Abstract

Laser drilling and cutting of materials is well established commercially, although its throughput and efficiency limit applications. This work describes a novel approach to improve laser drilling rates and reduce laser system energy demands by using a gated continuous wave (CW) laser to create a shallow melt pool and a UV ps-pulsed laser to impulsively expel the melt efficiency and effectively. Here, we provide a broad parametric study of this approach applied to common metals, describing the role of fluence, power, spot size, pulse-length, sample thickness, and material properties. One to two order-of-magnitude increases in the average removal rate and efficiency over the CW laser or pulsed-laser alone are demonstrated for samples of Al and stainless steel for samples as thick as 3 mm and for holes with aspect ratios greater than 10:1. Similar enhancements were also seen with carbon fiber composites. The efficiency of this approach exceeds published values for the drilling of these materials in terms of energy to remove a given volume of material. Multi-laser material removal rates, high-speed imaging of ejecta, and multi-physics hydrodynamic simulations of the melt ejection process are used to help clarify the physics of melt ejection leading to these enhancements. Our study suggests that these high-impulse multi-laser enhancements are due to both laser-induced surface wave instabilities and cavitation of the melt for shallow holes and melt cavitation and ejection for deeper channels.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study on the optimum matching of CW-nanosecond combined pulse laser drilling

Xianshi Jia, Yongqian Chen, Guangzhi Zhu, Hailin Wang, Kozlov Aleksei, and Xiao Zhu
Appl. Opt. 58(33) 9105-9111 (2019)

High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics

Emeric Biver, Ludovic Rapp, Anne-Patricia Alloncle, Pere Serra, and Philippe Delaporte
Opt. Express 22(14) 17122-17134 (2014)

High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann
Opt. Express 16(12) 8958-8968 (2008)

References

  • View by:
  • |
  • |
  • |

  1. C. Lehane and H. S. Kwok, “Enhanced drilling using a dual-pulse Nd:YAG laser,” Appl. Phys., A Mater. Sci. Process. 73(1), 45–48 (2001).
    [Crossref]
  2. A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
    [Crossref]
  3. X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
    [Crossref]
  4. W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process. 98(2), 407–415 (2010).
    [Crossref]
  5. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
    [Crossref] [PubMed]
  6. B. Neuenschwander, B. Jaeggi, D. J. Foerster, T. Cramer, and S. Remund, “Influence of the burst mode onto the specific removal rate for metals and semiconductors,” J. Laser Appl. 31(2), 022203 (2019).
    [Crossref]
  7. A. Žemaitis, M. Gaidys, P. Gecys, G. Raciukaitis, and M. Gedvilas, “Rapid high-quality 3D micro-machining by optimized efficient ultrashort laser ablation,” Opt. Lasers Eng. 114, 83–89 (2019).
    [Crossref]
  8. J. Finger and M. Reininghaus, “Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz,” Opt. Express 22(15), 18790–18799 (2014).
    [Crossref] [PubMed]
  9. W. J. Keller, N. Shen, A. M. Rubenchik, S. Ly, R. Negres, R. Raman, J.-H. Yoo, G. Guss, J. S. Stolken, M. J. Matthews, and J. D. Bude, “Physics of picosecond pulse laser ablation,” J. Appl. Phys. 125(8), 085103 (2019).
    [Crossref]
  10. C. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
    [Crossref]
  11. N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
    [Crossref]
  12. I. L. Bass, R. A. Negres, K. Stanion, G. Guss, and J. Bude, ““Metallic burn paper” used for in situ characterization of laser beam properties,” Appl. Opt. 55(12), 3131–3139 (2016).
    [Crossref] [PubMed]
  13. M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, “Three-dimensional HYDRA simulations of National Ignition Facility targets,” Phys. Plasmas 8(5), 2275–2280 (2001).
    [Crossref]
  14. A. L. Nichols, ALE-3D User’s Manual, Tech. Rep. UCRL-MA-152204, Lawrence Livermore National Laboratory, 2007.
  15. D. W. Bäuerle, Laser Processing and Chemistry (Springer Science & Business Media, 2013).
  16. G. Gladush and I. Smurov, Physics of Laser Material Processing (Springer, 2011).
  17. C. D. Boley, S. C. Mitchell, A. M. Rubenchik, and S. S. Wu, “Metal powder absorptivity: modeling and experiment,” Appl. Opt. 55(23), 6496–6500 (2016).
    [Crossref] [PubMed]
  18. S. Ly, G. Guss, A. M. Rubenchik, W. J. Keller, N. Shen, R. A. Negres, and J. Bude, “Resonance excitation of surface capillary waves to enhance material removal for laser material processing,” Sci. Rep. 9, 8152 (2019).
  19. M. E. Povarnitsyn, K. V. Khishchenko, and P. R. Levashov, “Phase transitions in femtosecond laser ablation,” Appl. Surf. Sci. 255(10), 5120–5124 (2009).
    [Crossref]
  20. C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
    [Crossref]
  21. M. M. Sergeev, V. P. Veiko, E. Y. Tiguntseva, and R. O. Olekhmovich, “Picosecond laser fabrication of microchannels inside Foturan glass at CO2 laser irradiation and floolowing etching,” Opt. Quantum Electron. 48(11), 485 (2016).
    [Crossref]
  22. B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
    [Crossref] [PubMed]
  23. J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

