Abstract

A non-contact all-fiber optic acceleration measurement system has been proposed in this work. Using a fiber delay line in the fiber-optic path, the difference between two Doppler shifted frequencies of a laser beam corresponding to two different velocities of a moving object with a fixed time delay was measured and used for acceleration extraction. By performing acceleration measurements for a piezoelectric ceramic oscillator driven by an open-loop piezo controller at different voltages, a measurement error of better than −3.766% and nonlinearity degree of 0.314% were achieved.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical sensitivity enhancement in grating based micromechanical accelerometer by reducing non-parallelism error

Yu Zhang, Shan Gao, Heng Xiong, and Lishuang Feng
Opt. Express 27(5) 6565-6579 (2019)

Novel accelerometer realized by a polarization-maintaining photonic crystal fiber for railway monitoring applications

Zhengyong Liu, Lin Htein, Dinusha Serandi Gunawardena, Weng-Hong Chung, Chao Lu, Kang-Kuen Lee, and Hwa-Yaw Tam
Opt. Express 27(15) 21597-21607 (2019)

Broadband Michelson fiber-optic accelerometer

Caihe Chen, Delong Zhang, Guilan Ding, and Yuming Cui
Appl. Opt. 38(4) 628-630 (1999)

References

  • View by:
  • |
  • |
  • |

  1. L. Shuangfeng, M. Tiehua, and H. Wen, “Design and fabrication of a new miniaturized capacitive accelerometer,” Sens. Actuators, A 147(1), 70–74 (2008).
    [Crossref]
  2. N. A. Ivashin and M. D. Sobolev, “Protection of the piezoelectric element of a shock acceleration sensor against foreign actions,” Meas. Tech. 58(7), 807–810 (2015).
    [Crossref]
  3. B. Tian, H. Liu, N. Yang, Y. Zhao, and Z. Jiang, “Design of a piezoelectric accelerometer with high sensitivity and low transverse effect,” Sensors 16(10), 1587–1601 (2016).
    [Crossref]
  4. A. Aydemir, Y. Terzioglu, and T. Akin, “A new design and a fabrication approach to realize a high performance three axes capacitive MEMS accelerometer,” Sens. Actuators, A 244, 324–333 (2016).
    [Crossref]
  5. X. Zhou, L. Che, S. Liang, Y. Lin, X. Li, and Y. Wang, “Design and fabrication of a MEMS capacitive accelerometer with fully symmetrical double-sided H-shaped beam structure,” Microelectron. Eng. 131, 51–57 (2015).
    [Crossref]
  6. W. Su, J. A. Gilbert, M. D. Morrissey, and Y. Song, “General-purpose photoelastic fiber optic accelerometer,” Opt. Eng. 36(1), 22–29 (1997).
    [Crossref]
  7. M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
    [Crossref]
  8. T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photonics Technol. Lett. 8(12), 1677–1679 (1996).
    [Crossref]
  9. A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. Jones, S. McCulloch, X. Chen, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
    [Crossref]
  10. C. Chen, D. Zhang, G. Ding, and Y. Cui, “Broadband Michelson fiber-optic accelerometer,” Appl. Opt. 38(4), 628–630 (1999).
    [Crossref]
  11. B. Wu, C. Chen, G. Ding, D. Zhang, and Y. Cui, “Hybrid-integrated Michelson fiber optic accelerometer,” Opt. Eng. 43(2), 313–319 (2004).
    [Crossref]
  12. J. G. Farah, “Interferometric fiber optic accelerometer,” Proc. SPIE 2045, 268–277 (1994).
    [Crossref]
  13. G. Schröpfer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68(1-3), 344–349 (1998).
    [Crossref]
  14. J. Nayak, T. Srinivas, A. Selvarajan, D. V. K. Sastry, and M. P. Unnikrishanan, “Design and analysis of micro-opto-electro-mechanical accelerometer,” Proc. SPIE 5062, 773–780 (2003).
    [Crossref]
  15. C. M. Harris and C. E. Crede, Shock and Vibration Handbook (McGraw Hill, 1988).
  16. H. Amick and S. K. Bui, “Review of several methods for processing vibration data,” Proc. SPIE 1619, 253–264 (1992).
    [Crossref]
  17. B. Lehmann, H. Nobach, and C. Tropea, “Measurement of acceleration using the laser Doppler technique,” Meas. Sci. Technol. 13(9), 1367–1381 (2002).
    [Crossref]
  18. T. Jin, A. Takita, S. Mitatha, P. P. Yupapin, H. Z. Jia, W. M. Hou, and Y. Fujii, “Method for acceleration measurement using a laser Doppler interferometer,” Meas. Sci. Technol. 24(7), 077001 (2013).
    [Crossref]
  19. S. Rothberg and J. Coupland, “The new laser Doppler accelerometer for shock and vibration measurement,” Opt. Lasers Eng. 25(4-5), 217–225 (1996).
    [Crossref]
  20. A. Hocknell, J. M. Coupland, and S. J. Rothberg, “Progress in the development of the laser Doppler accelerometer,” Proc. SPIE 3411, 40–52 (1998).
    [Crossref]
  21. Z. Zhongxian and K. Izuka, “A fiber optic non-contact accelerometer,” Opt. Rev. 1(1), 70–72 (1994).
    [Crossref]

