Abstract

Surface plasmon resonance (SPR) enables strong field confinement, opening thereby new avenues for device miniaturization and reducing energy consumption. Plasmonic devices with electrical tunability attract tremendous interest for various applications. Most of the current researches achieved SPR modulation with relatively large driving voltages, or by other relatively low-speed tuning approaches, such as thermo-optic, magneto-optic, acousto-optic etc. In this paper, we propose and demonstrate an efficiently electrical SPR modulation based on lithium niobate (LN) with gold nanolayer (~81 nm) via electron-plasmon interaction. Efficient intensity modulation and wavelength shift (in visible band) of ~5.7 dB/V and ~36.3 nm/V are respectively obtained with low DC current. More importantly, modulation phenomenon of field distribution dependent is also observed and experimentally unveiled. Further performance is analyzed in terms of AC modulation and polarization characteristics. This key achievement opens up opportunities for applications such as optical interconnection, electric field sensing, electrically plasmonic modulation, etc.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanophotonic lithium niobate electro-optic modulators

Cheng Wang, Mian Zhang, Brian Stern, Michal Lipson, and Marko Lončar
Opt. Express 26(2) 1547-1555 (2018)

6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J. -M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal
Opt. Express 20(19) 20884-20893 (2012)

Plasmonically enhanced random lasing and weak localization of light in powdered Nd3+ doped lithium niobate and its spectral transformation

Xinyan Ma, Jingwen Zhang, Yingce Wang, Jianxiang Lang, and Hua Zhao
Opt. Express 27(20) 28551-28563 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  2. Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating Surface Plasmon Polaritons: Towards Applications for Remote-Excitation Surface Catalytic Reactions,” Adv. Sci. (Weinh.) 3(1), 1500215 (2015).
    [Crossref] [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  4. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  5. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [Crossref] [PubMed]
  6. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
    [Crossref]
  7. A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon-enhanced emission from optically-doped MOS light sources,” Opt. Express 17(1), 185–192 (2009).
    [Crossref] [PubMed]
  8. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
    [Crossref]
  9. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
    [Crossref] [PubMed]
  10. S. Khatua, W. S. Chang, P. Swanglap, J. Olson, and S. Link, “Active modulation of nanorod plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
    [Crossref] [PubMed]
  11. T. J. Wang, W. S. Lin, and F. K. Liu, “Integrated-optic biosensor by electro-optically modulated surface plasmon resonance,” Biosens. Bioelectron. 22(7), 1441–1446 (2007).
    [Crossref] [PubMed]
  12. P. Mulpur, S. Yadavilli, A. M. Rao, V. Kamisetti, and R. Podila, “MoS2/WS2/BN-Silver Thin-Film Hybrid Architectures Displaying Enhanced Fluorescence via Surface Plasmon Coupled Emission for Sensing Applications,” ACS Sens. 1(6), 826–833 (2016).
    [Crossref]
  13. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
    [Crossref]
  14. J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
    [Crossref] [PubMed]
  15. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  16. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  17. Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
    [Crossref] [PubMed]
  18. D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 76(23), 235427 (2007).
    [Crossref]
  19. K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
    [Crossref]
  20. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
    [Crossref]
  21. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  22. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  23. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
    [Crossref] [PubMed]
  24. H. Hu, X. Guo, D. Hu, Z. Sun, X. Yang, and Q. Dai, “Flexible and Electrically Tunable Plasmons in Graphene-Mica Heterostructures,” Adv. Sci. (Weinh.) 5(8), 1800175 (2018).
    [Crossref] [PubMed]
  25. Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
    [Crossref] [PubMed]
  26. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
    [Crossref]
  27. Y. Li, Z. Li, C. Chi, H. Shan, L. Zheng, and Z. Fang, “Plasmonics of 2D Nanomaterials: Properties and Applications,” Adv. Sci. (Weinh.) 4(8), 1600430 (2017).
    [Crossref] [PubMed]
  28. B. Li, S. Zu, J. Zhou, Q. Jiang, B. Du, H. Shan, Y. Luo, Z. Liu, X. Zhu, and Z. Fang, “Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers,” ACS Nano 11(10), 9720–9727 (2017).
    [Crossref] [PubMed]
  29. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
    [Crossref]
  30. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
    [Crossref] [PubMed]
  31. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically Controlled Surface Plasmon Dispersion and Optical Transmission Through Metallic Hole Arrays Using Liquid Crystal,” Nano Lett. 8(1), 281–286 (2008).
    [Crossref] [PubMed]
  32. F. Ren, M. Li, Q. Gao, W. Cowell, J. Luo, A. K. Y. Jen, and A. X. Wang, “Surface-normal plasmonic modulator using sub-wavelength metal grating on electro-optic polymer thin film,” Opt. Commun. 352, 116–120 (2015).
    [Crossref]
  33. J. Zhang, Y. Kosugi, A. Otomo, Y. Nakano, and T. Tanemura, “Active metasurface modulator with electro-optic polymer using bimodal plasmonic resonance,” Opt. Express 25(24), 30304–30311 (2017).
    [Crossref] [PubMed]
  34. Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
    [Crossref]
  35. S. Zhou, J. Dong, D. He, Y. Wang, W. Qiu, J. Yu, H. Guan, W. Zhu, Y. Zhong, Y. Luo, J. Zhang, Z. Chen, and H. Lu, “Interlinked add-drop filter with amplitude modulation routing a fiber-optic microring to a lithium niobate microwaveguide,” Opt. Lett. 42(8), 1496–1499 (2017).
    [Crossref] [PubMed]
  36. B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Lončar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 000380 (2019).
    [Crossref]
  37. B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, and J. Xu, “Lithium Niobate Metasurfaces,” Laser Photonics Rev. 13(5), 1800312 (2019).
    [Crossref]
  38. N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B Condens. Matter Mater. Phys. 84(3), 035447 (2011).
    [Crossref]
  39. M. V. Gorkunov, I. V. Kasyanova, V. V. Artemov, M. I. Barnik, A. R. Geivandov, and S. P. Palto, “Fast Surface-Plasmon-Mediated Electro-Optics of a Liquid Crystal on a Metal Grating,” Phys. Rev. Appl. 8(5), 054051 (2017).
    [Crossref]

