Abstract

We propose a novel phase-preserving multilevel amplitude regenerator scheme by cascading two nonlinear-optical loop mirrors (NOLMs) with an intermediate optical phase conjugator (OPC) stage. Joint parameter optimization of the two NOLM units has been carried out to cancel the introduced phase distortion and enable a more power-efficient performance. Moreover, our scheme combines the operation of the NOLM and the OPC in a single subsystem, enabling the compensation of both amplitude and phase distortions when located symmetrically in a transmission link. To this end, extensive numerical simulations have been performed to evaluate the regeneration performance in a transmission link dominated by amplified spontaneous emission (ASE) noise and Kerr-induced nonlinear distortions (self-phase modulation-induced phase distortion), achieving over 100% reach extension compared to the cases of un-regenerative, or a mid-span OPC-based transmission links.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
All-optical multilevel amplitude regeneration in a single nonlinear optical loop mirror

F. Wen, C. P. Tsekrekos, Y. Geng, X. Zhou, B. Wu, K. Qiu, S. K. Turitsyn, and S. Sygletos
Opt. Express 26(10) 12698-12706 (2018)

All-optical phase-preserving multilevel amplitude regeneration

Tobias Roethlingshoefer, Thomas Richter, Colja Schubert, Georgy Onishchukov, Bernhard Schmauss, and Gerd Leuchs
Opt. Express 22(22) 27077-27085 (2014)

Cascaded phase-preserving multilevel amplitude regeneration

Tobias Roethlingshoefer, Georgy Onishchukov, Bernhard Schmauss, and Gerd Leuchs
Opt. Express 22(26) 31729-31734 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
    [Crossref]
  2. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
    [Crossref]
  3. F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
    [Crossref]
  4. X. Y. Zhou, B. J. Wu, F. Wen, H. C. Zhang, H. Zhou, and K. Qiu, “Total date rate of multi-wavelength 2R regenerators for time-interleaved RZ-OOK signals,” Opt. Express 22(19), 22937–22951 (2014).
    [Crossref] [PubMed]
  5. L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8(1), 884 (2017).
    [Crossref] [PubMed]
  6. T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “All-optical phase-preserving multilevel amplitude regeneration,” Opt. Express 22(22), 27077–27085 (2014).
    [Crossref] [PubMed]
  7. M. Sorokina, S. Sygletos, A. Ellis, and S. Turitsyn, “Regenerative Fourier transformation for dual-quadrature regeneration of multilevel rectangular QAM,” Opt. Lett. 40(13), 3117–3120 (2015).
    [Crossref] [PubMed]
  8. T. Roethlingshoefer, G. Onishchukov, B. Schmauss, and G. Leuchs, “Cascaded phase-preserving multilevel amplitude regeneration,” Opt. Express 22(26), 31729–31734 (2014).
    [Crossref] [PubMed]
  9. F. Wen, C. P. Tsekrekos, Y. Geng, X. Zhou, B. Wu, K. Qiu, S. K. Turitsyn, and S. Sygletos, “All-optical multilevel amplitude regeneration in a single nonlinear optical loop mirror,” Opt. Express 26(10), 12698–12706 (2018).
    [Crossref] [PubMed]
  10. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990).
    [Crossref] [PubMed]
  11. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photonics Technol. Lett. 17(3), 639–641 (2005).
    [Crossref]
  12. K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
    [Crossref]
  13. K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel phase-preserving amplitude regeneration using a single nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(22), 1858–1860 (2007).
    [Crossref]
  14. F. Wen, S. Sygletos, C. P. Tsekrekos, X. Zhou, Y. Geng, B. Wu, K. Qiu, and S. K. Turitsyn, “Multilevel power transfer function characterization of nonlinear optical loop mirror,” in 19th International Conference on Transparent Optical Networks (ICTON) (2017), paper We.D5.3.
    [Crossref]
  15. Thorlabs, https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9567 .
  16. K. Zhou, D. J. Webb, C. Mou, M. Farries, N. Hayes, and I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photonics Technol. Lett. 21(22), 1653–1655 (2009).
    [Crossref]
  17. L. E. Roberts, R. L. Ward, S. P. Francis, P. G. Sibley, R. Fleddermann, A. J. Sutton, C. Smith, D. E. McClelland, and D. A. Shaddock, “High power compatible internally sensed optical phased array,” Opt. Express 24(12), 13467–13479 (2016).
    [Crossref] [PubMed]
  18. M. Sorokina, “Design of multilevel amplitude regenerative system,” Opt. Lett. 39(8), 2499–2502 (2014).
    [Crossref] [PubMed]
  19. M. A. Sorokina and S. K. Turitsyn, “Regeneration limit of classical Shannon capacity,” Nat. Commun. 5(1), 3861 (2014).
    [Crossref] [PubMed]
  20. J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
    [Crossref]
  21. S. Sygletos, P. Frascella, S. K. Ibrahim, L. Grüner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “A practical phase sensitive amplification scheme for two channel phase regeneration,” Opt. Express 19(26), B938–B945 (2011).
    [Crossref] [PubMed]
  22. S. L. I. Olsson, H. Eliasson, E. Astra, M. Karlsson, and P. A. Andrekson, “Long-haul optical transmission link using low-noise phase-sensitive amplifiers,” Nat. Commun. 9(1), 2513 (2018).
    [Crossref] [PubMed]

