]

P. T. Lin, H. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

Hasan, D.

B. Dong, X. Luo, S. Zhu, M. Li, D. Hasan, L. Zhang, S. J. Chua, J. Wei, Y. Chang, G.-Q. Lo, K. W. Ang, D.-L. Kwong, and C. Lee, “Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics,” Opt. Lett. 44(1), 73–76 (2019).
[Crossref] [PubMed]

Y. Chang, D. Hasan, B. Dong, J. Wei, Y. Ma, G. Zhou, K. W. Ang, and C. Lee, “All-dielectric surface-enhanced infrared absorption-based gas sensor using guided resonance,” ACS Appl. Mater. Interfaces 10(44), 38272–38279 (2018).
[Crossref] [PubMed]

Ho, C. P.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24(6), 6101608 (2018).
[Crossref]

Hosseini, A.

Hu, J.

P. Su, Z. Han, D. Kita, P. Becla, H. Lin, S. Deckoff-Jones, K. Richardson, L. C. Kimerling, J. Hu, and A. Agarwal, “Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector,” Appl. Phys. Lett. 114(5), 051103 (2019).
[Crossref]

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: A perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Hu, T.

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact low loss mid-infrared for arbitrary power wplitting ratio enabled by rib waveguide dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 4500108 (2018).
[Crossref]

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D.-L. Kwong, G.-Q. Lo, and C. Lee, “Wavelength-flattened directional coupler based mid-infrared chemical sensor using bragg wavelength in subwavelength grating structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5(5), 417–430 (2017).
[Crossref]

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109(24), 241101 (2016).
[Crossref]

Hu, Y.

Huang, Y.

W. D. Sacher, Y. Huang, G. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lit. Technol. 33(4), 901–910 (2015).
[Crossref]

Hudson, D. D.

Huggins, H.

R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 292–296 (2000).
[Crossref] [PubMed]

Irrera, A.

A. A. Leonardi, M. J. Lo Faro, S. Petralia, B. Fazio, P. Musumeci, S. Conoci, A. Irrera, and F. Priolo, “Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors,” ACS Sens. 3(9), 1690–1697 (2018).
[Crossref] [PubMed]

Isella, G.

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

Ji, X.

Ji, X. H.

X. H. Ji, Q. Y. Zhang, Z. Y. Ling, and S. P. Lau, “Stress and its effect on optical properties of AlN nanorods,” Appl. Phys. Lett. 95(23), 233105 (2009).
[Crossref]

Jin, T.

P. T. Lin, H. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

Kakiuchida, H.

N. Matsunami, H. Kakiuchida, M. Sataka, and S. Okayasu, “XRD characterization of AlN thin films prepared by reactive RF-sputter deposition,” Adv. Mater. Phys. Chem. 03(01), 101–107 (2013).
[Crossref]

Kamlapurkar, S.

Kang, J.

Khan, M.

Khokhar, A. Z.

M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, M. Banakar, W. Cao, J. S. Penades, D. T. Tran, F. Y. Gardes, D. J. Thomson, G. T. Reed, H. Wang, and G. Z. Mashanovich, “Silicon-on-insulator free-carrier injection modulators for the mid-infrared,” Opt. Lett. 44(4), 915–918 (2019).
[Crossref] [PubMed]

J. S. Penadés, A. Sánchez-Postigo, M. Nedeljkovic, A. Ortega-Moñux, J. G. Wangüemert-Pérez, Y. Xu, R. Halir, Z. Qu, A. Z. Khokhar, A. Osman, W. Cao, C. G. Littlejohns, P. Cheben, I. Molina-Fernández, and G. Z. Mashanovich, “Suspended silicon waveguides for long-wave infrared wavelengths,” Opt. Lett. 43(4), 795–798 (2018).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. E. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm,” Opt. Express 25(22), 27431–27441 (2017).
[Crossref] [PubMed]

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penadés, C. G. Littlejohns, A. Z. Khokhar, D. Pérez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016).
[Crossref] [PubMed]

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).
[Crossref]

Kim, S. S.

F. Seichter, A. Wilk, K. Wörle, S. S. Kim, J. A. Vogt, U. Wachter, P. Radermacher, and B. Mizaikoff, “Multivariate determination of 13CO2/12CO2 ratios in exhaled mouse breath with mid-infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 405(14), 4945–4951 (2013).
[Crossref] [PubMed]

Kimerling, L.

P. Tai Lin, V. Singh, L. Kimerling, and A. Murthy Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102(25), 251121 (2013).
[Crossref]

Kimerling, L. C.

P. Su, Z. Han, D. Kita, P. Becla, H. Lin, S. Deckoff-Jones, K. Richardson, L. C. Kimerling, J. Hu, and A. Agarwal, “Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector,” Appl. Phys. Lett. 114(5), 051103 (2019).
[Crossref]

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: A perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

P. T. Lin, H. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

P. T. Lin, V. Singh, H. Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Kita, D.

P. Su, Z. Han, D. Kita, P. Becla, H. Lin, S. Deckoff-Jones, K. Richardson, L. C. Kimerling, J. Hu, and A. Agarwal, “Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector,” Appl. Phys. Lett. 114(5), 051103 (2019).
[Crossref]

Kwok, S. W.