2016 (2)

B. Tian, H. Liu, N. Yang, Y. Zhao, and Z. Jiang, “Design of a piezoelectric accelerometer with high sensitivity and low transverse effect,” Sensors 16(10), 1587–1601 (2016).
[Crossref]

A. Aydemir, Y. Terzioglu, and T. Akin, “A new design and a fabrication approach to realize a high performance three axes capacitive MEMS accelerometer,” Sens. Actuators, A 244, 324–333 (2016).
[Crossref]

2015 (2)

X. Zhou, L. Che, S. Liang, Y. Lin, X. Li, and Y. Wang, “Design and fabrication of a MEMS capacitive accelerometer with fully symmetrical double-sided H-shaped beam structure,” Microelectron. Eng. 131, 51–57 (2015).
[Crossref]

N. A. Ivashin and M. D. Sobolev, “Protection of the piezoelectric element of a shock acceleration sensor against foreign actions,” Meas. Tech. 58(7), 807–810 (2015).
[Crossref]

2013 (1)

T. Jin, A. Takita, S. Mitatha, P. P. Yupapin, H. Z. Jia, W. M. Hou, and Y. Fujii, “Method for acceleration measurement using a laser Doppler interferometer,” Meas. Sci. Technol. 24(7), 077001 (2013).
[Crossref]

2008 (2)

L. Shuangfeng, M. Tiehua, and H. Wen, “Design and fabrication of a new miniaturized capacitive accelerometer,” Sens. Actuators, A 147(1), 70–74 (2008).
[Crossref]

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. Jones, S. McCulloch, X. Chen, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

2004 (1)

B. Wu, C. Chen, G. Ding, D. Zhang, and Y. Cui, “Hybrid-integrated Michelson fiber optic accelerometer,” Opt. Eng. 43(2), 313–319 (2004).
[Crossref]

2003 (1)

J. Nayak, T. Srinivas, A. Selvarajan, D. V. K. Sastry, and M. P. Unnikrishanan, “Design and analysis of micro-opto-electro-mechanical accelerometer,” Proc. SPIE 5062, 773–780 (2003).
[Crossref]

2002 (1)

B. Lehmann, H. Nobach, and C. Tropea, “Measurement of acceleration using the laser Doppler technique,” Meas. Sci. Technol. 13(9), 1367–1381 (2002).
[Crossref]

1999 (1)

1998 (3)

G. Schröpfer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68(1-3), 344–349 (1998).
[Crossref]

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

A. Hocknell, J. M. Coupland, and S. J. Rothberg, “Progress in the development of the laser Doppler accelerometer,” Proc. SPIE 3411, 40–52 (1998).
[Crossref]

1997 (1)

W. Su, J. A. Gilbert, M. D. Morrissey, and Y. Song, “General-purpose photoelastic fiber optic accelerometer,” Opt. Eng. 36(1), 22–29 (1997).
[Crossref]