2019 (2)

B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Lončar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 000380 (2019).
[Crossref]

B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, and J. Xu, “Lithium Niobate Metasurfaces,” Laser Photonics Rev. 13(5), 1800312 (2019).
[Crossref]

2018 (1)

H. Hu, X. Guo, D. Hu, Z. Sun, X. Yang, and Q. Dai, “Flexible and Electrically Tunable Plasmons in Graphene-Mica Heterostructures,” Adv. Sci. (Weinh.) 5(8), 1800175 (2018).
[Crossref] [PubMed]

2017 (6)

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Y. Li, Z. Li, C. Chi, H. Shan, L. Zheng, and Z. Fang, “Plasmonics of 2D Nanomaterials: Properties and Applications,” Adv. Sci. (Weinh.) 4(8), 1600430 (2017).
[Crossref] [PubMed]

B. Li, S. Zu, J. Zhou, Q. Jiang, B. Du, H. Shan, Y. Luo, Z. Liu, X. Zhu, and Z. Fang, “Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers,” ACS Nano 11(10), 9720–9727 (2017).
[Crossref] [PubMed]

J. Zhang, Y. Kosugi, A. Otomo, Y. Nakano, and T. Tanemura, “Active metasurface modulator with electro-optic polymer using bimodal plasmonic resonance,” Opt. Express 25(24), 30304–30311 (2017).
[Crossref] [PubMed]

S. Zhou, J. Dong, D. He, Y. Wang, W. Qiu, J. Yu, H. Guan, W. Zhu, Y. Zhong, Y. Luo, J. Zhang, Z. Chen, and H. Lu, “Interlinked add-drop filter with amplitude modulation routing a fiber-optic microring to a lithium niobate microwaveguide,” Opt. Lett. 42(8), 1496–1499 (2017).
[Crossref] [PubMed]

M. V. Gorkunov, I. V. Kasyanova, V. V. Artemov, M. I. Barnik, A. R. Geivandov, and S. P. Palto, “Fast Surface-Plasmon-Mediated Electro-Optics of a Liquid Crystal on a Metal Grating,” Phys. Rev. Appl. 8(5), 054051 (2017).
[Crossref]

2016 (1)

P. Mulpur, S. Yadavilli, A. M. Rao, V. Kamisetti, and R. Podila, “MoS2/WS2/BN-Silver Thin-Film Hybrid Architectures Displaying Enhanced Fluorescence via Surface Plasmon Coupled Emission for Sensing Applications,” ACS Sens. 1(6), 826–833 (2016).
[Crossref]

2015 (3)

Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating Surface Plasmon Polaritons: Towards Applications for Remote-Excitation Surface Catalytic Reactions,” Adv. Sci. (Weinh.) 3(1), 1500215 (2015).
[Crossref] [PubMed]