2019 (4)

B. Neuenschwander, B. Jaeggi, D. J. Foerster, T. Cramer, and S. Remund, “Influence of the burst mode onto the specific removal rate for metals and semiconductors,” J. Laser Appl. 31(2), 022203 (2019).
[Crossref]

A. Žemaitis, M. Gaidys, P. Gecys, G. Raciukaitis, and M. Gedvilas, “Rapid high-quality 3D micro-machining by optimized efficient ultrashort laser ablation,” Opt. Lasers Eng. 114, 83–89 (2019).
[Crossref]

W. J. Keller, N. Shen, A. M. Rubenchik, S. Ly, R. Negres, R. Raman, J.-H. Yoo, G. Guss, J. S. Stolken, M. J. Matthews, and J. D. Bude, “Physics of picosecond pulse laser ablation,” J. Appl. Phys. 125(8), 085103 (2019).
[Crossref]

S. Ly, G. Guss, A. M. Rubenchik, W. J. Keller, N. Shen, R. A. Negres, and J. Bude, “Resonance excitation of surface capillary waves to enhance material removal for laser material processing,” Sci. Rep. 9, 8152 (2019).

2016 (4)

M. M. Sergeev, V. P. Veiko, E. Y. Tiguntseva, and R. O. Olekhmovich, “Picosecond laser fabrication of microchannels inside Foturan glass at CO2 laser irradiation and floolowing etching,” Opt. Quantum Electron. 48(11), 485 (2016).
[Crossref]

I. L. Bass, R. A. Negres, K. Stanion, G. Guss, and J. Bude, ““Metallic burn paper” used for in situ characterization of laser beam properties,” Appl. Opt. 55(12), 3131–3139 (2016).
[Crossref] [PubMed]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

C. D. Boley, S. C. Mitchell, A. M. Rubenchik, and S. S. Wu, “Metal powder absorptivity: modeling and experiment,” Appl. Opt. 55(23), 6496–6500 (2016).
[Crossref] [PubMed]

2014 (3)

C. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

J. Finger and M. Reininghaus, “Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz,” Opt. Express 22(15), 18790–18799 (2014).
[Crossref] [PubMed]

J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

2011 (1)

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref] [PubMed]

2010 (1)

W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process. 98(2), 407–415 (2010).
[Crossref]

2009 (2)

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

M. E. Povarnitsyn, K. V. Khishchenko, and P. R. Levashov, “Phase transitions in femtosecond laser ablation,” Appl. Surf. Sci. 255(10), 5120–5124 (2009).
[Crossref]

2005 (1)

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

2001 (3)

C. Lehane and H. S. Kwok, “Enhanced drilling using a dual-pulse Nd:YAG laser,” Appl. Phys., A Mater. Sci. Process. 73(1), 45–48 (2001).
[Crossref]

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[Crossref]

M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, “Three-dimensional HYDRA simulations of National Ignition Facility targets,” Phys. Plasmas 8(5), 2275–2280 (2001).
[Crossref]

1988 (1)

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Åberg, D.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref] [PubMed]

Akçaalan, Ö.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Anderson, G. K.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Armas, M. S.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Asik, M. D.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Banks, P. S.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Bass, I. L.

Baxamusa, S.

J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

Boley, C. D.

Bude, J.

S. Ly, G. Guss, A. M. Rubenchik, W. J. Keller, N. Shen, R. A. Negres, and J. Bude, “Resonance excitation of surface capillary waves to enhance material removal for laser material processing,” Sci. Rep. 9, 8152 (2019).