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

Kwong, D. L.

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact low loss mid-infrared for arbitrary power wplitting ratio enabled by rib waveguide dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 4500108 (2018).
[Crossref]

Kwong, D.-L.

B. Dong, X. Luo, S. Zhu, M. Li, D. Hasan, L. Zhang, S. J. Chua, J. Wei, Y. Chang, G.-Q. Lo, K. W. Ang, D.-L. Kwong, and C. Lee, “Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics,” Opt. Lett. 44(1), 73–76 (2019).
[Crossref] [PubMed]

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D.-L. Kwong, G.-Q. Lo, and C. Lee, “Wavelength-flattened directional coupler based mid-infrared chemical sensor using bragg wavelength in subwavelength grating structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Lai, W. C.

Lau, S. P.

X. H. Ji, Q. Y. Zhang, Z. Y. Ling, and S. P. Lau, “Stress and its effect on optical properties of AlN nanorods,” Appl. Phys. Lett. 95(23), 233105 (2009).
[Crossref]

Le Roux, X.

Lee, C.

B. Dong, X. Luo, S. Zhu, M. Li, D. Hasan, L. Zhang, S. J. Chua, J. Wei, Y. Chang, G.-Q. Lo, K. W. Ang, D.-L. Kwong, and C. Lee, “Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics,” Opt. Lett. 44(1), 73–76 (2019).
[Crossref] [PubMed]

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact low loss mid-infrared for arbitrary power wplitting ratio enabled by rib waveguide dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 4500108 (2018).
[Crossref]

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D.-L. Kwong, G.-Q. Lo, and C. Lee, “Wavelength-flattened directional coupler based mid-infrared chemical sensor using bragg wavelength in subwavelength grating structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

N. Chen, B. Dong, X. Luo, H. Wang, N. Singh, G.-Q. Lo, and C. Lee, “Efficient and broadband subwavelength grating coupler for 3.7 μm mid-infrared silicon photonics integration,” Opt. Express 26(20), 26242–26256 (2018).
[Crossref] [PubMed]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24(6), 6101608 (2018).
[Crossref]

Y. Ma, B. Dong, B. Li, K.-W. Ang, and C. Lee, “Dispersion engineering and thermo-optic tuning in mid-infrared photonic crystal slow light waveguides on silicon-on-insulator,” Opt. Lett. 43(22), 5504–5507 (2018).
[Crossref] [PubMed]

J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
[Crossref] [PubMed]

Y. Chang, D. Hasan, B. Dong, J. Wei, Y. Ma, G. Zhou, K. W. Ang, and C. Lee, “All-dielectric surface-enhanced infrared absorption-based gas sensor using guided resonance,” ACS Appl. Mater. Interfaces 10(44), 38272–38279 (2018).
[Crossref] [PubMed]

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5(5), 417–430 (2017).
[Crossref]

Lee, K. H.

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109(24), 241101 (2016).
[Crossref]

Leonardi, A. A.

A. A. Leonardi, M. J. Lo Faro, S. Petralia, B. Fazio, P. Musumeci, S. Conoci, A. Irrera, and F. Priolo, “Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors,” ACS Sens. 3(9), 1690–1697 (2018).
[Crossref] [PubMed]

Li, B.

Y. Ma, B. Dong, B. Li, K.-W. Ang, and C. Lee, “Dispersion engineering and thermo-optic tuning in mid-infrared photonic crystal slow light waveguides on silicon-on-insulator,” Opt. Lett. 43(22), 5504–5507 (2018).
[Crossref] [PubMed]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24(6), 6101608 (2018).
[Crossref]

Li, C.

Li, M.

B. Dong, X. Luo, S. Zhu, M. Li, D. Hasan, L. Zhang, S. J. Chua, J. Wei, Y. Chang, G.-Q. Lo, K. W. Ang, D.-L. Kwong, and C. Lee, “Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics,” Opt. Lett. 44(1), 73–76 (2019).
[Crossref] [PubMed]

C. Chen, D. A. Mohr, H.-K. Choi, D. Yoo, M. Li, and S.-H. Oh, “Waveguide-integrated compact plasmonic resonators for on-chip mid-infrared laser spectroscopy,” Nano Lett. 18(12), 7601–7608 (2018).
[Crossref] [PubMed]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Li, W.

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109(24), 241101 (2016).
[Crossref]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

Lin, H.

P. Su, Z. Han, D. Kita, P. Becla, H. Lin, S. Deckoff-Jones, K. Richardson, L. C. Kimerling, J. Hu, and A. Agarwal, “Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector,” Appl. Phys. Lett. 114(5), 051103 (2019).
[Crossref]

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: A perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Lin, H. G.

P. T. Lin, H. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

Lin, H. Y. G.