1996 (2)

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photonics Technol. Lett. 8(12), 1677–1679 (1996).
[Crossref]

S. Rothberg and J. Coupland, “The new laser Doppler accelerometer for shock and vibration measurement,” Opt. Lasers Eng. 25(4-5), 217–225 (1996).
[Crossref]

1994 (2)

Z. Zhongxian and K. Izuka, “A fiber optic non-contact accelerometer,” Opt. Rev. 1(1), 70–72 (1994).
[Crossref]

J. G. Farah, “Interferometric fiber optic accelerometer,” Proc. SPIE 2045, 268–277 (1994).
[Crossref]

1992 (1)

H. Amick and S. K. Bui, “Review of several methods for processing vibration data,” Proc. SPIE 1619, 253–264 (1992).
[Crossref]

Akin, T.

A. Aydemir, Y. Terzioglu, and T. Akin, “A new design and a fabrication approach to realize a high performance three axes capacitive MEMS accelerometer,” Sens. Actuators, A 244, 324–333 (2016).
[Crossref]

Althouse, B. A.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

Amick, H.

H. Amick and S. K. Bui, “Review of several methods for processing vibration data,” Proc. SPIE 1619, 253–264 (1992).
[Crossref]

Aydemir, A.

A. Aydemir, Y. Terzioglu, and T. Akin, “A new design and a fabrication approach to realize a high performance three axes capacitive MEMS accelerometer,” Sens. Actuators, A 244, 324–333 (2016).
[Crossref]

Ballandras, S.

G. Schröpfer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68(1-3), 344–349 (1998).
[Crossref]

Barton, J. S.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. Jones, S. McCulloch, X. Chen, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Berkoff, T. A.

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photonics Technol. Lett. 8(12), 1677–1679 (1996).
[Crossref]

Bui, S. K.

H. Amick and S. K. Bui, “Review of several methods for processing vibration data,” Proc. SPIE 1619, 253–264 (1992).
[Crossref]

Che, L.

X. Zhou, L. Che, S. Liang, Y. Lin, X. Li, and Y. Wang, “Design and fabrication of a MEMS capacitive accelerometer with fully symmetrical double-sided H-shaped beam structure,” Microelectron. Eng. 131, 51–57 (2015).
[Crossref]

Chen, C.

B. Wu, C. Chen, G. Ding, D. Zhang, and Y. Cui, “Hybrid-integrated Michelson fiber optic accelerometer,” Opt. Eng. 43(2), 313–319 (2004).
[Crossref]

C. Chen, D. Zhang, G. Ding, and Y. Cui, “Broadband Michelson fiber-optic accelerometer,” Appl. Opt. 38(4), 628–630 (1999).
[Crossref]

Chen, X.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. Jones, S. McCulloch, X. Chen, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Coupland, J.

S. Rothberg and J. Coupland, “The new laser Doppler accelerometer for shock and vibration measurement,” Opt. Lasers Eng. 25(4-5), 217–225 (1996).
[Crossref]

Coupland, J. M.

A. Hocknell, J. M. Coupland, and S. J. Rothberg, “Progress in the development of the laser Doppler accelerometer,” Proc. SPIE 3411, 40–52 (1998).
[Crossref]

Crede, C. E.

C. M. Harris and C. E. Crede, Shock and Vibration Handbook (McGraw Hill, 1988).

Cui, Y.

B. Wu, C. Chen, G. Ding, D. Zhang, and Y. Cui, “Hybrid-integrated Michelson fiber optic accelerometer,” Opt. Eng. 43(2), 313–319 (2004).
[Crossref]

C. Chen, D. Zhang, G. Ding, and Y. Cui, “Broadband Michelson fiber-optic accelerometer,” Appl. Opt. 38(4), 628–630 (1999).
[Crossref]

de Labachelerie, M.

G. Schröpfer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68(1-3), 344–349 (1998).
[Crossref]

Ding, G.