I. L. Bass, R. A. Negres, K. Stanion, G. Guss, and J. Bude, ““Metallic burn paper” used for in situ characterization of laser beam properties,” Appl. Opt. 55(12), 3131–3139 (2016).
[Crossref] [PubMed]

J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref] [PubMed]

Bude, J. D.

W. J. Keller, N. Shen, A. M. Rubenchik, S. Ly, R. Negres, R. Raman, J.-H. Yoo, G. Guss, J. S. Stolken, M. J. Matthews, and J. D. Bude, “Physics of picosecond pulse laser ablation,” J. Appl. Phys. 125(8), 085103 (2019).
[Crossref]

Bulgakov, A. V.

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[Crossref]

Bulgakova, N. M.

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[Crossref]

Campbell, E. M.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Carr, W.

J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

Çetin, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Corlis, X. F.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Cramer, T.

B. Neuenschwander, B. Jaeggi, D. J. Foerster, T. Cramer, and S. Remund, “Influence of the burst mode onto the specific removal rate for metals and semiconductors,” J. Laser Appl. 31(2), 022203 (2019).
[Crossref]

Cross, D.

J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

Dausinger, F.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Dittrich, T. R.

M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, “Three-dimensional HYDRA simulations of National Ignition Facility targets,” Phys. Plasmas 8(5), 2275–2280 (2001).
[Crossref]

Dodell, A. L.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Elahi, P.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Erhart, P.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref] [PubMed]

Feit, M.

J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

Finger, J.

Foerster, D. J.

B. Neuenschwander, B. Jaeggi, D. J. Foerster, T. Cramer, and S. Remund, “Influence of the burst mode onto the specific removal rate for metals and semiconductors,” J. Laser Appl. 31(2), 022203 (2019).
[Crossref]

Forsman, A. C.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Gaidys, M.

A. Žemaitis, M. Gaidys, P. Gecys, G. Raciukaitis, and M. Gedvilas, “Rapid high-quality 3D micro-machining by optimized efficient ultrashort laser ablation,” Opt. Lasers Eng. 114, 83–89 (2019).
[Crossref]

Gecys, P.

A. Žemaitis, M. Gaidys, P. Gecys, G. Raciukaitis, and M. Gedvilas, “Rapid high-quality 3D micro-machining by optimized efficient ultrashort laser ablation,” Opt. Lasers Eng. 114, 83–89 (2019).
[Crossref]

Gedvilas, M.

A. Žemaitis, M. Gaidys, P. Gecys, G. Raciukaitis, and M. Gedvilas, “Rapid high-quality 3D micro-machining by optimized efficient ultrashort laser ablation,” Opt. Lasers Eng. 114, 83–89 (2019).
[Crossref]

Gentile, N. A.

M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, “Three-dimensional HYDRA simulations of National Ignition Facility targets,” Phys. Plasmas 8(5), 2275–2280 (2001).
[Crossref]

Guss, G.

S. Ly, G. Guss, A. M. Rubenchik, W. J. Keller, N. Shen, R. A. Negres, and J. Bude, “Resonance excitation of surface capillary waves to enhance material removal for laser material processing,” Sci. Rep. 9, 8152 (2019).

W. J. Keller, N. Shen, A. M. Rubenchik, S. Ly, R. Negres, R. Raman, J.-H. Yoo, G. Guss, J. S. Stolken, M. J. Matthews, and J. D. Bude, “Physics of picosecond pulse laser ablation,” J. Appl. Phys. 125(8), 085103 (2019).
[Crossref]

I. L. Bass, R. A. Negres, K. Stanion, G. Guss, and J. Bude, ““Metallic burn paper” used for in situ characterization of laser beam properties,” Appl. Opt. 55(12), 3131–3139 (2016).
[Crossref] [PubMed]

J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

Haan, S. W.

M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, “Three-dimensional HYDRA simulations of National Ignition Facility targets,” Phys. Plasmas 8(5), 2275–2280 (2001).
[Crossref]

Harrison, R. F.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Haynes, L. C.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Holzwarth, R.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Hoogland, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Hu, W.

W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process. 98(2), 407–415 (2010).
[Crossref]

Ilday, F. Ö.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Jaeggi, B.

B. Neuenschwander, B. Jaeggi, D. J. Foerster, T. Cramer, and S. Remund, “Influence of the burst mode onto the specific removal rate for metals and semiconductors,” J. Laser Appl. 31(2), 022203 (2019).
[Crossref]

Jones, O.