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

P. T. Lin, V. Singh, H. Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Lin, P. T.

P. T. Lin, H. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

P. T. Lin, V. Singh, H. Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Ling, Z. Y.

X. H. Ji, Q. Y. Zhang, Z. Y. Ling, and S. P. Lau, “Stress and its effect on optical properties of AlN nanorods,” Appl. Phys. Lett. 95(23), 233105 (2009).
[Crossref]

Liow, T.-Y.

Lipson, M.

Littlejohns, C.

Littlejohns, C. G.

Liu, Q.

Lo, G.

S. Zhu and G. Lo, “Vertically-stacked multilayer photonics on bulk silicon toward three dimensional untegration,” J. Light. Technolgoy 34(2), 386–392 (2016).
[Crossref]

W. D. Sacher, Y. Huang, G. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lit. Technol. 33(4), 901–910 (2015).
[Crossref]

Lo, G.-Q.

Lo, P. G. Q.

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact low loss mid-infrared for arbitrary power wplitting ratio enabled by rib waveguide dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 4500108 (2018).
[Crossref]

Lo Faro, M. J.

A. A. Leonardi, M. J. Lo Faro, S. Petralia, B. Fazio, P. Musumeci, S. Conoci, A. Irrera, and F. Priolo, “Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors,” ACS Sens. 3(9), 1690–1697 (2018).
[Crossref] [PubMed]

Lourtioz, J. M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Luo, X.

B. Dong, X. Luo, S. Zhu, M. Li, D. Hasan, L. Zhang, S. J. Chua, J. Wei, Y. Chang, G.-Q. Lo, K. W. Ang, D.-L. Kwong, and C. Lee, “Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics,” Opt. Lett. 44(1), 73–76 (2019).
[Crossref] [PubMed]

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact low loss mid-infrared for arbitrary power wplitting ratio enabled by rib waveguide dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 4500108 (2018).
[Crossref]

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D.-L. Kwong, G.-Q. Lo, and C. Lee, “Wavelength-flattened directional coupler based mid-infrared chemical sensor using bragg wavelength in subwavelength grating structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

N. Chen, B. Dong, X. Luo, H. Wang, N. Singh, G.-Q. Lo, and C. Lee, “Efficient and broadband subwavelength grating coupler for 3.7 μm mid-infrared silicon photonics integration,” Opt. Express 26(20), 26242–26256 (2018).
[Crossref] [PubMed]

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5(5), 417–430 (2017).
[Crossref]

Luo, Y.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Luo, Z.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: A perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

Lutsky, J. J.

R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 292–296 (2000).
[Crossref] [PubMed]

Ma, Y.

Y. Chang, D. Hasan, B. Dong, J. Wei, Y. Ma, G. Zhou, K. W. Ang, and C. Lee, “All-dielectric surface-enhanced infrared absorption-based gas sensor using guided resonance,” ACS Appl. Mater. Interfaces 10(44), 38272–38279 (2018).
[Crossref] [PubMed]

J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
[Crossref] [PubMed]

Y. Ma, B. Dong, B. Li, K.-W. Ang, and C. Lee, “Dispersion engineering and thermo-optic tuning in mid-infrared photonic crystal slow light waveguides on silicon-on-insulator,” Opt. Lett. 43(22), 5504–5507 (2018).
[Crossref] [PubMed]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24(6), 6101608 (2018).
[Crossref]

Mägi, E.

Mahmoud, A.

Mahmoud, M.

Marris-Morini, D.

Mashanovich, G. Z.

M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, M. Banakar, W. Cao, J. S. Penades, D. T. Tran, F. Y. Gardes, D. J. Thomson, G. T. Reed, H. Wang, and G. Z. Mashanovich, “Silicon-on-insulator free-carrier injection modulators for the mid-infrared,” Opt. Lett. 44(4), 915–918 (2019).
[Crossref] [PubMed]

J. S. Penadés, A. Sánchez-Postigo, M. Nedeljkovic, A. Ortega-Moñux, J. G. Wangüemert-Pérez, Y. Xu, R. Halir, Z. Qu, A. Z. Khokhar, A. Osman, W. Cao, C. G. Littlejohns, P. Cheben, I. Molina-Fernández, and G. Z. Mashanovich, “Suspended silicon waveguides for long-wave infrared wavelengths,” Opt. Lett. 43(4), 795–798 (2018).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. E. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm,” Opt. Express 25(22), 27431–27441 (2017).
[Crossref] [PubMed]

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penadés, C. G. Littlejohns, A. Z. Khokhar, D. Pérez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016).
[Crossref] [PubMed]

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).
[Crossref]

Matsunami, N.

N. Matsunami, H. Kakiuchida, M. Sataka, and S. Okayasu, “XRD characterization of AlN thin films prepared by reactive RF-sputter deposition,” Adv. Mater. Phys. Chem. 03(01), 101–107 (2013).
[Crossref]

Mégy, R.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Millender, R.

P. T. Lin, H. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

Miller, R.

R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 292–296 (2000).
[Crossref] [PubMed]

Miller, S. A.

Mitchell, C. J.

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

Mittal, V.

Mizaikoff, B.

