Abstract

Ultrafast laser irradiation on material surface can lead to grating like rearrangements of matter, the laser-induced periodic surface structures (LIPSSs). Among them, high-spatial-frequency laser-induced periodic surface structures (HSFLs) with a periodicity significantly below the wavelength of illuminating light show a great potential in nano-structuring of materials by laser light. Using metallic tungsten as a model material, the interaction between an evolved surface topography with ultrafast laser pulses is investigated. By extensive Finite-Difference Time-Domain (FDTD) simulations including light-matter interactions on the nanoscale and inter-pulse feedback mechanism, we study the effects of initial surface roughness particle size on the topography of the resulting LIPSSs. We show that a reduction in the size of the initial surface roughness particles leads to both enhancement and blueshift of HSFLs periodicity significantly below the diffraction-limit and on the same time, elimination of low-spatial-frequency laser-induced periodic surface structures (LSFLs). The underlying mechanism is attributed to enhanced near-field scattering of the illuminating light associated with reduced roughness particle size. These results indicate a potential control over the topography and periodicity of LIPSSs by preforming nano-scaled surface roughness before laser irradiation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies

Chen Li, Guanghua Cheng, Xxx Sedao, Wei Zhang, Hao Zhang, Nicolas Faure, Damien Jamon, Jean-Philippe Colombier, and Razvan Stoian
Opt. Express 24(11) 11558-11568 (2016)

Pulse-analysis-pulse investigation of femtosecond laser-induced periodic surface structures on silicon in air