M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, “Three-dimensional HYDRA simulations of National Ignition Facility targets,” Phys. Plasmas 8(5), 2275–2280 (2001).
[Crossref]

Kalaycioglu, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Keller, W. J.

W. J. Keller, N. Shen, A. M. Rubenchik, S. Ly, R. Negres, R. Raman, J.-H. Yoo, G. Guss, J. S. Stolken, M. J. Matthews, and J. D. Bude, “Physics of picosecond pulse laser ablation,” J. Appl. Phys. 125(8), 085103 (2019).
[Crossref]

S. Ly, G. Guss, A. M. Rubenchik, W. J. Keller, N. Shen, R. A. Negres, and J. Bude, “Resonance excitation of surface capillary waves to enhance material removal for laser material processing,” Sci. Rep. 9, 8152 (2019).

Kerbel, G. D.

M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, “Three-dimensional HYDRA simulations of National Ignition Facility targets,” Phys. Plasmas 8(5), 2275–2280 (2001).
[Crossref]

Kerse, C.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Kesim, D. K.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Khishchenko, K. V.

M. E. Povarnitsyn, K. V. Khishchenko, and P. R. Levashov, “Phase transitions in femtosecond laser ablation,” Appl. Surf. Sci. 255(10), 5120–5124 (2009).
[Crossref]

King, G.

W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process. 98(2), 407–415 (2010).
[Crossref]

King, T. R.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Kraus, M.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Kwok, H. S.

C. Lehane and H. S. Kwok, “Enhanced drilling using a dual-pulse Nd:YAG laser,” Appl. Phys., A Mater. Sci. Process. 73(1), 45–48 (2001).
[Crossref]

Laurence, T.

J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

Lehane, C.

C. Lehane and H. S. Kwok, “Enhanced drilling using a dual-pulse Nd:YAG laser,” Appl. Phys., A Mater. Sci. Process. 73(1), 45–48 (2001).
[Crossref]

Levashov, P. R.

M. E. Povarnitsyn, K. V. Khishchenko, and P. R. Levashov, “Phase transitions in femtosecond laser ablation,” Appl. Surf. Sci. 255(10), 5120–5124 (2009).
[Crossref]

Liu, J. S.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Ly, S.

W. J. Keller, N. Shen, A. M. Rubenchik, S. Ly, R. Negres, R. Raman, J.-H. Yoo, G. Guss, J. S. Stolken, M. J. Matthews, and J. D. Bude, “Physics of picosecond pulse laser ablation,” J. Appl. Phys. 125(8), 085103 (2019).
[Crossref]

S. Ly, G. Guss, A. M. Rubenchik, W. J. Keller, N. Shen, R. A. Negres, and J. Bude, “Resonance excitation of surface capillary waves to enhance material removal for laser material processing,” Sci. Rep. 9, 8152 (2019).

Marinak, M. M.

M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, “Three-dimensional HYDRA simulations of National Ignition Facility targets,” Phys. Plasmas 8(5), 2275–2280 (2001).
[Crossref]

Matthews, M. J.

W. J. Keller, N. Shen, A. M. Rubenchik, S. Ly, R. Negres, R. Raman, J.-H. Yoo, G. Guss, J. S. Stolken, M. J. Matthews, and J. D. Bude, “Physics of picosecond pulse laser ablation,” J. Appl. Phys. 125(8), 085103 (2019).
[Crossref]

Michalowski, A.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Miller, P. E.

J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

Mitchell, S. C.

Monticelli, M.

J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

Munro, D.

M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, “Three-dimensional HYDRA simulations of National Ignition Facility targets,” Phys. Plasmas 8(5), 2275–2280 (2001).
[Crossref]

Negres, R.

W. J. Keller, N. Shen, A. M. Rubenchik, S. Ly, R. Negres, R. Raman, J.-H. Yoo, G. Guss, J. S. Stolken, M. J. Matthews, and J. D. Bude, “Physics of picosecond pulse laser ablation,” J. Appl. Phys. 125(8), 085103 (2019).
[Crossref]

Negres, R. A.

S. Ly, G. Guss, A. M. Rubenchik, W. J. Keller, N. Shen, R. A. Negres, and J. Bude, “Resonance excitation of surface capillary waves to enhance material removal for laser material processing,” Sci. Rep. 9, 8152 (2019).

I. L. Bass, R. A. Negres, K. Stanion, G. Guss, and J. Bude, ““Metallic burn paper” used for in situ characterization of laser beam properties,” Appl. Opt. 55(12), 3131–3139 (2016).
[Crossref] [PubMed]

Neuenschwander, B.