B. Wu, C. Chen, G. Ding, D. Zhang, and Y. Cui, “Hybrid-integrated Michelson fiber optic accelerometer,” Opt. Eng. 43(2), 313–319 (2004).
[Crossref]

C. Chen, D. Zhang, G. Ding, and Y. Cui, “Broadband Michelson fiber-optic accelerometer,” Appl. Opt. 38(4), 628–630 (1999).
[Crossref]

Elflein, W.

G. Schröpfer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68(1-3), 344–349 (1998).
[Crossref]

Farah, J. G.

J. G. Farah, “Interferometric fiber optic accelerometer,” Proc. SPIE 2045, 268–277 (1994).
[Crossref]

Fender, A.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. Jones, S. McCulloch, X. Chen, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Fujii, Y.

T. Jin, A. Takita, S. Mitatha, P. P. Yupapin, H. Z. Jia, W. M. Hou, and Y. Fujii, “Method for acceleration measurement using a laser Doppler interferometer,” Meas. Sci. Technol. 24(7), 077001 (2013).
[Crossref]

George, D. S.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. Jones, S. McCulloch, X. Chen, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Gilbert, J. A.

W. Su, J. A. Gilbert, M. D. Morrissey, and Y. Song, “General-purpose photoelastic fiber optic accelerometer,” Opt. Eng. 36(1), 22–29 (1997).
[Crossref]

Harris, C. M.

C. M. Harris and C. E. Crede, Shock and Vibration Handbook (McGraw Hill, 1988).

Hocknell, A.

A. Hocknell, J. M. Coupland, and S. J. Rothberg, “Progress in the development of the laser Doppler accelerometer,” Proc. SPIE 3411, 40–52 (1998).
[Crossref]

Hou, W. M.

T. Jin, A. Takita, S. Mitatha, P. P. Yupapin, H. Z. Jia, W. M. Hou, and Y. Fujii, “Method for acceleration measurement using a laser Doppler interferometer,” Meas. Sci. Technol. 24(7), 077001 (2013).
[Crossref]

Howden, R. I.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. Jones, S. McCulloch, X. Chen, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Ivashin, N. A.

N. A. Ivashin and M. D. Sobolev, “Protection of the piezoelectric element of a shock acceleration sensor against foreign actions,” Meas. Tech. 58(7), 807–810 (2015).
[Crossref]

Izuka, K.

Z. Zhongxian and K. Izuka, “A fiber optic non-contact accelerometer,” Opt. Rev. 1(1), 70–72 (1994).
[Crossref]

Jia, H. Z.

T. Jin, A. Takita, S. Mitatha, P. P. Yupapin, H. Z. Jia, W. M. Hou, and Y. Fujii, “Method for acceleration measurement using a laser Doppler interferometer,” Meas. Sci. Technol. 24(7), 077001 (2013).
[Crossref]

Jiang, Z.

B. Tian, H. Liu, N. Yang, Y. Zhao, and Z. Jiang, “Design of a piezoelectric accelerometer with high sensitivity and low transverse effect,” Sensors 16(10), 1587–1601 (2016).
[Crossref]

Jin, T.

T. Jin, A. Takita, S. Mitatha, P. P. Yupapin, H. Z. Jia, W. M. Hou, and Y. Fujii, “Method for acceleration measurement using a laser Doppler interferometer,” Meas. Sci. Technol. 24(7), 077001 (2013).
[Crossref]

Johnson, G. A.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

Jones, B. J.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. Jones, S. McCulloch, X. Chen, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Kersey, A. D.

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photonics Technol. Lett. 8(12), 1677–1679 (1996).
[Crossref]

Lehmann, B.

B. Lehmann, H. Nobach, and C. Tropea, “Measurement of acceleration using the laser Doppler technique,” Meas. Sci. Technol. 13(9), 1367–1381 (2002).
[Crossref]

Li, X.

X. Zhou, L. Che, S. Liang, Y. Lin, X. Li, and Y. Wang, “Design and fabrication of a MEMS capacitive accelerometer with fully symmetrical double-sided H-shaped beam structure,” Microelectron. Eng. 131, 51–57 (2015).
[Crossref]

Liang, S.