B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42(22), 8683–8699 (2013).
[Crossref] [PubMed]

F. Seichter, A. Wilk, K. Wörle, S. S. Kim, J. A. Vogt, U. Wachter, P. Radermacher, and B. Mizaikoff, “Multivariate determination of 13CO2/12CO2 ratios in exhaled mouse breath with mid-infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 405(14), 4945–4951 (2013).
[Crossref] [PubMed]

Mohr, D. A.

C. Chen, D. A. Mohr, H.-K. Choi, D. Yoo, M. Li, and S.-H. Oh, “Waveguide-integrated compact plasmonic resonators for on-chip mid-infrared laser spectroscopy,” Nano Lett. 18(12), 7601–7608 (2018).
[Crossref] [PubMed]

Molina-Fernández, I.

Mukherjee, T.

Muller, R. S.

Murthy Agarwal, A.

P. Tai Lin, V. Singh, L. Kimerling, and A. Murthy Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102(25), 251121 (2013).
[Crossref]

Murugan, G. S.

Musumeci, P.

A. A. Leonardi, M. J. Lo Faro, S. Petralia, B. Fazio, P. Musumeci, S. Conoci, A. Irrera, and F. Priolo, “Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors,” ACS Sens. 3(9), 1690–1697 (2018).
[Crossref] [PubMed]

Naik, R. S.

R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 292–296 (2000).
[Crossref] [PubMed]

Nedeljkovic, M.

M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, M. Banakar, W. Cao, J. S. Penades, D. T. Tran, F. Y. Gardes, D. J. Thomson, G. T. Reed, H. Wang, and G. Z. Mashanovich, “Silicon-on-insulator free-carrier injection modulators for the mid-infrared,” Opt. Lett. 44(4), 915–918 (2019).
[Crossref] [PubMed]

V. Mittal, M. Nedeljkovic, D. J. Rowe, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopy,” Opt. Lett. 43(12), 2913–2916 (2018).
[Crossref] [PubMed]

J. S. Penadés, A. Sánchez-Postigo, M. Nedeljkovic, A. Ortega-Moñux, J. G. Wangüemert-Pérez, Y. Xu, R. Halir, Z. Qu, A. Z. Khokhar, A. Osman, W. Cao, C. G. Littlejohns, P. Cheben, I. Molina-Fernández, and G. Z. Mashanovich, “Suspended silicon waveguides for long-wave infrared wavelengths,” Opt. Lett. 43(4), 795–798 (2018).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. E. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm,” Opt. Express 25(22), 27431–27441 (2017).
[Crossref] [PubMed]

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penadés, C. G. Littlejohns, A. Z. Khokhar, D. Pérez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016).
[Crossref] [PubMed]

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).
[Crossref]

Nguyen, K. N.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Nicolay, P.

M. Gillinger, M. Schneider, A. Bittner, P. Nicolay, and U. Schmid, “Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films,” J. Appl. Phys. 117(6), 065303 (2015).
[Crossref]

Oh, S.-H.

C. Chen, D. A. Mohr, H.-K. Choi, D. Yoo, M. Li, and S.-H. Oh, “Waveguide-integrated compact plasmonic resonators for on-chip mid-infrared laser spectroscopy,” Nano Lett. 18(12), 7601–7608 (2018).
[Crossref] [PubMed]

Okayasu, S.

N. Matsunami, H. Kakiuchida, M. Sataka, and S. Okayasu, “XRD characterization of AlN thin films prepared by reactive RF-sputter deposition,” Adv. Mater. Phys. Chem. 03(01), 101–107 (2013).
[Crossref]

Orcutt, J. S.

Ortega-Moñux, A.

Osman, A.

Pastalan, J.

R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 292–296 (2000).
[Crossref] [PubMed]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Penades, J. S.

Penadés, J. S.

Pérez-Galacho, D.

Pernice, W. H. P.

Petralia, S.

A. A. Leonardi, M. J. Lo Faro, S. Petralia, B. Fazio, P. Musumeci, S. Conoci, A. Irrera, and F. Priolo, “Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors,” ACS Sens. 3(9), 1690–1697 (2018).
[Crossref] [PubMed]

Piazza, G.

Poon, J. K. S.

W. D. Sacher, Y. Huang, G. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lit. Technol. 33(4), 901–910 (2015).
[Crossref]

Priolo, F.

A. A. Leonardi, M. J. Lo Faro, S. Petralia, B. Fazio, P. Musumeci, S. Conoci, A. Irrera, and F. Priolo, “Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors,” ACS Sens. 3(9), 1690–1697 (2018).
[Crossref] [PubMed]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

Qu, Z.

Quack, N.

Radermacher, P.

F. Seichter, A. Wilk, K. Wörle, S. S. Kim, J. A. Vogt, U. Wachter, P. Radermacher, and B. Mizaikoff, “Multivariate determination of 13CO2/12CO2 ratios in exhaled mouse breath with mid-infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 405(14), 4945–4951 (2013).
[Crossref] [PubMed]

Ramirez, J. M.

Read, A.

Reed, G. T.

Reif, R.

R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 292–296 (2000).
[Crossref] [PubMed]

Reynolds, S. A.

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

Richardson, K.