F. Ren, M. Li, Q. Gao, W. Cowell, J. Luo, A. K. Y. Jen, and A. X. Wang, “Surface-normal plasmonic modulator using sub-wavelength metal grating on electro-optic polymer thin film,” Opt. Commun. 352, 116–120 (2015).
[Crossref]

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

2014 (1)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

2012 (3)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

2011 (2)

S. Khatua, W. S. Chang, P. Swanglap, J. Olson, and S. Link, “Active modulation of nanorod plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
[Crossref] [PubMed]

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B Condens. Matter Mater. Phys. 84(3), 035447 (2011).
[Crossref]

2010 (3)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

2009 (4)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon-enhanced emission from optically-doped MOS light sources,” Opt. Express 17(1), 185–192 (2009).
[Crossref] [PubMed]

2008 (5)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
[Crossref] [PubMed]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically Controlled Surface Plasmon Dispersion and Optical Transmission Through Metallic Hole Arrays Using Liquid Crystal,” Nano Lett. 8(1), 281–286 (2008).
[Crossref] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

2007 (4)

T. J. Wang, W. S. Lin, and F. K. Liu, “Integrated-optic biosensor by electro-optically modulated surface plasmon resonance,” Biosens. Bioelectron. 22(7), 1441–1446 (2007).
[Crossref] [PubMed]

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 76(23), 235427 (2007).
[Crossref]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

2006 (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2004 (2)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[Crossref]

Ajayan, P. M.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Armelles, G.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Artemov, V. V.

M. V. Gorkunov, I. V. Kasyanova, V. V. Artemov, M. I. Barnik, A. R. Geivandov, and S. P. Palto, “Fast Surface-Plasmon-Mediated Electro-Optics of a Liquid Crystal on a Metal Grating,” Phys. Rev. Appl. 8(5), 054051 (2017).
[Crossref]

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[Crossref]

Aussenegg, F. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barnik, M. I.

M. V. Gorkunov, I. V. Kasyanova, V. V. Artemov, M. I. Barnik, A. R. Geivandov, and S. P. Palto, “Fast Surface-Plasmon-Mediated Electro-Optics of a Liquid Crystal on a Metal Grating,” Phys. Rev. Appl. 8(5), 054051 (2017).
[Crossref]

Becker, J.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
[Crossref] [PubMed]

Bhattacharya, K.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

Bratschitsch, R.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon-enhanced emission from optically-doped MOS light sources,” Opt. Express 17(1), 185–192 (2009).
[Crossref] [PubMed]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

Cai, W.

B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, and J. Xu, “Lithium Niobate Metasurfaces,” Laser Photonics Rev. 13(5), 1800312 (2019).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cebollada, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Chang, W. S.

S. Khatua, W. S. Chang, P. Swanglap, J. Olson, and S. Link, “Active modulation of nanorod plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
[Crossref] [PubMed]

Chau, K. J.

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, L.

Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating Surface Plasmon Polaritons: Towards Applications for Remote-Excitation Surface Catalytic Reactions,” Adv. Sci. (Weinh.) 3(1), 1500215 (2015).
[Crossref] [PubMed]

Chen, Z.

Chi, C.

Y. Li, Z. Li, C. Chi, H. Shan, L. Zheng, and Z. Fang, “Plasmonics of 2D Nanomaterials: Properties and Applications,” Adv. Sci. (Weinh.) 4(8), 1600430 (2017).
[Crossref] [PubMed]

Cho, D. J.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Cowell, W.

F. Ren, M. Li, Q. Gao, W. Cowell, J. Luo, A. K. Y. Jen, and A. X. Wang, “Surface-normal plasmonic modulator using sub-wavelength metal grating on electro-optic polymer thin film,” Opt. Commun. 352, 116–120 (2015).
[Crossref]

Dai, Q.

H. Hu, X. Guo, D. Hu, Z. Sun, X. Yang, and Q. Dai, “Flexible and Electrically Tunable Plasmons in Graphene-Mica Heterostructures,” Adv. Sci. (Weinh.) 5(8), 1800175 (2018).
[Crossref] [PubMed]

Desiatov, B.

B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Lončar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 000380 (2019).
[Crossref]

Dicken, M. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically Controlled Surface Plasmon Dispersion and Optical Transmission Through Metallic Hole Arrays Using Liquid Crystal,” Nano Lett. 8(1), 281–286 (2008).
[Crossref] [PubMed]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

Ding, Y.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

Ditlbacher, H.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Dong, J.

Du, B.

