Abstract

We introduce a new high-energy X-ray diffraction tomography technique for volumetric materials characterization. In this method, a conical shell beam is raster scanned through the samples. A central aperture optically couples the diffracted flux from the samples onto a pixelated energy-resolving detector. Snapshot measurements taken during the scan enable the construction of depth-resolved dark-field section images. The calculation of d-spacing values enables the mapping of material phase in a volumetric image. We demonstrate our technique using five ~15 mm thick, axially separated samples placed within a polymer tray of the type used routinely in airport security stations. Our method has broad analytical utility due to scalability in both scan size and X-ray energy. Additional application areas include medical diagnostics, materials science, and process control.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Combined X-ray diffraction and absorption tomography using a conical shell beam

A. Shevchuk, J. P. O. Evans, A. J. Dicken, F. Elarnaut, D. Downes, S. X. Godber, and K. D. Rogers
Opt. Express 27(15) 21092-21101 (2019)

Depth resolved snapshot energy-dispersive X-ray diffraction using a conical shell beam

A. J. Dicken, J. P. O. Evans, K. D. Rogers, D. Prokopiou, S. X. Godber, and M. Wilson
Opt. Express 25(18) 21321-21328 (2017)

X-ray absorption tomography employing a conical shell beam

J. P. O. Evans, S. X. Godber, F. Elarnaut, D. Downes, A. J. Dicken, and K. D. Rogers
Opt. Express 24(25) 29048-29059 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
    [Crossref] [PubMed]
  2. A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
    [Crossref] [PubMed]
  3. A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
    [Crossref] [PubMed]
  4. O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging--a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
    [Crossref] [PubMed]
  5. A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. M. Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
    [Crossref]
  6. E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive X-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
    [Crossref]
  7. K. Rogers and P. Evans, “X-Ray Diffraction and Focal Construct Technology,” in X-Ray Diffraction Imaging Technology and Applications, J. Greenberg, ed. (CRC, 2018).
  8. D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by focal construct technology,” Appl. Radiat. Isot. 77, 160–165 (2013).
    [Crossref] [PubMed]
  9. K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
    [Crossref]
  10. P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 1–3 (2010).
    [Crossref]
  11. D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scatter,” J. Appl. Cryst. 50(2), 411–418 (2017).
    [Crossref]
  12. A. J. Dicken, J. P. O. Evans, K. D. Rogers, D. Prokopiou, S. X. Godber, and M. Wilson, “Depth resolved snapshot energy-dispersive X-ray diffraction using a conical shell beam,” Opt. Express 25(18), 21321–21328 (2017).
    [Crossref] [PubMed]
  13. D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
    [Crossref]
  14. M. Hassan, J. A. Greenberg, I. Odinaka, and D. J. Brady, “Snapshot fan beam coded aperture coherent scatter tomography,” Opt. Express 24(16), 18277–18289 (2016).
    [Crossref] [PubMed]
  15. Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
    [PubMed]
  16. B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
    [Crossref]
  17. J. A. Greenberg, C. MacGibbon, D. Hazineh, B. Keohane, and S. Wolter, “The role of texturing in x-ray diffraction tomography,” Proc. of Spie10632, 106320B1–9 (2018).
  18. J. P. O. Evans, S. X. Godber, F. Elarnaut, D. Downes, A. J. Dicken, and K. D. Rogers, “X-ray absorption tomography employing a conical shell beam,” Opt. Express 24(25), 29048–29059 (2016).
    [Crossref] [PubMed]
  19. P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
    [Crossref] [PubMed]
  20. P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
    [Crossref] [PubMed]

2018 (1)

Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
[PubMed]

2017 (2)

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scatter,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, D. Prokopiou, S. X. Godber, and M. Wilson, “Depth resolved snapshot energy-dispersive X-ray diffraction using a conical shell beam,” Opt. Express 25(18), 21321–21328 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (2)

2014 (2)

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. M. Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

2013 (1)

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by focal construct technology,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

2012 (2)

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

2011 (1)

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

2010 (2)

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 1–3 (2010).
[Crossref]

2009 (2)

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive X-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging--a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Barnes, P.

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging--a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Beale, A. M.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. M. Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

Bell, S.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Bradley, D. A.

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

Brady, D. J.

Cernik, R. J.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Chan, J.

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 1–3 (2010).
[Crossref]

Christodoulou, C.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Clement, J. G.

Cook, E. J.

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive X-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Crews, C.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

Dicken, A.

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scatter,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by focal construct technology,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 1–3 (2010).
[Crossref]

Dicken, A. J.

Downes, D.

Drakos, I.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

Duvauchelle, P.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

Egan, C. K.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Elarnaut, F.

Evans, J. P. O.

Evans, P.

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scatter,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by focal construct technology,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 1–3 (2010).
[Crossref]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

Gaskin, J. A.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Gent, C.

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive X-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

George, L.

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive X-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Ghammraoui, B.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

Gibson, E. K.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. M. Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

Godber, S.

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scatter,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by focal construct technology,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

Godber, S. X.

Greenberg, J. A.

Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
[PubMed]

M. Hassan, J. A. Greenberg, I. Odinaka, and D. J. Brady, “Snapshot fan beam coded aperture coherent scatter tomography,” Opt. Express 24(16), 18277–18289 (2016).
[Crossref] [PubMed]

J. A. Greenberg, C. MacGibbon, D. Hazineh, B. Keohane, and S. Wolter, “The role of texturing in x-ray diffraction tomography,” Proc. of Spie10632, 106320B1–9 (2018).