2018 (2)

F. Wen, C. P. Tsekrekos, Y. Geng, X. Zhou, B. Wu, K. Qiu, S. K. Turitsyn, and S. Sygletos, “All-optical multilevel amplitude regeneration in a single nonlinear optical loop mirror,” Opt. Express 26(10), 12698–12706 (2018).
[Crossref] [PubMed]

S. L. I. Olsson, H. Eliasson, E. Astra, M. Karlsson, and P. A. Andrekson, “Long-haul optical transmission link using low-noise phase-sensitive amplifiers,” Nat. Commun. 9(1), 2513 (2018).
[Crossref] [PubMed]

2017 (1)

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8(1), 884 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (6)

2012 (1)

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

2011 (2)

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

S. Sygletos, P. Frascella, S. K. Ibrahim, L. Grüner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “A practical phase sensitive amplification scheme for two channel phase regeneration,” Opt. Express 19(26), B938–B945 (2011).
[Crossref] [PubMed]

2010 (1)

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
[Crossref]

2009 (1)

K. Zhou, D. J. Webb, C. Mou, M. Farries, N. Hayes, and I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photonics Technol. Lett. 21(22), 1653–1655 (2009).
[Crossref]

2007 (2)

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel phase-preserving amplitude regeneration using a single nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

2005 (1)

G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photonics Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

1990 (1)

Andrekson, P. A.

S. L. I. Olsson, H. Eliasson, E. Astra, M. Karlsson, and P. A. Andrekson, “Long-haul optical transmission link using low-noise phase-sensitive amplifiers,” Nat. Commun. 9(1), 2513 (2018).
[Crossref] [PubMed]

Annamalai, M.

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8(1), 884 (2017).
[Crossref] [PubMed]

Astra, E.

S. L. I. Olsson, H. Eliasson, E. Astra, M. Karlsson, and P. A. Andrekson, “Long-haul optical transmission link using low-noise phase-sensitive amplifiers,” Nat. Commun. 9(1), 2513 (2018).
[Crossref] [PubMed]

Bennion, I.

K. Zhou, D. J. Webb, C. Mou, M. Farries, N. Hayes, and I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photonics Technol. Lett. 21(22), 1653–1655 (2009).
[Crossref]

Bogris, A.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Bosco, G.

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
[Crossref]

Campbell, B. D.

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8(1), 884 (2017).
[Crossref] [PubMed]

Carena, A.

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
[Crossref]

Chitgarha, M. R.

Curri, V.

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
[Crossref]

Cvecek, K.

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel phase-preserving amplitude regeneration using a single nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photonics Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Eliasson, H.

S. L. I. Olsson, H. Eliasson, E. Astra, M. Karlsson, and P. A. Andrekson, “Long-haul optical transmission link using low-noise phase-sensitive amplifiers,” Nat. Commun. 9(1), 2513 (2018).
[Crossref] [PubMed]

Ellis, A.

Ellis, A. D.

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

S. Sygletos, P. Frascella, S. K. Ibrahim, L. Grüner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “A practical phase sensitive amplification scheme for two channel phase regeneration,” Opt. Express 19(26), B938–B945 (2011).
[Crossref] [PubMed]

Farries, M.