B. Li, S. Zu, J. Zhou, Q. Jiang, B. Du, H. Shan, Y. Luo, Z. Liu, X. Zhu, and Z. Fang, “Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers,” ACS Nano 11(10), 9720–9727 (2017).
[Crossref] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Elezzabi, A. Y.

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[Crossref]

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically Controlled Surface Plasmon Dispersion and Optical Transmission Through Metallic Hole Arrays Using Liquid Crystal,” Nano Lett. 8(1), 281–286 (2008).
[Crossref] [PubMed]

Fang, Y.

Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating Surface Plasmon Polaritons: Towards Applications for Remote-Excitation Surface Catalytic Reactions,” Adv. Sci. (Weinh.) 3(1), 1500215 (2015).
[Crossref] [PubMed]

Fang, Z.

Y. Li, Z. Li, C. Chi, H. Shan, L. Zheng, and Z. Fang, “Plasmonics of 2D Nanomaterials: Properties and Applications,” Adv. Sci. (Weinh.) 4(8), 1600430 (2017).
[Crossref] [PubMed]

B. Li, S. Zu, J. Zhou, Q. Jiang, B. Du, H. Shan, Y. Luo, Z. Liu, X. Zhu, and Z. Fang, “Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers,” ACS Nano 11(10), 9720–9727 (2017).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Galler, N.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Gao, B.

B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, and J. Xu, “Lithium Niobate Metasurfaces,” Laser Photonics Rev. 13(5), 1800312 (2019).
[Crossref]

Gao, Q.

F. Ren, M. Li, Q. Gao, W. Cowell, J. Luo, A. K. Y. Jen, and A. X. Wang, “Surface-normal plasmonic modulator using sub-wavelength metal grating on electro-optic polymer thin film,” Opt. Commun. 352, 116–120 (2015).
[Crossref]

Garcia-Martin, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Garcia-Martin, J.-M.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Geivandov, A. R.

M. V. Gorkunov, I. V. Kasyanova, V. V. Artemov, M. I. Barnik, A. R. Geivandov, and S. P. Palto, “Fast Surface-Plasmon-Mediated Electro-Optics of a Liquid Crystal on a Metal Grating,” Phys. Rev. Appl. 8(5), 054051 (2017).
[Crossref]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Geng, B.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Gérard, D.

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 76(23), 235427 (2007).
[Crossref]

Gorkunov, M. V.

M. V. Gorkunov, I. V. Kasyanova, V. V. Artemov, M. I. Barnik, A. R. Geivandov, and S. P. Palto, “Fast Surface-Plasmon-Mediated Electro-Optics of a Liquid Crystal on a Metal Grating,” Phys. Rev. Appl. 8(5), 054051 (2017).
[Crossref]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Gu, L.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B Condens. Matter Mater. Phys. 84(3), 035447 (2011).
[Crossref]

Guan, H.

Guan, X.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Guizal, B.

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 76(23), 235427 (2007).
[Crossref]

Guo, X.

H. Hu, X. Guo, D. Hu, Z. Sun, X. Yang, and Q. Dai, “Flexible and Electrically Tunable Plasmons in Graphene-Mica Heterostructures,” Adv. Sci. (Weinh.) 5(8), 1800175 (2018).
[Crossref] [PubMed]

Guzatov, D.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Halas, N. J.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

He, D.

Hohenau, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Hryciw, A.

Hu, D.

H. Hu, X. Guo, D. Hu, Z. Sun, X. Yang, and Q. Dai, “Flexible and Electrically Tunable Plasmons in Graphene-Mica Heterostructures,” Adv. Sci. (Weinh.) 5(8), 1800175 (2018).
[Crossref] [PubMed]

Hu, H.

B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, and J. Xu, “Lithium Niobate Metasurfaces,” Laser Photonics Rev. 13(5), 1800312 (2019).
[Crossref]

H. Hu, X. Guo, D. Hu, Z. Sun, X. Yang, and Q. Dai, “Flexible and Electrically Tunable Plasmons in Graphene-Mica Heterostructures,” Adv. Sci. (Weinh.) 5(8), 1800175 (2018).
[Crossref] [PubMed]

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Irvine, S. E.

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[Crossref]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

Jakab, A.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
[Crossref] [PubMed]

Jen, A. K. Y.

F. Ren, M. Li, Q. Gao, W. Cowell, J. Luo, A. K. Y. Jen, and A. X. Wang, “Surface-normal plasmonic modulator using sub-wavelength metal grating on electro-optic polymer thin film,” Opt. Commun. 352, 116–120 (2015).
[Crossref]

Jiang, Q.