P. Su, Z. Han, D. Kita, P. Becla, H. Lin, S. Deckoff-Jones, K. Richardson, L. C. Kimerling, J. Hu, and A. Agarwal, “Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector,” Appl. Phys. Lett. 114(5), 051103 (2019).
[Crossref]

Rittenhouse, G.

R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 292–296 (2000).
[Crossref] [PubMed]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

Rowe, D. J.

Ryckeboer, E.

Sacher, W. D.

W. D. Sacher, Y. Huang, G. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lit. Technol. 33(4), 901–910 (2015).
[Crossref]

Salas-Montiel, R.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Sampaolo, A.

Sanchez, N. P.

Sánchez-Postigo, A.

Sataka, M.

N. Matsunami, H. Kakiuchida, M. Sataka, and S. Okayasu, “XRD characterization of AlN thin films prepared by reactive RF-sputter deposition,” Adv. Mater. Phys. Chem. 03(01), 101–107 (2013).
[Crossref]

Schmid, U.

M. Gillinger, M. Schneider, A. Bittner, P. Nicolay, and U. Schmid, “Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films,” J. Appl. Phys. 117(6), 065303 (2015).
[Crossref]

Schneider, M.

M. Gillinger, M. Schneider, A. Bittner, P. Nicolay, and U. Schmid, “Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films,” J. Appl. Phys. 117(6), 065303 (2015).
[Crossref]

Seichter, F.

F. Seichter, A. Wilk, K. Wörle, S. S. Kim, J. A. Vogt, U. Wachter, P. Radermacher, and B. Mizaikoff, “Multivariate determination of 13CO2/12CO2 ratios in exhaled mouse breath with mid-infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 405(14), 4945–4951 (2013).
[Crossref] [PubMed]

Seok, T. J.

Set, S. Y.

Simola, E. T.

Singh, N.

Singh, V.

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

P. Tai Lin, V. Singh, L. Kimerling, and A. Murthy Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102(25), 251121 (2013).
[Crossref]

P. T. Lin, V. Singh, H. Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Sodini, C. G.

R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 292–296 (2000).
[Crossref] [PubMed]

Song, J.

Soref, R.

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109(24), 241101 (2016).
[Crossref]

Srivastava, A. K.

J. Gangwar, B. K. Gupta, S. K. Tripathi, and A. K. Srivastava, “Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis,” Nanoscale 7(32), 13313–13344 (2015).
[Crossref] [PubMed]

Stankovic, S.

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).
[Crossref]

Su, P.

P. Su, Z. Han, D. Kita, P. Becla, H. Lin, S. Deckoff-Jones, K. Richardson, L. C. Kimerling, J. Hu, and A. Agarwal, “Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector,” Appl. Phys. Lett. 114(5), 051103 (2019).
[Crossref]

Subbaraman, H.

Sun, F.

Tai Lin, P.

P. Tai Lin, V. Singh, L. Kimerling, and A. Murthy Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102(25), 251121 (2013).
[Crossref]

Takagi, S.

Takenaka, M.

Tan, C. S.

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109(24), 241101 (2016).
[Crossref]

Tang, H. X.

Thomson, D. J.

Tian, H.

Tittel, F. K.

Tiwald, T.

P. T. Lin, V. Singh, H. Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Tombez, L.

Tran, D. T.

Tripathi, S. K.

J. Gangwar, B. K. Gupta, S. K. Tripathi, and A. K. Srivastava, “Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis,” Nanoscale 7(32), 13313–13344 (2015).
[Crossref] [PubMed]

Tsang, H. K.

Vakarin, V.

Vanslembrouck, M.

Vivien, L.

Vogt, J. A.

F. Seichter, A. Wilk, K. Wörle, S. S. Kim, J. A. Vogt, U. Wachter, P. Radermacher, and B. Mizaikoff, “Multivariate determination of 13CO2/12CO2 ratios in exhaled mouse breath with mid-infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 405(14), 4945–4951 (2013).
[Crossref] [PubMed]

Wachter, U.

F. Seichter, A. Wilk, K. Wörle, S. S. Kim, J. A. Vogt, U. Wachter, P. Radermacher, and B. Mizaikoff, “Multivariate determination of 13CO2/12CO2 ratios in exhaled mouse breath with mid-infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 405(14), 4945–4951 (2013).
[Crossref] [PubMed]

Wada, K.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: A perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

Wang, H.

M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, M. Banakar, W. Cao, J. S. Penades, D. T. Tran, F. Y. Gardes, D. J. Thomson, G. T. Reed, H. Wang, and G. Z. Mashanovich, “Silicon-on-insulator free-carrier injection modulators for the mid-infrared,” Opt. Lett. 44(4), 915–918 (2019).
[Crossref] [PubMed]

N. Chen, B. Dong, X. Luo, H. Wang, N. Singh, G.-Q. Lo, and C. Lee, “Efficient and broadband subwavelength grating coupler for 3.7 μm mid-infrared silicon photonics integration,” Opt. Express 26(20), 26242–26256 (2018).
[Crossref] [PubMed]

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D.-L. Kwong, G.-Q. Lo, and C. Lee, “Wavelength-flattened directional coupler based mid-infrared chemical sensor using bragg wavelength in subwavelength grating structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact low loss mid-infrared for arbitrary power wplitting ratio enabled by rib waveguide dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 4500108 (2018).
[Crossref]

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109(24), 241101 (2016).
[Crossref]

Wangüemert-Pérez, J. G.