K. Zhou, D. J. Webb, C. Mou, M. Farries, N. Hayes, and I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photonics Technol. Lett. 21(22), 1653–1655 (2009).
[Crossref]

Fleddermann, R.

Forghieri, F.

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
[Crossref]

Francis, S. P.

Frascella, P.

Freude, W.

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

Geng, Y.

F. Wen, C. P. Tsekrekos, Y. Geng, X. Zhou, B. Wu, K. Qiu, S. K. Turitsyn, and S. Sygletos, “All-optical multilevel amplitude regeneration in a single nonlinear optical loop mirror,” Opt. Express 26(10), 12698–12706 (2018).
[Crossref] [PubMed]

F. Wen, S. Sygletos, C. P. Tsekrekos, X. Zhou, Y. Geng, B. Wu, K. Qiu, and S. K. Turitsyn, “Multilevel power transfer function characterization of nonlinear optical loop mirror,” in 19th International Conference on Transparent Optical Networks (ICTON) (2017), paper We.D5.3.
[Crossref]

Gordon, J. P.

Grüner-Nielsen, L.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

S. Sygletos, P. Frascella, S. K. Ibrahim, L. Grüner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “A practical phase sensitive amplification scheme for two channel phase regeneration,” Opt. Express 19(26), B938–B945 (2011).
[Crossref] [PubMed]

Hayes, N.

K. Zhou, D. J. Webb, C. Mou, M. Farries, N. Hayes, and I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photonics Technol. Lett. 21(22), 1653–1655 (2009).
[Crossref]

Ibrahim, S. K.

Kakande, J.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Karlsson, M.

S. L. I. Olsson, H. Eliasson, E. Astra, M. Karlsson, and P. A. Andrekson, “Long-haul optical transmission link using low-noise phase-sensitive amplifiers,” Nat. Commun. 9(1), 2513 (2018).
[Crossref] [PubMed]

Khaleghi, S.

Kwon, Y. B.

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8(1), 884 (2017).
[Crossref] [PubMed]

Lakoba, T. I.

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8(1), 884 (2017).
[Crossref] [PubMed]

Leuchs, G.

T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “All-optical phase-preserving multilevel amplitude regeneration,” Opt. Express 22(22), 27077–27085 (2014).
[Crossref] [PubMed]

T. Roethlingshoefer, G. Onishchukov, B. Schmauss, and G. Leuchs, “Cascaded phase-preserving multilevel amplitude regeneration,” Opt. Express 22(26), 31729–31734 (2014).
[Crossref] [PubMed]

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel phase-preserving amplitude regeneration using a single nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photonics Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Leuthold, J.

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

Li, L.

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8(1), 884 (2017).
[Crossref] [PubMed]

Ludwig, R.

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

McClelland, D. E.

Meissner, M.

G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photonics Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Mollenauer, L. F.

Mou, C.

K. Zhou, D. J. Webb, C. Mou, M. Farries, N. Hayes, and I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photonics Technol. Lett. 21(22), 1653–1655 (2009).
[Crossref]

O’Gorman, J.

Olsson, S. L. I.

S. L. I. Olsson, H. Eliasson, E. Astra, M. Karlsson, and P. A. Andrekson, “Long-haul optical transmission link using low-noise phase-sensitive amplifiers,” Nat. Commun. 9(1), 2513 (2018).
[Crossref] [PubMed]

Onishchukov, G.

T. Roethlingshoefer, G. Onishchukov, B. Schmauss, and G. Leuchs, “Cascaded phase-preserving multilevel amplitude regeneration,” Opt. Express 22(26), 31729–31734 (2014).
[Crossref] [PubMed]

T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “All-optical phase-preserving multilevel amplitude regeneration,” Opt. Express 22(22), 27077–27085 (2014).
[Crossref] [PubMed]

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel phase-preserving amplitude regeneration using a single nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

Parmigiani, F.

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Patki, P. G.

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8(1), 884 (2017).
[Crossref] [PubMed]

Petropoulos, P.

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Phelan, R.

S. Sygletos, P. Frascella, S. K. Ibrahim, L. Grüner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “A practical phase sensitive amplification scheme for two channel phase regeneration,” Opt. Express 19(26), B938–B945 (2011).
[Crossref] [PubMed]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Poggiolini, P.

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
[Crossref]

Provost, L.