X. Zhou, L. Che, S. Liang, Y. Lin, X. Li, and Y. Wang, “Design and fabrication of a MEMS capacitive accelerometer with fully symmetrical double-sided H-shaped beam structure,” Microelectron. Eng. 131, 51–57 (2015).
[Crossref]

Lin, Y.

X. Zhou, L. Che, S. Liang, Y. Lin, X. Li, and Y. Wang, “Design and fabrication of a MEMS capacitive accelerometer with fully symmetrical double-sided H-shaped beam structure,” Microelectron. Eng. 131, 51–57 (2015).
[Crossref]

Liu, H.

B. Tian, H. Liu, N. Yang, Y. Zhao, and Z. Jiang, “Design of a piezoelectric accelerometer with high sensitivity and low transverse effect,” Sensors 16(10), 1587–1601 (2016).
[Crossref]

Macpherson, W. N.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. Jones, S. McCulloch, X. Chen, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Maier, R. R. J.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. Jones, S. McCulloch, X. Chen, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

McCulloch, S.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. Jones, S. McCulloch, X. Chen, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Mitatha, S.

T. Jin, A. Takita, S. Mitatha, P. P. Yupapin, H. Z. Jia, W. M. Hou, and Y. Fujii, “Method for acceleration measurement using a laser Doppler interferometer,” Meas. Sci. Technol. 24(7), 077001 (2013).
[Crossref]

Morrissey, M. D.

W. Su, J. A. Gilbert, M. D. Morrissey, and Y. Song, “General-purpose photoelastic fiber optic accelerometer,” Opt. Eng. 36(1), 22–29 (1997).
[Crossref]

Nayak, J.

J. Nayak, T. Srinivas, A. Selvarajan, D. V. K. Sastry, and M. P. Unnikrishanan, “Design and analysis of micro-opto-electro-mechanical accelerometer,” Proc. SPIE 5062, 773–780 (2003).
[Crossref]

Nobach, H.

B. Lehmann, H. Nobach, and C. Tropea, “Measurement of acceleration using the laser Doppler technique,” Meas. Sci. Technol. 13(9), 1367–1381 (2002).
[Crossref]

Porte, H.

G. Schröpfer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68(1-3), 344–349 (1998).
[Crossref]

Rothberg, S.

S. Rothberg and J. Coupland, “The new laser Doppler accelerometer for shock and vibration measurement,” Opt. Lasers Eng. 25(4-5), 217–225 (1996).
[Crossref]

Rothberg, S. J.

A. Hocknell, J. M. Coupland, and S. J. Rothberg, “Progress in the development of the laser Doppler accelerometer,” Proc. SPIE 3411, 40–52 (1998).
[Crossref]

Sastry, D. V. K.

J. Nayak, T. Srinivas, A. Selvarajan, D. V. K. Sastry, and M. P. Unnikrishanan, “Design and analysis of micro-opto-electro-mechanical accelerometer,” Proc. SPIE 5062, 773–780 (2003).
[Crossref]

Schröpfer, G.

G. Schröpfer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68(1-3), 344–349 (1998).
[Crossref]

Selvarajan, A.

J. Nayak, T. Srinivas, A. Selvarajan, D. V. K. Sastry, and M. P. Unnikrishanan, “Design and analysis of micro-opto-electro-mechanical accelerometer,” Proc. SPIE 5062, 773–780 (2003).
[Crossref]

Shuangfeng, L.

L. Shuangfeng, M. Tiehua, and H. Wen, “Design and fabrication of a new miniaturized capacitive accelerometer,” Sens. Actuators, A 147(1), 70–74 (2008).
[Crossref]

Smith, G. W.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. Jones, S. McCulloch, X. Chen, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Sobolev, M. D.

N. A. Ivashin and M. D. Sobolev, “Protection of the piezoelectric element of a shock acceleration sensor against foreign actions,” Meas. Tech. 58(7), 807–810 (2015).
[Crossref]

Song, Y.

W. Su, J. A. Gilbert, M. D. Morrissey, and Y. Song, “General-purpose photoelastic fiber optic accelerometer,” Opt. Eng. 36(1), 22–29 (1997).
[Crossref]

Srinivas, T.