Wei, J.

B. Dong, X. Luo, S. Zhu, M. Li, D. Hasan, L. Zhang, S. J. Chua, J. Wei, Y. Chang, G.-Q. Lo, K. W. Ang, D.-L. Kwong, and C. Lee, “Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics,” Opt. Lett. 44(1), 73–76 (2019).
[Crossref] [PubMed]

J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
[Crossref] [PubMed]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24(6), 6101608 (2018).
[Crossref]

Y. Chang, D. Hasan, B. Dong, J. Wei, Y. Ma, G. Zhou, K. W. Ang, and C. Lee, “All-dielectric surface-enhanced infrared absorption-based gas sensor using guided resonance,” ACS Appl. Mater. Interfaces 10(44), 38272–38279 (2018).
[Crossref] [PubMed]

Whitesides, G. M.

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

Wilk, A.

F. Seichter, A. Wilk, K. Wörle, S. S. Kim, J. A. Vogt, U. Wachter, P. Radermacher, and B. Mizaikoff, “Multivariate determination of 13CO2/12CO2 ratios in exhaled mouse breath with mid-infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 405(14), 4945–4951 (2013).
[Crossref] [PubMed]

Wilkinson, J. S.

Wong, C. Y.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics J. 4(5), 1510–1519 (2012).
[Crossref]

Wong, Y. H.

R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 292–296 (2000).
[Crossref] [PubMed]

Wörle, K.

F. Seichter, A. Wilk, K. Wörle, S. S. Kim, J. A. Vogt, U. Wachter, P. Radermacher, and B. Mizaikoff, “Multivariate determination of 13CO2/12CO2 ratios in exhaled mouse breath with mid-infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 405(14), 4945–4951 (2013).
[Crossref] [PubMed]

Wray, P.

Wu, H.

Wu, M. C.

Xiao, T.-H.

Xiong, C.

Xu, K.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics J. 4(5), 1510–1519 (2012).
[Crossref]

Xu, X.

Xu, Y.

Yoo, D.

C. Chen, D. A. Mohr, H.-K. Choi, D. Yoo, M. Li, and S.-H. Oh, “Waveguide-integrated compact plasmonic resonators for on-chip mid-infrared laser spectroscopy,” Nano Lett. 18(12), 7601–7608 (2018).
[Crossref] [PubMed]

Yu, M.

Yu, Y.

Zhang, E. J.

Zhang, L.

B. Dong, X. Luo, S. Zhu, M. Li, D. Hasan, L. Zhang, S. J. Chua, J. Wei, Y. Chang, G.-Q. Lo, K. W. Ang, D.-L. Kwong, and C. Lee, “Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics,” Opt. Lett. 44(1), 73–76 (2019).
[Crossref] [PubMed]

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109(24), 241101 (2016).
[Crossref]

Zhang, Q. Y.

X. H. Ji, Q. Y. Zhang, Z. Y. Ling, and S. P. Lau, “Stress and its effect on optical properties of AlN nanorods,” Appl. Phys. Lett. 95(23), 233105 (2009).
[Crossref]

Zhao, Z.

Zheng, C.

Zhou, G.

Y. Chang, D. Hasan, B. Dong, J. Wei, Y. Ma, G. Zhou, K. W. Ang, and C. Lee, “All-dielectric surface-enhanced infrared absorption-based gas sensor using guided resonance,” ACS Appl. Mater. Interfaces 10(44), 38272–38279 (2018).
[Crossref] [PubMed]

Zhou, W.

Zhu, S.

Zou, C.-L.

Zou, Y.

ACS Appl. Mater. Interfaces (1)

Y. Chang, D. Hasan, B. Dong, J. Wei, Y. Ma, G. Zhou, K. W. Ang, and C. Lee, “All-dielectric surface-enhanced infrared absorption-based gas sensor using guided resonance,” ACS Appl. Mater. Interfaces 10(44), 38272–38279 (2018).
[Crossref] [PubMed]

ACS Nano (1)

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

ACS Sens. (1)

A. A. Leonardi, M. J. Lo Faro, S. Petralia, B. Fazio, P. Musumeci, S. Conoci, A. Irrera, and F. Priolo, “Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors,” ACS Sens. 3(9), 1690–1697 (2018).
[Crossref] [PubMed]

Adv. Mater. Phys. Chem. (1)

N. Matsunami, H. Kakiuchida, M. Sataka, and S. Okayasu, “XRD characterization of AlN thin films prepared by reactive RF-sputter deposition,” Adv. Mater. Phys. Chem. 03(01), 101–107 (2013).
[Crossref]

Adv. Opt. Mater. (2)