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

Qiu, K.

Richardson, D. J.

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Richter, T.

Roberts, L. E.

Roethlingshoefer, T.

Schmauss, B.

T. Roethlingshoefer, G. Onishchukov, B. Schmauss, and G. Leuchs, “Cascaded phase-preserving multilevel amplitude regeneration,” Opt. Express 22(26), 31729–31734 (2014).
[Crossref] [PubMed]

T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “All-optical phase-preserving multilevel amplitude regeneration,” Opt. Express 22(22), 27077–27085 (2014).
[Crossref] [PubMed]

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel phase-preserving amplitude regeneration using a single nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photonics Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Schubert, C.

T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “All-optical phase-preserving multilevel amplitude regeneration,” Opt. Express 22(22), 27077–27085 (2014).
[Crossref] [PubMed]

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

Shaddock, D. A.

Sibley, P. G.

Slavík, R.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Smith, C.

Sorokina, M.

Sorokina, M. A.

M. A. Sorokina and S. K. Turitsyn, “Regeneration limit of classical Shannon capacity,” Nat. Commun. 5(1), 3861 (2014).
[Crossref] [PubMed]

Sponsel, K.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel phase-preserving amplitude regeneration using a single nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photonics Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Stelmakh, V.

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8(1), 884 (2017).
[Crossref] [PubMed]

Stephan, C.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel phase-preserving amplitude regeneration using a single nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

Striegler, G.

G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photonics Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Sutton, A. J.

Sygletos, S.

Syvridis, D.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Tomkos, I.

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

Tsekrekos, C. P.

F. Wen, C. P. Tsekrekos, Y. Geng, X. Zhou, B. Wu, K. Qiu, S. K. Turitsyn, and S. Sygletos, “All-optical multilevel amplitude regeneration in a single nonlinear optical loop mirror,” Opt. Express 26(10), 12698–12706 (2018).
[Crossref] [PubMed]

F. Wen, S. Sygletos, C. P. Tsekrekos, X. Zhou, Y. Geng, B. Wu, K. Qiu, and S. K. Turitsyn, “Multilevel power transfer function characterization of nonlinear optical loop mirror,” in 19th International Conference on Transparent Optical Networks (ICTON) (2017), paper We.D5.3.
[Crossref]

Turitsyn, S.

Turitsyn, S. K.

F. Wen, C. P. Tsekrekos, Y. Geng, X. Zhou, B. Wu, K. Qiu, S. K. Turitsyn, and S. Sygletos, “All-optical multilevel amplitude regeneration in a single nonlinear optical loop mirror,” Opt. Express 26(10), 12698–12706 (2018).
[Crossref] [PubMed]

M. A. Sorokina and S. K. Turitsyn, “Regeneration limit of classical Shannon capacity,” Nat. Commun. 5(1), 3861 (2014).
[Crossref] [PubMed]

F. Wen, S. Sygletos, C. P. Tsekrekos, X. Zhou, Y. Geng, B. Wu, K. Qiu, and S. K. Turitsyn, “Multilevel power transfer function characterization of nonlinear optical loop mirror,” in 19th International Conference on Transparent Optical Networks (ICTON) (2017), paper We.D5.3.
[Crossref]

Vasilyev, M.

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8(1), 884 (2017).
[Crossref] [PubMed]

Ward, R. L.

Webb, D. J.

K. Zhou, D. J. Webb, C. Mou, M. Farries, N. Hayes, and I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photonics Technol. Lett. 21(22), 1653–1655 (2009).
[Crossref]

Wen, F.

Willner, E.

Wu, B.

F. Wen, C. P. Tsekrekos, Y. Geng, X. Zhou, B. Wu, K. Qiu, S. K. Turitsyn, and S. Sygletos, “All-optical multilevel amplitude regeneration in a single nonlinear optical loop mirror,” Opt. Express 26(10), 12698–12706 (2018).
[Crossref] [PubMed]

F. Wen, S. Sygletos, C. P. Tsekrekos, X. Zhou, Y. Geng, B. Wu, K. Qiu, and S. K. Turitsyn, “Multilevel power transfer function characterization of nonlinear optical loop mirror,” in 19th International Conference on Transparent Optical Networks (ICTON) (2017), paper We.D5.3.
[Crossref]

Wu, B. J.