J. Nayak, T. Srinivas, A. Selvarajan, D. V. K. Sastry, and M. P. Unnikrishanan, “Design and analysis of micro-opto-electro-mechanical accelerometer,” Proc. SPIE 5062, 773–780 (2003).
[Crossref]

Su, W.

W. Su, J. A. Gilbert, M. D. Morrissey, and Y. Song, “General-purpose photoelastic fiber optic accelerometer,” Opt. Eng. 36(1), 22–29 (1997).
[Crossref]

Suo, R.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. Jones, S. McCulloch, X. Chen, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Takita, A.

T. Jin, A. Takita, S. Mitatha, P. P. Yupapin, H. Z. Jia, W. M. Hou, and Y. Fujii, “Method for acceleration measurement using a laser Doppler interferometer,” Meas. Sci. Technol. 24(7), 077001 (2013).
[Crossref]

Terzioglu, Y.

A. Aydemir, Y. Terzioglu, and T. Akin, “A new design and a fabrication approach to realize a high performance three axes capacitive MEMS accelerometer,” Sens. Actuators, A 244, 324–333 (2016).
[Crossref]

Tian, B.

B. Tian, H. Liu, N. Yang, Y. Zhao, and Z. Jiang, “Design of a piezoelectric accelerometer with high sensitivity and low transverse effect,” Sensors 16(10), 1587–1601 (2016).
[Crossref]

Tiehua, M.

L. Shuangfeng, M. Tiehua, and H. Wen, “Design and fabrication of a new miniaturized capacitive accelerometer,” Sens. Actuators, A 147(1), 70–74 (2008).
[Crossref]

Todd, M. D.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

Tropea, C.

B. Lehmann, H. Nobach, and C. Tropea, “Measurement of acceleration using the laser Doppler technique,” Meas. Sci. Technol. 13(9), 1367–1381 (2002).
[Crossref]

Unnikrishanan, M. P.

J. Nayak, T. Srinivas, A. Selvarajan, D. V. K. Sastry, and M. P. Unnikrishanan, “Design and analysis of micro-opto-electro-mechanical accelerometer,” Proc. SPIE 5062, 773–780 (2003).
[Crossref]

Vohra, S. T.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

Wang, Y.

X. Zhou, L. Che, S. Liang, Y. Lin, X. Li, and Y. Wang, “Design and fabrication of a MEMS capacitive accelerometer with fully symmetrical double-sided H-shaped beam structure,” Microelectron. Eng. 131, 51–57 (2015).
[Crossref]

Wen, H.

L. Shuangfeng, M. Tiehua, and H. Wen, “Design and fabrication of a new miniaturized capacitive accelerometer,” Sens. Actuators, A 147(1), 70–74 (2008).
[Crossref]

Wu, B.

B. Wu, C. Chen, G. Ding, D. Zhang, and Y. Cui, “Hybrid-integrated Michelson fiber optic accelerometer,” Opt. Eng. 43(2), 313–319 (2004).
[Crossref]

Yang, N.

B. Tian, H. Liu, N. Yang, Y. Zhao, and Z. Jiang, “Design of a piezoelectric accelerometer with high sensitivity and low transverse effect,” Sensors 16(10), 1587–1601 (2016).
[Crossref]

Yupapin, P. P.

T. Jin, A. Takita, S. Mitatha, P. P. Yupapin, H. Z. Jia, W. M. Hou, and Y. Fujii, “Method for acceleration measurement using a laser Doppler interferometer,” Meas. Sci. Technol. 24(7), 077001 (2013).
[Crossref]

Zhang, D.

B. Wu, C. Chen, G. Ding, D. Zhang, and Y. Cui, “Hybrid-integrated Michelson fiber optic accelerometer,” Opt. Eng. 43(2), 313–319 (2004).
[Crossref]

C. Chen, D. Zhang, G. Ding, and Y. Cui, “Broadband Michelson fiber-optic accelerometer,” Appl. Opt. 38(4), 628–630 (1999).
[Crossref]

Zhao, Y.

B. Tian, H. Liu, N. Yang, Y. Zhao, and Z. Jiang, “Design of a piezoelectric accelerometer with high sensitivity and low transverse effect,” Sensors 16(10), 1587–1601 (2016).
[Crossref]

Zhongxian, Z.