P. T. Lin, H. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

P. T. Lin, V. Singh, H. Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Anal. Bioanal. Chem. (1)

F. Seichter, A. Wilk, K. Wörle, S. S. Kim, J. A. Vogt, U. Wachter, P. Radermacher, and B. Mizaikoff, “Multivariate determination of 13CO2/12CO2 ratios in exhaled mouse breath with mid-infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 405(14), 4945–4951 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

P. Tai Lin, V. Singh, L. Kimerling, and A. Murthy Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102(25), 251121 (2013).
[Crossref]

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109(24), 241101 (2016).
[Crossref]

P. Su, Z. Han, D. Kita, P. Becla, H. Lin, S. Deckoff-Jones, K. Richardson, L. C. Kimerling, J. Hu, and A. Agarwal, “Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector,” Appl. Phys. Lett. 114(5), 051103 (2019).
[Crossref]

X. H. Ji, Q. Y. Zhang, Z. Y. Ling, and S. P. Lau, “Stress and its effect on optical properties of AlN nanorods,” Appl. Phys. Lett. 95(23), 233105 (2009).
[Crossref]

Biomed. Opt. Express (1)

Chem. Soc. Rev. (1)

B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42(22), 8683–8699 (2013).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact low loss mid-infrared for arbitrary power wplitting ratio enabled by rib waveguide dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 4500108 (2018).
[Crossref]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 24(6), 6101608 (2018).
[Crossref]

IEEE Photonics J. (1)

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics J. 4(5), 1510–1519 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 292–296 (2000).
[Crossref] [PubMed]

J. Appl. Phys. (1)

M. Gillinger, M. Schneider, A. Bittner, P. Nicolay, and U. Schmid, “Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films,” J. Appl. Phys. 117(6), 065303 (2015).
[Crossref]

J. Light. Technolgoy (1)

S. Zhu and G. Lo, “Vertically-stacked multilayer photonics on bulk silicon toward three dimensional untegration,” J. Light. Technolgoy 34(2), 386–392 (2016).
[Crossref]

J. Lit. Technol. (1)

W. D. Sacher, Y. Huang, G. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lit. Technol. 33(4), 901–910 (2015).
[Crossref]

Nano Lett. (4)

C. Chen, D. A. Mohr, H.-K. Choi, D. Yoo, M. Li, and S.-H. Oh, “Waveguide-integrated compact plasmonic resonators for on-chip mid-infrared laser spectroscopy,” Nano Lett. 18(12), 7601–7608 (2018).
[Crossref] [PubMed]

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

Nanomaterials (Basel) (1)

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D.-L. Kwong, G.-Q. Lo, and C. Lee, “Wavelength-flattened directional coupler based mid-infrared chemical sensor using bragg wavelength in subwavelength grating structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

Nanophotonics (1)

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: A perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

Nanoscale (1)

J. Gangwar, B. K. Gupta, S. K. Tripathi, and A. K. Srivastava, “Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis,” Nanoscale 7(32), 13313–13344 (2015).
[Crossref] [PubMed]

Opt. Express (9)

N. Chen, B. Dong, X. Luo, H. Wang, N. Singh, G.-Q. Lo, and C. Lee, “Efficient and broadband subwavelength grating coupler for 3.7 μm mid-infrared silicon photonics integration,” Opt. Express 26(20), 26242–26256 (2018).
[Crossref] [PubMed]

S. Zhu and G.-Q. Lo, “Aluminum nitride electro-optic phase shifter for backend integration on silicon,” Opt. Express 24(12), 12501–12506 (2016).
[Crossref] [PubMed]

L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, and R. J. Griffin, “Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing,” Opt. Express 24(6), A528–A535 (2016).
[Crossref] [PubMed]

M. Mahmoud, A. Mahmoud, L. Cai, M. Khan, T. Mukherjee, J. Bain, and G. Piazza, “Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes,” Opt. Express 26(19), 25060–25075 (2018).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. E. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm,” Opt. Express 25(22), 27431–27441 (2017).
[Crossref] [PubMed]

W. H. P. Pernice, C. Xiong, and H. X. Tang, “High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics,” Opt. Express 20(11), 12261–12269 (2012).
[Crossref] [PubMed]

J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26(2), 870–877 (2018).
[Crossref] [PubMed]

Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, J. Frigerio, A. Ballabio, E. T. Simola, C. Alonso-Ramos, D. Benedikovic, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “On-chip Bragg grating waveguides and Fabry-Perot resonators for long-wave infrared operation up to 8.4 µm,” Opt. Express 26(26), 34366–34372 (2018).
[Crossref] [PubMed]

J. Kang, M. Takenaka, and S. Takagi, “Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits,” Opt. Express 24(11), 11855–11864 (2016).
[Crossref] [PubMed]

Opt. Lett. (11)

T.-H. Xiao, Z. Zhao, W. Zhou, C.-Y. Chang, S. Y. Set, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared high-Q germanium microring resonator,” Opt. Lett. 43(12), 2885–2888 (2018).
[Crossref] [PubMed]

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penadés, C. G. Littlejohns, A. Z. Khokhar, D. Pérez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016).
[Crossref] [PubMed]