B. Neuenschwander, B. Jaeggi, D. J. Foerster, T. Cramer, and S. Remund, “Influence of the burst mode onto the specific removal rate for metals and semiconductors,” J. Laser Appl. 31(2), 022203 (2019).
[Crossref]

Öktem, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Olekhmovich, R. O.

M. M. Sergeev, V. P. Veiko, E. Y. Tiguntseva, and R. O. Olekhmovich, “Picosecond laser fabrication of microchannels inside Foturan glass at CO2 laser irradiation and floolowing etching,” Opt. Quantum Electron. 48(11), 485 (2016).
[Crossref]

Osborne, W. Z.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Perry, M. D.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Phipps, C. R.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Pollaine, S.

M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, “Three-dimensional HYDRA simulations of National Ignition Facility targets,” Phys. Plasmas 8(5), 2275–2280 (2001).
[Crossref]

Povarnitsyn, M. E.

M. E. Povarnitsyn, K. V. Khishchenko, and P. R. Levashov, “Phase transitions in femtosecond laser ablation,” Appl. Surf. Sci. 255(10), 5120–5124 (2009).
[Crossref]

Raciukaitis, G.

A. Žemaitis, M. Gaidys, P. Gecys, G. Raciukaitis, and M. Gedvilas, “Rapid high-quality 3D micro-machining by optimized efficient ultrashort laser ablation,” Opt. Lasers Eng. 114, 83–89 (2019).
[Crossref]

Raman, R.

W. J. Keller, N. Shen, A. M. Rubenchik, S. Ly, R. Negres, R. Raman, J.-H. Yoo, G. Guss, J. S. Stolken, M. J. Matthews, and J. D. Bude, “Physics of picosecond pulse laser ablation,” J. Appl. Phys. 125(8), 085103 (2019).
[Crossref]

Reininghaus, M.

Remund, S.

B. Neuenschwander, B. Jaeggi, D. J. Foerster, T. Cramer, and S. Remund, “Influence of the burst mode onto the specific removal rate for metals and semiconductors,” J. Laser Appl. 31(2), 022203 (2019).
[Crossref]

Rubenchik, A. M.

W. J. Keller, N. Shen, A. M. Rubenchik, S. Ly, R. Negres, R. Raman, J.-H. Yoo, G. Guss, J. S. Stolken, M. J. Matthews, and J. D. Bude, “Physics of picosecond pulse laser ablation,” J. Appl. Phys. 125(8), 085103 (2019).
[Crossref]

S. Ly, G. Guss, A. M. Rubenchik, W. J. Keller, N. Shen, R. A. Negres, and J. Bude, “Resonance excitation of surface capillary waves to enhance material removal for laser material processing,” Sci. Rep. 9, 8152 (2019).

C. D. Boley, S. C. Mitchell, A. M. Rubenchik, and S. S. Wu, “Metal powder absorptivity: modeling and experiment,” Appl. Opt. 55(23), 6496–6500 (2016).
[Crossref] [PubMed]

Sadigh, B.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref] [PubMed]

Schwegler, E.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref] [PubMed]

Sergeev, M. M.

M. M. Sergeev, V. P. Veiko, E. Y. Tiguntseva, and R. O. Olekhmovich, “Picosecond laser fabrication of microchannels inside Foturan glass at CO2 laser irradiation and floolowing etching,” Opt. Quantum Electron. 48(11), 485 (2016).
[Crossref]

Shen, N.

W. J. Keller, N. Shen, A. M. Rubenchik, S. Ly, R. Negres, R. Raman, J.-H. Yoo, G. Guss, J. S. Stolken, M. J. Matthews, and J. D. Bude, “Physics of picosecond pulse laser ablation,” J. Appl. Phys. 125(8), 085103 (2019).
[Crossref]

S. Ly, G. Guss, A. M. Rubenchik, W. J. Keller, N. Shen, R. A. Negres, and J. Bude, “Resonance excitation of surface capillary waves to enhance material removal for laser material processing,” Sci. Rep. 9, 8152 (2019).

J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

Shin, Y. C.

W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process. 98(2), 407–415 (2010).
[Crossref]

Sommer, S.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Spicochi, K. C.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Stanion, K.

Steele, H. S.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Steele, W.

J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

Stolken, J. S.

W. J. Keller, N. Shen, A. M. Rubenchik, S. Ly, R. Negres, R. Raman, J.-H. Yoo, G. Guss, J. S. Stolken, M. J. Matthews, and J. D. Bude, “Physics of picosecond pulse laser ablation,” J. Appl. Phys. 125(8), 085103 (2019).
[Crossref]

Suratwala, T.