B. Li, S. Zu, J. Zhou, Q. Jiang, B. Du, H. Shan, Y. Luo, Z. Liu, X. Zhu, and Z. Fang, “Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers,” ACS Nano 11(10), 9720–9727 (2017).
[Crossref] [PubMed]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Jin, K. J.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon-enhanced emission from optically-doped MOS light sources,” Opt. Express 17(1), 185–192 (2009).
[Crossref] [PubMed]

Kamisetti, V.

P. Mulpur, S. Yadavilli, A. M. Rao, V. Kamisetti, and R. Podila, “MoS2/WS2/BN-Silver Thin-Film Hybrid Architectures Displaying Enhanced Fluorescence via Surface Plasmon Coupled Emission for Sensing Applications,” ACS Sens. 1(6), 826–833 (2016).
[Crossref]

Kasyanova, I. V.

M. V. Gorkunov, I. V. Kasyanova, V. V. Artemov, M. I. Barnik, A. R. Geivandov, and S. P. Palto, “Fast Surface-Plasmon-Mediated Electro-Optics of a Liquid Crystal on a Metal Grating,” Phys. Rev. Appl. 8(5), 054051 (2017).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Khalavka, Y.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
[Crossref] [PubMed]

Khatua, S.

S. Khatua, W. S. Chang, P. Swanglap, J. Olson, and S. Link, “Active modulation of nanorod plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
[Crossref] [PubMed]

Khelif, A.

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 76(23), 235427 (2007).
[Crossref]

Kim, J.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Kim, K.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Koller, D. M.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Kosugi, Y.

Krenn, J. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Laude, V.

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 76(23), 235427 (2007).
[Crossref]

Leitenstorfer, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Leitner, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Leosson, K.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

Lezec, H. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[Crossref]

Li, B.

B. Li, S. Zu, J. Zhou, Q. Jiang, B. Du, H. Shan, Y. Luo, Z. Liu, X. Zhu, and Z. Fang, “Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers,” ACS Nano 11(10), 9720–9727 (2017).
[Crossref] [PubMed]

Li, M.

F. Ren, M. Li, Q. Gao, W. Cowell, J. Luo, A. K. Y. Jen, and A. X. Wang, “Surface-normal plasmonic modulator using sub-wavelength metal grating on electro-optic polymer thin film,” Opt. Commun. 352, 116–120 (2015).
[Crossref]

Li, Y.

Y. Li, Z. Li, C. Chi, H. Shan, L. Zheng, and Z. Fang, “Plasmonics of 2D Nanomaterials: Properties and Applications,” Adv. Sci. (Weinh.) 4(8), 1600430 (2017).
[Crossref] [PubMed]

Li, Z.

Y. Li, Z. Li, C. Chi, H. Shan, L. Zheng, and Z. Fang, “Plasmonics of 2D Nanomaterials: Properties and Applications,” Adv. Sci. (Weinh.) 4(8), 1600430 (2017).
[Crossref] [PubMed]

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Lin, W. S.

T. J. Wang, W. S. Lin, and F. K. Liu, “Integrated-optic biosensor by electro-optically modulated surface plasmon resonance,” Biosens. Bioelectron. 22(7), 1441–1446 (2007).
[Crossref] [PubMed]

Link, S.

S. Khatua, W. S. Chang, P. Swanglap, J. Olson, and S. Link, “Active modulation of nanorod plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
[Crossref] [PubMed]

List, E. J. W.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Liu, F. K.

T. J. Wang, W. S. Lin, and F. K. Liu, “Integrated-optic biosensor by electro-optically modulated surface plasmon resonance,” Biosens. Bioelectron. 22(7), 1441–1446 (2007).
[Crossref] [PubMed]

Liu, K.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Liu, Z.

B. Li, S. Zu, J. Zhou, Q. Jiang, B. Du, H. Shan, Y. Luo, Z. Liu, X. Zhu, and Z. Fang, “Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers,” ACS Nano 11(10), 9720–9727 (2017).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Loncar, M.

B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Lončar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 000380 (2019).
[Crossref]

Lu, H.

Luo, J.

F. Ren, M. Li, Q. Gao, W. Cowell, J. Luo, A. K. Y. Jen, and A. X. Wang, “Surface-normal plasmonic modulator using sub-wavelength metal grating on electro-optic polymer thin film,” Opt. Commun. 352, 116–120 (2015).
[Crossref]

Luo, Y.

Ma, Z.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Mortensen, N. A.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Mulpur, P.