J. Vincenc Oboňa, J. Z. P. Skolski, G. R. B. E. Römer, and A. J. Huis in t Veld
Opt. Express 22(8) 9254-9261 (2014)

High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses

Jian-Wu Yao, Cheng-Yun Zhang, Hai-Ying Liu, Qiao-Feng Dai, Li-Jun Wu, Sheng Lan, Achanta Venu Gopal, Vyacheslav A. Trofimov, and Tatiana M. Lysak
Opt. Express 20(2) 905-911 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  2. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
    [Crossref]
  3. F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
    [Crossref]
  4. Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
    [Crossref]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref]
  6. F. Shen, N. An, Y. Tao, H. Zhou, Z. Jiang, and Z. Guo, “Anomalous forward scattering of gain-assisted dielectric shell-coated metallic core spherical particels,” Nanophotonics 6(5), 1063–1072 (2017).
    [Crossref]
  7. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A.Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref]
  8. J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures–a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
    [Crossref]
  9. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycioğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ömer Ilday, “Nonlinear laser lithography for indefinitely largearea nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
    [Crossref]
  10. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure, I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  11. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
    [Crossref]
  12. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on zno,” J. Appl. Phys. 105(3), 034908 (2009).
    [Crossref]
  13. R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
    [Crossref]
  14. E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs-7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007).
    [Crossref]
  15. W. Han, L. Jiang, X. Li, P. Liu, L. Xu, and Y. Lu, “Continuous modulations of femtosecond laserinduced periodic surface structures and scanned line-widths on silicon by polarization changes,” Opt. Express 21(13), 15505–15513 (2013).
    [Crossref]
  16. W. Han, L. Jiang, X. Li, Q. Wang, H. Li, and Y. Lu, “Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay,” Opt. Express 22(13), 15820–15828 (2014).
    [Crossref]
  17. E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
    [Crossref]
  18. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
    [Crossref]
  19. C. Dorronsoro, J. Bonse, and J. Siegel, “Self-assembly of a new type of periodic surface structure in a copolymer by excimer laser irradiation above the ablation threshold,” J. Appl. Phys. 114(15), 153105 (2013).
    [Crossref]
  20. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
    [Crossref]
  21. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a znse crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
    [Crossref]
  22. J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, and A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
    [Crossref]
  23. H. Zhang, J.-P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
    [Crossref]
  24. A. V. Dostovalov, T. J.-Y. Derrien, S. A. Lizunov, F. P. Reučil, K. A. Okotrub, T. s Mocek, V. P. Korolkov, S. A. Babin, and N. M. Bulgakova, “Lipss on thin metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation,” Appl. Surf. Sci. 491, 650–658 (2019).
    [Crossref]
  25. I. Gnilitskyi, T. J.-Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures:physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
    [Crossref]
  26. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197-198, 891–895 (2002).
    [Crossref]
  27. F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub-damage-threshold femtosecond laser ablation from crystalline si: surface nanostructures and phase transformation,” Appl. Phys. A 79(4-6), 1429–1432 (2004).
    [Crossref]
  28. F. Costache, M. Henyk, and J. Reif, “Surface patterning on insulators upon femtosecond laser ablation,” Appl. Surf. Sci. 208-209, 486–491 (2003).
    [Crossref]
  29. J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. D. Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
    [Crossref]
  30. A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
    [Crossref]
  31. A. Rudenko, J.-P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7(1), 12306 (2017).
    [Crossref]
  32. A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, and J.-P. Colombier, “Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi cylindrical and plasmonic waves,” Nanophotonics 8(3), 459–465 (2019).
    [Crossref]
  33. C. Li, G. Cheng, X. Sedao, W. Zhang, H. Zhang, N. Faure, D. Jamon, J.-P. Colombier, and R. Stoian, “Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies,” Opt. Express 24(11), 11558–11568 (2016).
    [Crossref]
  34. A. Aguilar, C. Mauclair, N. Faure, J.-P. Colombier, and R. Stoian, “In-situ high-resolution visualization of laser-induced periodic nanostructures driven by optical feedback,” Sci. Rep. 7(1), 16509 (2017).
    [Crossref]
  35. J. V. Obona, J. Z. P. Skolski, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Pulse-analysis-pulse investigation of femtosecond laser-induced periodic surface structures on silicon in air,” Opt. Express 22(8), 9254–9261 (2014).
    [Crossref]
  36. M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
    [Crossref]
  37. Y. Fuentes-Edfuf, J. A. Sánchez-Gil, C. Florian, V. Giannini, J. Solis, and J. Siegel, “Surface plasmon polaritons on rough metal surfaces: Role in the formation of laser-induced periodic surface structures,” ACS Omega 4(4), 6939–6946 (2019).
    [Crossref]
  38. E. Bevillon, J. P. Colombier, V. Recoules, H. Zhang, C. Li, and R. Stoian, “Ultrafast switching of surface plasmonic conditions in nonplasmonic metals,” Phys. Rev. B 93(16), 165416 (2016).
    [Crossref]
  39. H. Zhang, C. Li, E. Bevillon, G. Cheng, J. P. Colombier, and R. Stoian, “Ultrafast destructuring of laser-irradiated tungsten: Thermal or nonthermal process,” Phys. Rev. B 94(22), 224103 (2016).
    [Crossref]
  40. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007).
    [Crossref]
  41. A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
    [Crossref]
  42. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  43. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
    [Crossref]
  44. H. Cui, P. Liu, and G. W. Yang, “Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced raman scattering,” Appl. Phys. Lett. 89(15), 153124 (2006).
    [Crossref]
  45. J.-C. Orlianges, J. Leroy, A. Crunteanu, R. Mayet, P. Carles, and C. Champeaux, “Electrical and optical properties of vanadium dioxide containing gold nanoparticles deposited by pulsed laser deposition,” Appl. Phys. Lett. 101(13), 133102 (2012).
    [Crossref]

2019 (3)

A. V. Dostovalov, T. J.-Y. Derrien, S. A. Lizunov, F. P. Reučil, K. A. Okotrub, T. s Mocek, V. P. Korolkov, S. A. Babin, and N. M. Bulgakova, “Lipss on thin metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation,” Appl. Surf. Sci. 491, 650–658 (2019).
[Crossref]

A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, and J.-P. Colombier, “Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi cylindrical and plasmonic waves,” Nanophotonics 8(3), 459–465 (2019).
[Crossref]