J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

Tiguntseva, E. Y.

M. M. Sergeev, V. P. Veiko, E. Y. Tiguntseva, and R. O. Olekhmovich, “Picosecond laser fabrication of microchannels inside Foturan glass at CO2 laser irradiation and floolowing etching,” Opt. Quantum Electron. 48(11), 485 (2016).
[Crossref]

Trave, A.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref] [PubMed]

Turner, T. P.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Veiko, V. P.

M. M. Sergeev, V. P. Veiko, E. Y. Tiguntseva, and R. O. Olekhmovich, “Picosecond laser fabrication of microchannels inside Foturan glass at CO2 laser irradiation and floolowing etching,” Opt. Quantum Electron. 48(11), 485 (2016).
[Crossref]

Walter, D.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Wang, X. D.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Wong, L.

J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

Wu, C.

C. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

Wu, S. S.

Yavas, S.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Yoo, J.-H.

W. J. Keller, N. Shen, A. M. Rubenchik, S. Ly, R. Negres, R. Raman, J.-H. Yoo, G. Guss, J. S. Stolken, M. J. Matthews, and J. D. Bude, “Physics of picosecond pulse laser ablation,” J. Appl. Phys. 125(8), 085103 (2019).
[Crossref]

York, G. W.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Žemaitis, A.

A. Žemaitis, M. Gaidys, P. Gecys, G. Raciukaitis, and M. Gedvilas, “Rapid high-quality 3D micro-machining by optimized efficient ultrashort laser ablation,” Opt. Lasers Eng. 114, 83–89 (2019).
[Crossref]

Zhigilei, L. V.

C. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys., A Mater. Sci. Process. (4)

C. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[Crossref]

C. Lehane and H. S. Kwok, “Enhanced drilling using a dual-pulse Nd:YAG laser,” Appl. Phys., A Mater. Sci. Process. 73(1), 45–48 (2001).
[Crossref]

W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process. 98(2), 407–415 (2010).
[Crossref]

Appl. Surf. Sci. (1)

M. E. Povarnitsyn, K. V. Khishchenko, and P. R. Levashov, “Phase transitions in femtosecond laser ablation,” Appl. Surf. Sci. 255(10), 5120–5124 (2009).
[Crossref]

J. Appl. Phys. (3)

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

W. J. Keller, N. Shen, A. M. Rubenchik, S. Ly, R. Negres, R. Raman, J.-H. Yoo, G. Guss, J. S. Stolken, M. J. Matthews, and J. D. Bude, “Physics of picosecond pulse laser ablation,” J. Appl. Phys. 125(8), 085103 (2019).
[Crossref]

J. Laser Appl. (1)

B. Neuenschwander, B. Jaeggi, D. J. Foerster, T. Cramer, and S. Remund, “Influence of the burst mode onto the specific removal rate for metals and semiconductors,” J. Laser Appl. 31(2), 022203 (2019).
[Crossref]

Nature (1)

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Laser Technol. (1)

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Opt. Lasers Eng. (1)

A. Žemaitis, M. Gaidys, P. Gecys, G. Raciukaitis, and M. Gedvilas, “Rapid high-quality 3D micro-machining by optimized efficient ultrashort laser ablation,” Opt. Lasers Eng. 114, 83–89 (2019).
[Crossref]

Opt. Quantum Electron. (1)

M. M. Sergeev, V. P. Veiko, E. Y. Tiguntseva, and R. O. Olekhmovich, “Picosecond laser fabrication of microchannels inside Foturan glass at CO2 laser irradiation and floolowing etching,” Opt. Quantum Electron. 48(11), 485 (2016).
[Crossref]

Phys. Plasmas (1)

M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, “Three-dimensional HYDRA simulations of National Ignition Facility targets,” Phys. Plasmas 8(5), 2275–2280 (2001).
[Crossref]

Phys. Rev. Lett. (1)

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

J. Bude, P. E. Miller, N. Shen, T. Suratwala, T. Laurence, W. Steele, S. Baxamusa, L. Wong, W. Carr, D. Cross, M. Monticelli, M. Feit, and G. Guss, "Silica laser damage mechanisms, precursors and their mitigation," Proc. SPIE 9237, 92370S (2014).