P. Mulpur, S. Yadavilli, A. M. Rao, V. Kamisetti, and R. Podila, “MoS2/WS2/BN-Silver Thin-Film Hybrid Architectures Displaying Enhanced Fluorescence via Surface Plasmon Coupled Emission for Sensing Applications,” ACS Sens. 1(6), 826–833 (2016).
[Crossref]

Nakano, Y.

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

Noginov, M. A.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B Condens. Matter Mater. Phys. 84(3), 035447 (2011).
[Crossref]

Noginova, N.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B Condens. Matter Mater. Phys. 84(3), 035447 (2011).
[Crossref]

Nordlander, P.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Olson, J.

S. Khatua, W. S. Chang, P. Swanglap, J. Olson, and S. Link, “Active modulation of nanorod plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
[Crossref] [PubMed]

Otomo, A.

Oxenløwe, L. K.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pacifici, D.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[Crossref]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Palto, S. P.

M. V. Gorkunov, I. V. Kasyanova, V. V. Artemov, M. I. Barnik, A. R. Geivandov, and S. P. Palto, “Fast Surface-Plasmon-Mediated Electro-Optics of a Liquid Crystal on a Metal Grating,” Phys. Rev. Appl. 8(5), 054051 (2017).
[Crossref]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Podila, R.

P. Mulpur, S. Yadavilli, A. M. Rao, V. Kamisetti, and R. Podila, “MoS2/WS2/BN-Silver Thin-Film Hybrid Architectures Displaying Enhanced Fluorescence via Surface Plasmon Coupled Emission for Sensing Applications,” ACS Sens. 1(6), 826–833 (2016).
[Crossref]

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically Controlled Surface Plasmon Dispersion and Optical Transmission Through Metallic Hole Arrays Using Liquid Crystal,” Nano Lett. 8(1), 281–286 (2008).
[Crossref] [PubMed]

Qiu, W.

Rao, A. M.

P. Mulpur, S. Yadavilli, A. M. Rao, V. Kamisetti, and R. Podila, “MoS2/WS2/BN-Silver Thin-Film Hybrid Architectures Displaying Enhanced Fluorescence via Surface Plasmon Coupled Emission for Sensing Applications,” ACS Sens. 1(6), 826–833 (2016).
[Crossref]

Regan, W.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Reil, F.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Ren, F.

F. Ren, M. Li, Q. Gao, W. Cowell, J. Luo, A. K. Y. Jen, and A. X. Wang, “Surface-normal plasmonic modulator using sub-wavelength metal grating on electro-optic polymer thin film,” Opt. Commun. 352, 116–120 (2015).
[Crossref]

Ren, M.

B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, and J. Xu, “Lithium Niobate Metasurfaces,” Laser Photonics Rev. 13(5), 1800312 (2019).
[Crossref]

Sadani, B.

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 76(23), 235427 (2007).
[Crossref]

Schubert, O.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Shams-Ansari, A.

B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Lončar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 000380 (2019).
[Crossref]

Shan, H.

B. Li, S. Zu, J. Zhou, Q. Jiang, B. Du, H. Shan, Y. Luo, Z. Liu, X. Zhu, and Z. Fang, “Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers,” ACS Nano 11(10), 9720–9727 (2017).
[Crossref] [PubMed]

Y. Li, Z. Li, C. Chi, H. Shan, L. Zheng, and Z. Fang, “Plasmonics of 2D Nanomaterials: Properties and Applications,” Adv. Sci. (Weinh.) 4(8), 1600430 (2017).
[Crossref] [PubMed]

Shen, Y.-R.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Shi, S.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Soimo, J.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B Condens. Matter Mater. Phys. 84(3), 035447 (2011).
[Crossref]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

Son, H.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Sönnichsen, C.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
[Crossref] [PubMed]

Sorger, V. J.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Sun, M.

Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating Surface Plasmon Polaritons: Towards Applications for Remote-Excitation Surface Catalytic Reactions,” Adv. Sci. (Weinh.) 3(1), 1500215 (2015).
[Crossref] [PubMed]

Sun, Z.

H. Hu, X. Guo, D. Hu, Z. Sun, X. Yang, and Q. Dai, “Flexible and Electrically Tunable Plasmons in Graphene-Mica Heterostructures,” Adv. Sci. (Weinh.) 5(8), 1800175 (2018).
[Crossref] [PubMed]

Swanglap, P.

S. Khatua, W. S. Chang, P. Swanglap, J. Olson, and S. Link, “Active modulation of nanorod plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
[Crossref] [PubMed]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

Tanemura, T.

Taylor, A. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Temnov, V. V.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Thomay, T.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Van Labeke, D.

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 76(23), 235427 (2007).
[Crossref]

Wang, A. X.