Greenwood, C.

Griffiths, J. A.

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive X-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Hardwick, S.

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive X-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Hassan, M.

Hazineh, D.

J. A. Greenberg, C. MacGibbon, D. Hazineh, B. Keohane, and S. Wolter, “The role of texturing in x-ray diffraction tomography,” Proc. of Spie10632, 106320B1–9 (2018).

Horrocks, J. A.

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive X-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Jacques, S.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging--a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Jacques, S. D. M.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. M. Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

Kapadia, A. J.

Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
[PubMed]

Katsevich, A.

Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
[PubMed]

Keohane, B.

J. A. Greenberg, C. MacGibbon, D. Hazineh, B. Keohane, and S. Wolter, “The role of texturing in x-ray diffraction tomography,” Proc. of Spie10632, 106320B1–9 (2018).

Koutalonis, M.

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive X-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Lazzari, O.

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging--a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Lyburn, I.

MacGibbon, C.

J. A. Greenberg, C. MacGibbon, D. Hazineh, B. Keohane, and S. Wolter, “The role of texturing in x-ray diffraction tomography,” Proc. of Spie10632, 106320B1–9 (2018).

Martin, R. M.

Michiel, M. M.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. M. Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

O’Flynn, D.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

Odinaka, I.

Pang, S.

Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
[PubMed]

Pani, S.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive X-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Paula, P.

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scatter,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

Paulus, C.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

Prokopiou, D.

Ramsey, B. D.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Rebuffel, V.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

Reid, C.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Rogers, J.

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 1–3 (2010).
[Crossref]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

Rogers, K.

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scatter,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by focal construct technology,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 1–3 (2010).
[Crossref]

Rogers, K. D.

Scuffham, J. W.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Seller, P.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Sellin, P. J.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Shevchuk, A.

Smith, K. L.

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scatter,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

Sochi, T.

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging--a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Speller, R.

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive X-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Speller, R. D.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Stone, N.

Tabary, J.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

Veale, M. C.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Verger, L.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

Wells, K.

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

Wilson, M.

Wilson, M. D.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Wolter, S.

J. A. Greenberg, C. MacGibbon, D. Hazineh, B. Keohane, and S. Wolter, “The role of texturing in x-ray diffraction tomography,” Proc. of Spie10632, 106320B1–9 (2018).

Zhu, Z.

Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
[PubMed]

Zioupos, P.

Analyst (Lond.) (1)

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging--a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 1–3 (2010).
[Crossref]

Appl. Radiat. Isot. (2)

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by focal construct technology,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

Coord. Chem. Rev. (1)

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. M. Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

J. Appl. Cryst. (2)

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scatter,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

J. Instrum. (1)

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

Opt. Express (6)

Proc. SPIE (1)

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive X-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Sci. Rep. (1)

Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
[PubMed]

Other (2)

J. A. Greenberg, C. MacGibbon, D. Hazineh, B. Keohane, and S. Wolter, “The role of texturing in x-ray diffraction tomography,” Proc. of Spie10632, 106320B1–9 (2018).

K. Rogers and P. Evans, “X-Ray Diffraction and Focal Construct Technology,” in X-Ray Diffraction Imaging Technology and Applications, J. Greenberg, ed. (CRC, 2018).

Supplementary Material (1)

NameDescription
» Visualization 1       Rotating 3D tomographic image produced from the collection of high-energy coherent X-ray scatter or XRD using a scanning hollow X-ray beam. The work addresses security luggage screening for explosives and narcotics. Potential application areas also i

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Coordinate system diagram illustrating a conical shell X-ray beam incident upon a pair of samples with unknown relative positions. The diffracted flux from the samples is collected via a central aperture onto a pixelated energy-resolving detector. (b) Polar coordinates r and α or Cartesian pixel distances yD, xD describe the local sample position and the diffraction angle. The beam, aperture and detector form a rigid body, which is raster scanned along axial directions xt and yt to collect and measure diffracted flux from samples distributed over the inspection volume.
Fig. 2
Fig. 2 The heterogeneous 3D phantom consisted of a polymer tray containing five ~15mm thick, 90 mm diameter Petri dish samples with different crystallographic textures. The center sample and the bottom right sample are offset along the z-axis (i.e. distance from the source).
Fig. 3
Fig. 3 Volumetric image (photograph shown in Fig. 2) from the integrated measurements of coherent X-ray scatter across all energy bands from five ~15mm thick, 90 mm diameter Petri dish samples placed on a polymer tray. A rotating image of the whole phantom, including the outline of the tray, can be seen in (Visualization 1).
Fig. 4
Fig. 4 (a) Conventional 1D-diffractograms for the five samples detailed in Table 1. These are generated by integrating the signals in the corresponding regions of interest as highlighted in the coherent scattering z projection (b).

Tables (1)

Tables Icon

Table 1 Details of the five samples used in the experiments.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

α=tan( y D x D )
r= y D cosα = x D sinα
2θ= tan 1 ( r f )+ϕ.
d= λ 2sin{ 1 2 [ tan 1 ( r f )+ϕ ] } .
z l = Ar r+ftanϕ
x l = z l tanϕcosα
y l = z l tanϕsinα.
x g = x l + x t
y g = y l + y t
z g = z l .

Metrics