Yilmaz, O. F.

Zhang, H. C.

Zhou, H.

Zhou, K.

K. Zhou, D. J. Webb, C. Mou, M. Farries, N. Hayes, and I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photonics Technol. Lett. 21(22), 1653–1655 (2009).
[Crossref]

Zhou, X.

F. Wen, C. P. Tsekrekos, Y. Geng, X. Zhou, B. Wu, K. Qiu, S. K. Turitsyn, and S. Sygletos, “All-optical multilevel amplitude regeneration in a single nonlinear optical loop mirror,” Opt. Express 26(10), 12698–12706 (2018).
[Crossref] [PubMed]

F. Wen, S. Sygletos, C. P. Tsekrekos, X. Zhou, Y. Geng, B. Wu, K. Qiu, and S. K. Turitsyn, “Multilevel power transfer function characterization of nonlinear optical loop mirror,” in 19th International Conference on Transparent Optical Networks (ICTON) (2017), paper We.D5.3.
[Crossref]

Zhou, X. Y.

IEEE J. Sel. Top. Quantum Electron. (1)

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (5)

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
[Crossref]

G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photonics Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel phase-preserving amplitude regeneration using a single nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

K. Zhou, D. J. Webb, C. Mou, M. Farries, N. Hayes, and I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photonics Technol. Lett. 21(22), 1653–1655 (2009).
[Crossref]

J. Lightwave Technol. (1)

Nat. Commun. (3)

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8(1), 884 (2017).
[Crossref] [PubMed]

M. A. Sorokina and S. K. Turitsyn, “Regeneration limit of classical Shannon capacity,” Nat. Commun. 5(1), 3861 (2014).
[Crossref] [PubMed]

S. L. I. Olsson, H. Eliasson, E. Astra, M. Karlsson, and P. A. Andrekson, “Long-haul optical transmission link using low-noise phase-sensitive amplifiers,” Nat. Commun. 9(1), 2513 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Other (2)

F. Wen, S. Sygletos, C. P. Tsekrekos, X. Zhou, Y. Geng, B. Wu, K. Qiu, and S. K. Turitsyn, “Multilevel power transfer function characterization of nonlinear optical loop mirror,” in 19th International Conference on Transparent Optical Networks (ICTON) (2017), paper We.D5.3.
[Crossref]

Thorlabs, https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9567 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Proposed Conj-NOLM regenerator subsystem.
Fig. 2
Fig. 2 Dependence of the phase change Δφ on the net gain ε and the splitting ratio β1.
Fig. 3
Fig. 3 (a) Phase evolution of the output signals from monitoring points 2-4 with the increase of the input amplitude | E 1 |, and (b) minimum phase change Δφ achieved for different splitting ratios β in the single-NOLM asymmetric scheme.
Fig. 4
Fig. 4 (a) Nonlinear amplitude transfer functions that achieved by the two NOLM units in the Conj-NOLM regenerator and the single-NOLM scheme, (b) normalized amplitude transfer curve of the Conj-NOLM regenerator and the optimized alphabets of 16-QAM signals.
Fig. 5
Fig. 5 Transmission evaluation in the un-regenerative, the mid-span OPC and the Conj-NOLM links.
Fig. 6
Fig. 6 (a) BER evolutions with the cascaded number N for the un-regenerative link, the mid-span OPC link and the Conj-NOLM link; (b) dependence of the reach extension on the ASE noise strength.
Fig. 7
Fig. 7 (a) Amplitude and (b) phase histograms of the un-regenerative, the OPC and the Conj-NOLM cases, and (c) BERs vs. launched optical powers for the bypass, the OPC and the Conj-NOLM cases, and constellations results obtained at 5dBm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 2 = C 1 [ β 1 ¯ exp( i β 1 ¯ θ 1 ) β 1 exp( i β 1 θ 1 ) ] E 1
E 3 = G 1 η E 2 *
E 4 = C 2 G 1 η[ β 1 ¯ exp( i β 1 ¯ θ 1 ) β 1 exp( i β 1 θ 1 ) ][ β 2 ¯ exp( i β 2 ¯ θ 2 ) β 2 exp( i β 2 θ 2 ) ] E 1 *
E 4 I =exp( αL ) G 1 η[ 12β( 1β )cos ϕ 1 ] E 1 *

Metrics