Sci. Rep. (1)

S. Ly, G. Guss, A. M. Rubenchik, W. J. Keller, N. Shen, R. A. Negres, and J. Bude, “Resonance excitation of surface capillary waves to enhance material removal for laser material processing,” Sci. Rep. 9, 8152 (2019).

Other (3)

A. L. Nichols, ALE-3D User’s Manual, Tech. Rep. UCRL-MA-152204, Lawrence Livermore National Laboratory, 2007.

D. W. Bäuerle, Laser Processing and Chemistry (Springer Science & Business Media, 2013).

G. Gladush and I. Smurov, Physics of Laser Material Processing (Springer, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1 Experimental layout for multi-laser drilling. The 3ω short pulse laser (with either 20 ps or 7 ns pulses) is combined with a gated CW laser at 1ω and focused onto the input surface of a sample. Drill through is determined by detecting the onset of laser light at either wavelength using photodiodes on the exit side of the sample. A 810 nm laser is set up to provide illumination for fast video shadowgraph of the ejected material. Transmitted light through drilled channel can monitored using a CCD camera.
Fig. 2
Fig. 2 Multi-laser double pulse format. A long CW heating pulse at 1ω is followed by a short picosecond or nanosecond ejection pulse at 3ω.
Fig. 3
Fig. 3 Average removal per pulse Δp for 250 μm thick (a) SS and (b) Al plates using the multi-laser approach. In both cases, the drill-through rate for a given pulsed laser fluence increase dramatically as the gated-CW laser exceeds the power levels required to form a melt in each material (determined by SEM studies). Temperature estimates based on an analytic model are shown for some power levels.
Fig. 4
Fig. 4 SEM images of the onset of melt formation. (a) SS with 100 μs 50 W CW irradiation and (b) Al with 100 μs 300 W CW irradiation.
Fig. 5
Fig. 5 Average removal rate Δp for the multi-laser high-impulse format as a function of thickness for SS. Here, the diameter of the picosecond laser spot (1/e2) is 160 μm and the diameter of the CW laser spot is 320 μm.
Fig. 6
Fig. 6 Cross-sectional line out of the short pulse only laser fluence measured through laser drilled channels at the exit plane of the samples (hole center ~125 μm) as a function of sample thicknesses/channel length. A Gaussian function is used to fit the beam profiles.
Fig. 7
Fig. 7 Microscope images of the input and exit surfaces of channels produced with ML approach in Al. The ps-laser fluence is kept at 30 J/cm2 while beam spot size varies from 160 μm to 210 μm. CW beam conditions are the same for both pulsed beam sizes – 320 μm spot size, 450 W power and 100 μs gate width.
Fig. 8
Fig. 8 Improvements in the removal rate per pulse Δp using the larger pulsed laser spot (315 μm and 210 μm) compared to a 160 μm pulsed laser spot (a) Aluminum, (b) stainless steel. The 355 nm short pulse laser pulse duration was 20 ps. The CW laser power was 450 W, the CW pulse was 100 μs long, and the spot size was fixed at 320 μm.
Fig. 9
Fig. 9 Multi-laser average removal rate per pulse Δp for 760 μm SS and Al plates as a function of CW laser gated pulse length using a pulsed laser fluence of 30 J/cm2. Dashed fit lines are shown for proportionality to the gated pulse length, tG for evaporative CW-only removal, and to the sqrt(tG) for the ML removal process.
Fig. 10
Fig. 10 Computed tomography of channels drilled in 2 mm thick Al: cross-sectional views using (a) multi-laser; (b) ps laser alone; (c) gated CW laser alone (note, the vertical and horizontal axis scales are different as shown in the Figs). The depth to width aspect ratio of the laser-drilled hole in 10a is greater than 10:1. (d) shows a 3D rendered image corresponding to the hole drilled using the multi-laser approach in (a) (vertical and horizontal axis scale are different as shown in the Figs). The pulsed laser spot was 160 μm 1/e2, and the CW laser spot was 320 μm. Note, the channel drill-through in (b) took about ten times as long to complete compared to the channel drill-through using the ML approach in (a); we did not complete the drill-through using the gated CW laser alone as the rate was much slower than either of the other two approaches.
Fig. 11
Fig. 11 Total energy required to create channels as a function of thickness for the multi-laser approach compared to that for gated CW laser alone, true CW laser (see text), and the 20 ps 355 nm laser alone: (a) CW laser drill through energy (pulsed laser as an assist to the CW laser), also includes lower bound for energy required to drill through using an un-gated “true” CW laser exposure; (b) Pulsed laser drill-through energy (gated CW laser as an assist to the pulsed laser).