Z. Zhongxian and K. Izuka, “A fiber optic non-contact accelerometer,” Opt. Rev. 1(1), 70–72 (1994).
[Crossref]

Zhou, X.

X. Zhou, L. Che, S. Liang, Y. Lin, X. Li, and Y. Wang, “Design and fabrication of a MEMS capacitive accelerometer with fully symmetrical double-sided H-shaped beam structure,” Microelectron. Eng. 131, 51–57 (2015).
[Crossref]

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (2)

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photonics Technol. Lett. 8(12), 1677–1679 (1996).
[Crossref]

IEEE Sens. J. (1)

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. Jones, S. McCulloch, X. Chen, and R. Suo, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Meas. Sci. Technol. (2)

B. Lehmann, H. Nobach, and C. Tropea, “Measurement of acceleration using the laser Doppler technique,” Meas. Sci. Technol. 13(9), 1367–1381 (2002).
[Crossref]

T. Jin, A. Takita, S. Mitatha, P. P. Yupapin, H. Z. Jia, W. M. Hou, and Y. Fujii, “Method for acceleration measurement using a laser Doppler interferometer,” Meas. Sci. Technol. 24(7), 077001 (2013).
[Crossref]

Meas. Tech. (1)

N. A. Ivashin and M. D. Sobolev, “Protection of the piezoelectric element of a shock acceleration sensor against foreign actions,” Meas. Tech. 58(7), 807–810 (2015).
[Crossref]

Microelectron. Eng. (1)

X. Zhou, L. Che, S. Liang, Y. Lin, X. Li, and Y. Wang, “Design and fabrication of a MEMS capacitive accelerometer with fully symmetrical double-sided H-shaped beam structure,” Microelectron. Eng. 131, 51–57 (2015).
[Crossref]

Opt. Eng. (2)

W. Su, J. A. Gilbert, M. D. Morrissey, and Y. Song, “General-purpose photoelastic fiber optic accelerometer,” Opt. Eng. 36(1), 22–29 (1997).
[Crossref]

B. Wu, C. Chen, G. Ding, D. Zhang, and Y. Cui, “Hybrid-integrated Michelson fiber optic accelerometer,” Opt. Eng. 43(2), 313–319 (2004).
[Crossref]

Opt. Lasers Eng. (1)

S. Rothberg and J. Coupland, “The new laser Doppler accelerometer for shock and vibration measurement,” Opt. Lasers Eng. 25(4-5), 217–225 (1996).
[Crossref]

Opt. Rev. (1)

Z. Zhongxian and K. Izuka, “A fiber optic non-contact accelerometer,” Opt. Rev. 1(1), 70–72 (1994).
[Crossref]

Proc. SPIE (4)

H. Amick and S. K. Bui, “Review of several methods for processing vibration data,” Proc. SPIE 1619, 253–264 (1992).
[Crossref]

J. Nayak, T. Srinivas, A. Selvarajan, D. V. K. Sastry, and M. P. Unnikrishanan, “Design and analysis of micro-opto-electro-mechanical accelerometer,” Proc. SPIE 5062, 773–780 (2003).
[Crossref]

A. Hocknell, J. M. Coupland, and S. J. Rothberg, “Progress in the development of the laser Doppler accelerometer,” Proc. SPIE 3411, 40–52 (1998).
[Crossref]

J. G. Farah, “Interferometric fiber optic accelerometer,” Proc. SPIE 2045, 268–277 (1994).
[Crossref]

Sens. Actuators, A (3)

G. Schröpfer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68(1-3), 344–349 (1998).
[Crossref]

L. Shuangfeng, M. Tiehua, and H. Wen, “Design and fabrication of a new miniaturized capacitive accelerometer,” Sens. Actuators, A 147(1), 70–74 (2008).
[Crossref]

A. Aydemir, Y. Terzioglu, and T. Akin, “A new design and a fabrication approach to realize a high performance three axes capacitive MEMS accelerometer,” Sens. Actuators, A 244, 324–333 (2016).
[Crossref]