J. S. Penadés, A. Sánchez-Postigo, M. Nedeljkovic, A. Ortega-Moñux, J. G. Wangüemert-Pérez, Y. Xu, R. Halir, Z. Qu, A. Z. Khokhar, A. Osman, W. Cao, C. G. Littlejohns, P. Cheben, I. Molina-Fernández, and G. Z. Mashanovich, “Suspended silicon waveguides for long-wave infrared wavelengths,” Opt. Lett. 43(4), 795–798 (2018).
[Crossref] [PubMed]

J. Kang, Z. Cheng, W. Zhou, T.-H. Xiao, K.-L. Gopalakrisna, M. Takenaka, H. K. Tsang, and K. Goda, “Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides,” Opt. Lett. 42(11), 2094–2097 (2017).
[Crossref] [PubMed]

V. Mittal, M. Nedeljkovic, D. J. Rowe, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopy,” Opt. Lett. 43(12), 2913–2916 (2018).
[Crossref] [PubMed]

B. Dong, X. Luo, S. Zhu, M. Li, D. Hasan, L. Zhang, S. J. Chua, J. Wei, Y. Chang, G.-Q. Lo, K. W. Ang, D.-L. Kwong, and C. Lee, “Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics,” Opt. Lett. 44(1), 73–76 (2019).
[Crossref] [PubMed]

N. Singh, A. Casas-Bedoya, D. D. Hudson, A. Read, E. Mägi, and B. J. Eggleton, “Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide,” Opt. Lett. 41(24), 5776–5779 (2016).
[Crossref] [PubMed]

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W. C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39(10), 3070–3073 (2014).
[Crossref] [PubMed]

M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, M. Banakar, W. Cao, J. S. Penades, D. T. Tran, F. Y. Gardes, D. J. Thomson, G. T. Reed, H. Wang, and G. Z. Mashanovich, “Silicon-on-insulator free-carrier injection modulators for the mid-infrared,” Opt. Lett. 44(4), 915–918 (2019).
[Crossref] [PubMed]

J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
[Crossref] [PubMed]

Y. Ma, B. Dong, B. Li, K.-W. Ang, and C. Lee, “Dispersion engineering and thermo-optic tuning in mid-infrared photonic crystal slow light waveguides on silicon-on-insulator,” Opt. Lett. 43(22), 5504–5507 (2018).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Optica (4)

Photon. Res. (2)

Science (1)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

Other (1)

S. Ghosh and G. Piazza, “Elasto-optic modulator integrated in high frequency piezoelectric MEMS resonator,” in MEMS 2016 Shanghai (2016), (January), pp. 9–12.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Waveguide propagation loss after thermal annealing under different conditions. (a) Wavelength dependent loss. (b) Optical microscope image showing crevices on the thin film after the device undergoes thermal annealing at 800°C for 4 hrs. (c) Tunneling electron microscope (TEM) image of the waveguide cross section showing crevices around the waveguide sidewalls after the device undergoes thermal annealing at 800°C for 4 hrs. (d) Loss at 3.85 µm. Inset: Waveguide structure for extracting propagation loss using cutback method.
Fig. 2
Fig. 2 The comparison of bend loss and taper coupling efficiency before and after thermal annealing. (a) Bend loss before thermal annealing. Inset: Optical image of waveguide structure for extracting bend loss using cutback method. (b) Bend loss after thermal annealing. (c) Taper coupling loss before thermal annealing. Inset: SEM images of 0.3 µm and 1 µm inverse tapers. (d) Taper coupling loss after thermal annealing. Inset: Optical image of tapers with different widths.
Fig. 3
Fig. 3 The comparison of performance of three functional building blocks before and after thermal annealing. (a) Cascaded MMI. (b) DC. (c) Add/drop filter. before thermal annealing. (d) Cascaded MMI. (e) DC. (f) Add/drop filter. after thermal annealing.
Fig. 4
Fig. 4 FTIR spectrum before and after thermal annealing. (a) AlN-on-SiO2. (b) SiO2-on-Si. (c) the constructive interference peaks at around 3.7 µm originated from both thin films after thermal annealing under different conditions.
Fig. 5
Fig. 5 (a) Raman spectrum of the AlNOI wafer after thermal annealing under different conditions. (b) Zoom-in of (a) to E2(high) peaks. (c) XRD spectrum of the AlNOI wafer after thermal annealing under different conditions. Inset: Zoom-in of the XRD peak to = 36° in the as-deposited AlN thin film. (d) Zoom-in of (c) to = 36° with relative XRD intensity indicated. Inset: Values of XRD intensity after thermal annealing under different conditions.

Tables (1)

Tables Icon

Table 1 Examined thermal annealing conditions

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α max = λ σ 2 K 2π d 4 n 1 ,
L π =(λ/2)×( n eff1 n eff2 ),
2ndcosθ=mλ,
n(ω')=1+ 2 π P 0 ωk(ω) ω 2 ω ' 2 dω ,
k(ω')= 2ω' π P 0 n(ω)1 ω 2 ω ' 2 dω ,

Metrics