F. Ren, M. Li, Q. Gao, W. Cowell, J. Luo, A. K. Y. Jen, and A. X. Wang, “Surface-normal plasmonic modulator using sub-wavelength metal grating on electro-optic polymer thin film,” Opt. Commun. 352, 116–120 (2015).
[Crossref]

Wang, C.

B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Lončar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 000380 (2019).
[Crossref]

Wang, F.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Wang, T. J.

T. J. Wang, W. S. Lin, and F. K. Liu, “Integrated-optic biosensor by electro-optically modulated surface plasmon resonance,” Biosens. Bioelectron. 22(7), 1441–1446 (2007).
[Crossref] [PubMed]

Wang, W.

Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating Surface Plasmon Polaritons: Towards Applications for Remote-Excitation Surface Catalytic Reactions,” Adv. Sci. (Weinh.) 3(1), 1500215 (2015).
[Crossref] [PubMed]

Wang, Y.

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Woggon, U.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Wu, W.

B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, and J. Xu, “Lithium Niobate Metasurfaces,” Laser Photonics Rev. 13(5), 1800312 (2019).
[Crossref]

Wurtz, G. A.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically Controlled Surface Plasmon Dispersion and Optical Transmission Through Metallic Hole Arrays Using Liquid Crystal,” Nano Lett. 8(1), 281–286 (2008).
[Crossref] [PubMed]

Xiao, S.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Xu, J.

B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, and J. Xu, “Lithium Niobate Metasurfaces,” Laser Photonics Rev. 13(5), 1800312 (2019).
[Crossref]

Yadavilli, S.

P. Mulpur, S. Yadavilli, A. M. Rao, V. Kamisetti, and R. Podila, “MoS2/WS2/BN-Silver Thin-Film Hybrid Architectures Displaying Enhanced Fluorescence via Surface Plasmon Coupled Emission for Sensing Applications,” ACS Sens. 1(6), 826–833 (2016).
[Crossref]

Yakim, A. V.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B Condens. Matter Mater. Phys. 84(3), 035447 (2011).
[Crossref]

Yang, X.

H. Hu, X. Guo, D. Hu, Z. Sun, X. Yang, and Q. Dai, “Flexible and Electrically Tunable Plasmons in Graphene-Mica Heterostructures,” Adv. Sci. (Weinh.) 5(8), 1800175 (2018).
[Crossref] [PubMed]

Ye, C.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Yu, J.

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically Controlled Surface Plasmon Dispersion and Optical Transmission Through Metallic Hole Arrays Using Liquid Crystal,” Nano Lett. 8(1), 281–286 (2008).
[Crossref] [PubMed]

Zettl, A.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Zhang, J.

Zhang, M.

B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Lončar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 000380 (2019).
[Crossref]

Zhang, Z.

Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating Surface Plasmon Polaritons: Towards Applications for Remote-Excitation Surface Catalytic Reactions,” Adv. Sci. (Weinh.) 3(1), 1500215 (2015).
[Crossref] [PubMed]

Zheng, L.

Y. Li, Z. Li, C. Chi, H. Shan, L. Zheng, and Z. Fang, “Plasmonics of 2D Nanomaterials: Properties and Applications,” Adv. Sci. (Weinh.) 4(8), 1600430 (2017).
[Crossref] [PubMed]

Zhong, Y.

Zhou, J.

B. Li, S. Zu, J. Zhou, Q. Jiang, B. Du, H. Shan, Y. Luo, Z. Liu, X. Zhu, and Z. Fang, “Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers,” ACS Nano 11(10), 9720–9727 (2017).
[Crossref] [PubMed]

Zhou, S.

Zhu, W.

Zhu, X.

B. Li, S. Zu, J. Zhou, Q. Jiang, B. Du, H. Shan, Y. Luo, Z. Liu, X. Zhu, and Z. Fang, “Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers,” ACS Nano 11(10), 9720–9727 (2017).
[Crossref] [PubMed]

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Zins, I.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
[Crossref] [PubMed]

Zu, S.