Sensors (1)

B. Tian, H. Liu, N. Yang, Y. Zhao, and Z. Jiang, “Design of a piezoelectric accelerometer with high sensitivity and low transverse effect,” Sensors 16(10), 1587–1601 (2016).
[Crossref]

Other (1)

C. M. Harris and C. E. Crede, Shock and Vibration Handbook (McGraw Hill, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the non-contact all-fiber optic laser Doppler acceleration measurement system.
Fig. 2.
Fig. 2. Experimental setup of the non-contact all-fiber optic laser Doppler accelerometer.
Fig. 3.
Fig. 3. Two beat frequency signals received by the two photodetectors from the piezoelectric ceramic oscillator with a frequency of 50 Hz.
Fig. 4.
Fig. 4. A plot of the measured acceleration versus time obtained for the piezoelectric ceramic oscillator driven by the open-loop piezo controller at an amplitude of 9 V and oscillating frequency of 50 Hz. The theoretical acceleration of the oscillator calculated from the displacement/voltage relationship is depicted by the short dotted line.
Fig. 5.
Fig. 5. A filtered plot of the acceleration versus time obtained for the piezoelectric ceramic oscillator driven by the open-loop piezo controller at a voltage of 9 V and oscillating frequency of 50 Hz (the blue short dotted line). The theoretical acceleration of the oscillator is depicted by the black short dotted line.
Fig. 6.
Fig. 6. Maximal accelerations of the piezoelectric ceramic oscillator driven by the open-loop piezo controller at 2, 3, 4, 5, 6, 7, 8, and 9 V. The vertical axis denotes the experimental data obtained by the non-contact all-fiber optic Doppler accelerometer, and the horizontal axis displays the theoretical values calculated from the displacement/voltage relationship.

Tables (1)

Tables Icon

Table 1. Maximal Accelerations and Measurement Errors Obtained for the Piezoelectric Ceramic Oscillator Driven by the Open-loop Piezo Controller at Voltages Ranging between 2 and 9 V

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f d ( t ) = 2 ν ( t ) λ ,
E 1 ( t ) = A 1 cos [ 2 π ( f 0 + f d ( t ) ) t + φ 1 ] ,
E 2 ( t ) = A 2 cos [ 2 π ( f 0 + f A + f d ( t ) ) t + φ 2 ] ,
E 3 ( t ) = A 3 cos [ 2 π ( f 0 + f d ( t τ ) ) t + φ 3 ] ,
I 1 ( t ) = A 1 2 cos 2 [ 2 π ( f 0 + f d ( t ) ) t + φ 1 ] + A 2 2 cos 2 [ 2 π ( f 0 + f A + f d ( t ) ) t + φ 2 ] + A 1 A 2 cos [ 2 π ( 2 f 0 + 2 f d ( t ) + f A ) t + ( φ 1 + φ 2 ) ] + A 1 A 2 cos [ 2 π f A t + ( φ 2 φ 1 ) ] ,
I 2 ( t ) = A 2 2 cos 2 [ 2 π ( f 0 + f d ( t ) + f A ) t + φ 2 ] + A 3 2 cos 2 [ 2 π ( f 0 + f d ( t τ ) ) t + φ 3 ] + A 2 A 3 cos [ 2 π ( 2 f 0 + f d ( t ) + f d ( t τ ) + f A ) t + ( φ 2 + φ 3 ) ] + A 2 A 3 cos [ 2 π ( f A + f d ( t ) f d ( t τ ) ) t + ( φ 2 φ 3 ) ] .
i 1 ( t ) = k { A 1 2 + A 2 2 2 + A 1 A 2 cos [ 2 π f A t + ( φ 2 φ 1 ) ] } ,
i 2 ( t ) = k { A 2 2 + A 3 2 2 + A 2 A 3 cos [ 2 π ( f A + f d ( t ) f d ( t τ ) ) t + ( φ 2 φ 3 ) ] } ,
f d ( t ) f d ( t τ ) = 1 2 π d φ d i f f d t .
a ( t ) = λ [ f d ( t ) f d ( t τ ) ] 2 τ .

Metrics