Fig. 12
Fig. 12 The average specific energy of ablation (a) and corresponding removal efficiency (b) for multi-laser (ML) laser drilling through 760 μm thick plates of Al and SS as a function of gated CW pulse duration, tG along with comparisons to gated CW laser drilling alone. Figure 12(a) shows that ML specific energy of ablation is lower than the vaporization enthalpy corrected for reflection losses indicating that most of the ML removal occurs as liquid droplets, not vapor.
Fig. 13
Fig. 13 Frames from high-speed video images of ejecta during laser drilling channel formation showing both ejecta types: melt ejection by cavitation and melt ejection through the formation of a liquid jet via surface wave excitation. Panels 1 (cavitation) and 2 (surface-wave corona droplet ejection) are from the first laser shot, and panel 3 (surface-wave liquid-jet ejection) is from the second laser shot.
Fig. 14
Fig. 14 (a) Average removal depth as a function of laser shot number measured from cross-sectional CT images of ML laser drilled channels in SS (inset) using 20 ps, 30 J/cm2 laser pulses combined with 450 W CW laser with a 100 μs gate width. (b) Volume of removed material of a single laser shot as a function of shot number estimated from the CT images and fast video frames.
Fig. 15
Fig. 15 Average removal per pulse Δp for the multi-laser approach as a function of material thickness comparing excitation by a 355 nm picosecond laser (20 ps) and a nanosecond laser (7 ns). Average removal rates for the CW laser alone, the ps-laser alone, and the ns-laser alone are shown for comparison.
Fig. 16
Fig. 16 Instantaneous free surface velocity, considering both dynamic motion and ablative recession, for an Al target with an initial 100 μm dia. x 10 μm deep near surface melt based on HYDRA simulation: (a) 355 nm, 20 ps (FWHM), 30 J/cm2 pulse, (b) 355 nm, 7 ns (FWHM), 30 J/cm2 pulse.
Fig. 17
Fig. 17 Pressure distribution as a function of time for an Al target with an initial 100 μm dia. x 10 μm deep near surface melt based on HYDRA simulation: (a) 355 nm, 20 ps (FWHM), 30 J/cm2 pulse, (b) 355 nm, 7 ns (FWHM), 30 J/cm2 pulse. Initial surface position located at 0 μm depth. Plots show laser-driven shock and release wave propagation in the target, as well as ablative plume expansion.
Fig. 18
Fig. 18 Relative density (ρref/ρ) distribution as a function of time for an Al target with an initial 10 μm deep near surface melt irradiated with a 355 nm, 20 ps (FWHM), 30 J/cm2 pulse based on HYDRA simulation. Relaxation following the 20 ps pulse leads to cavitation near the melt-solid interface, as noted by the low density expanding vapor cavity. Cavitation was not observed for the 7 ns pulse.
Fig. 19
Fig. 19 ALE3D short pulse-melt pool interaction simulations depicting a range of melt ejection mechanisms for a 210 μm dia., 355 nm, 20 ps, 30 J/cm2 pulse (plots show relative density ρref/ρ distribution); note ρref is the reference solid-state density, so that ρref/ρ = 1 indicates a solid or solid-density liquid region, and ρref/ρ > 1 indicates a vapor or liquid-droplet rich vapor region: (a) cavitation of a 100 μm dia. x 10 μm deep, near surface Al melt; (b) corona splash breakup of a 300 μm dia. x 100 μm deep, near surface SS melt; (c) corona splash breakup and sloshing of a 400 μm dia. x 200 μm deep, near surface SS melt with an asymmetric pulse offset of 100 μm; (d) cavitation of a 100 μm dia. x 10 μm deep Al melt within a 250 μm deep channel; (e-f) canopy collapse, outjetting, and cavitation of a 400 μm dia. x 200 μm deep Al melt within a 250 μm deep channel.

Tables (1)

Tables Icon

Table 1 Comparison of ps-ML and ns-ML showing short-pulse (SP) laser parameters and average removal rate in SS along with the relative estimated ablation pressure and total impulse. The CW laser parameters were the same for both methods (1064 nm, 320 μm spot, tG = 100 μs). The much higher removal rates for ps-ML drilling correlate to its much higher ablation pressure (impulse rate).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Fth= ρCTm A Dτ = κTHTm A τ D
T/Tm= P PTH Exp([ z 2 Dτ ]); P PTH = F FTH
h=2 Dτ Ln[ P Pth ]

Metrics