B. Li, S. Zu, J. Zhou, Q. Jiang, B. Du, H. Shan, Y. Luo, Z. Liu, X. Zhu, and Z. Fang, “Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers,” ACS Nano 11(10), 9720–9727 (2017).
[Crossref] [PubMed]

ACS Nano (1)

B. Li, S. Zu, J. Zhou, Q. Jiang, B. Du, H. Shan, Y. Luo, Z. Liu, X. Zhu, and Z. Fang, “Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers,” ACS Nano 11(10), 9720–9727 (2017).
[Crossref] [PubMed]

ACS Sens. (1)

P. Mulpur, S. Yadavilli, A. M. Rao, V. Kamisetti, and R. Podila, “MoS2/WS2/BN-Silver Thin-Film Hybrid Architectures Displaying Enhanced Fluorescence via Surface Plasmon Coupled Emission for Sensing Applications,” ACS Sens. 1(6), 826–833 (2016).
[Crossref]

Adv. Sci. (Weinh.) (3)

Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating Surface Plasmon Polaritons: Towards Applications for Remote-Excitation Surface Catalytic Reactions,” Adv. Sci. (Weinh.) 3(1), 1500215 (2015).
[Crossref] [PubMed]

H. Hu, X. Guo, D. Hu, Z. Sun, X. Yang, and Q. Dai, “Flexible and Electrically Tunable Plasmons in Graphene-Mica Heterostructures,” Adv. Sci. (Weinh.) 5(8), 1800175 (2018).
[Crossref] [PubMed]

Y. Li, Z. Li, C. Chi, H. Shan, L. Zheng, and Z. Fang, “Plasmonics of 2D Nanomaterials: Properties and Applications,” Adv. Sci. (Weinh.) 4(8), 1600430 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

Biosens. Bioelectron. (1)

T. J. Wang, W. S. Lin, and F. K. Liu, “Integrated-optic biosensor by electro-optically modulated surface plasmon resonance,” Biosens. Bioelectron. 22(7), 1441–1446 (2007).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[Crossref]

Laser Photonics Rev. (1)

B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, and J. Xu, “Lithium Niobate Metasurfaces,” Laser Photonics Rev. 13(5), 1800312 (2019).
[Crossref]

Nano Lett. (7)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically Controlled Surface Plasmon Dispersion and Optical Transmission Through Metallic Hole Arrays Using Liquid Crystal,” Nano Lett. 8(1), 281–286 (2008).
[Crossref] [PubMed]

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

S. Khatua, W. S. Chang, P. Swanglap, J. Olson, and S. Link, “Active modulation of nanorod plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
[Crossref] [PubMed]

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Nanophotonics (1)

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Nanoscale (1)

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (7)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Nature (3)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

F. Ren, M. Li, Q. Gao, W. Cowell, J. Luo, A. K. Y. Jen, and A. X. Wang, “Surface-normal plasmonic modulator using sub-wavelength metal grating on electro-optic polymer thin film,” Opt. Commun. 352, 116–120 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica (1)

B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Lončar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 000380 (2019).
[Crossref]

Phys. Rev. Appl. (1)

M. V. Gorkunov, I. V. Kasyanova, V. V. Artemov, M. I. Barnik, A. R. Geivandov, and S. P. Palto, “Fast Surface-Plasmon-Mediated Electro-Optics of a Liquid Crystal on a Metal Grating,” Phys. Rev. Appl. 8(5), 054051 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (3)

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B Condens. Matter Mater. Phys. 84(3), 035447 (2011).
[Crossref]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 76(23), 235427 (2007).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Optical microscopy of the fabricated device. (b) Calculated electric field distribution of the electrode.
Fig. 2
Fig. 2 (a) SEM image of the fabricated Au electrode. (b) SEM image showing thickness of the electrode.
Fig. 3
Fig. 3 Calculated SPR transmission spectrum using FDTD.
Fig. 4
Fig. 4 Fabrication process of the proposed device.
Fig. 5
Fig. 5 Experimental setup for SPR spectrum measurement.
Fig. 6
Fig. 6 (a) SPR spectra measured with the supercontinuum spectrum laser for light illumination of Region 3. (b) Dependence of the SPR resonance peak wavelength shift on the applied voltage for three regions.
Fig. 7
Fig. 7 SPR spectrum intensity modulation with the 532 nm laser for light illumination of Regions (a) 1, (b) 2 and (c) 3. (d) SPR spectrum intensity at 532 nm as a function of voltage for light illumination of Regions 1, 2 and 3.
Fig. 8
Fig. 8 SPR spectrum intensity modulation with the 661 nm laser for light illumination of Regions (a) 1, (b) 2 and (c) 3. d) SPR spectrum intensity at 661 nm as a function of voltage for light illumination of Regions 1, 2 and 3.
Fig. 9
Fig. 9 Output power versus the polarization angle for (a) 532 nm and (b) 661 nm laser.
Fig. 10
Fig. 10 (a) Experimental setup for response time measurement. (b) Electric response for electro-optical modulation.

Tables (1)

Tables Icon

Table 1 Comparison of various SPR modulation methods

Metrics