Y. Fuentes-Edfuf, J. A. Sánchez-Gil, C. Florian, V. Giannini, J. Solis, and J. Siegel, “Surface plasmon polaritons on rough metal surfaces: Role in the formation of laser-induced periodic surface structures,” ACS Omega 4(4), 6939–6946 (2019).
[Crossref]

2017 (5)

A. Aguilar, C. Mauclair, N. Faure, J.-P. Colombier, and R. Stoian, “In-situ high-resolution visualization of laser-induced periodic nanostructures driven by optical feedback,” Sci. Rep. 7(1), 16509 (2017).
[Crossref]

A. Rudenko, J.-P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7(1), 12306 (2017).
[Crossref]

I. Gnilitskyi, T. J.-Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures:physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures–a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

F. Shen, N. An, Y. Tao, H. Zhou, Z. Jiang, and Z. Guo, “Anomalous forward scattering of gain-assisted dielectric shell-coated metallic core spherical particels,” Nanophotonics 6(5), 1063–1072 (2017).
[Crossref]

2016 (5)

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

C. Li, G. Cheng, X. Sedao, W. Zhang, H. Zhang, N. Faure, D. Jamon, J.-P. Colombier, and R. Stoian, “Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies,” Opt. Express 24(11), 11558–11568 (2016).
[Crossref]

E. Bevillon, J. P. Colombier, V. Recoules, H. Zhang, C. Li, and R. Stoian, “Ultrafast switching of surface plasmonic conditions in nonplasmonic metals,” Phys. Rev. B 93(16), 165416 (2016).
[Crossref]

H. Zhang, C. Li, E. Bevillon, G. Cheng, J. P. Colombier, and R. Stoian, “Ultrafast destructuring of laser-irradiated tungsten: Thermal or nonthermal process,” Phys. Rev. B 94(22), 224103 (2016).
[Crossref]

M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

2015 (1)

H. Zhang, J.-P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

2014 (4)

J. V. Obona, J. Z. P. Skolski, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Pulse-analysis-pulse investigation of femtosecond laser-induced periodic surface structures on silicon in air,” Opt. Express 22(8), 9254–9261 (2014).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, and A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

W. Han, L. Jiang, X. Li, Q. Wang, H. Li, and Y. Lu, “Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay,” Opt. Express 22(13), 15820–15828 (2014).
[Crossref]

2013 (3)

W. Han, L. Jiang, X. Li, P. Liu, L. Xu, and Y. Lu, “Continuous modulations of femtosecond laserinduced periodic surface structures and scanned line-widths on silicon by polarization changes,” Opt. Express 21(13), 15505–15513 (2013).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycioğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ömer Ilday, “Nonlinear laser lithography for indefinitely largearea nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

C. Dorronsoro, J. Bonse, and J. Siegel, “Self-assembly of a new type of periodic surface structure in a copolymer by excimer laser irradiation above the ablation threshold,” J. Appl. Phys. 114(15), 153105 (2013).
[Crossref]

2012 (3)

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. D. Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[Crossref]

J.-C. Orlianges, J. Leroy, A. Crunteanu, R. Mayet, P. Carles, and C. Champeaux, “Electrical and optical properties of vanadium dioxide containing gold nanoparticles deposited by pulsed laser deposition,” Appl. Phys. Lett. 101(13), 133102 (2012).
[Crossref]

2010 (1)

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref]

2009 (2)

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on zno,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A.Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

2008 (3)

E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
[Crossref]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

2007 (2)

Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007).
[Crossref]

E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs-7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007).
[Crossref]

2006 (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

H. Cui, P. Liu, and G. W. Yang, “Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced raman scattering,” Appl. Phys. Lett. 89(15), 153124 (2006).
[Crossref]

2005 (2)

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a znse crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

2004 (2)

F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub-damage-threshold femtosecond laser ablation from crystalline si: surface nanostructures and phase transformation,” Appl. Phys. A 79(4-6), 1429–1432 (2004).
[Crossref]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

2003 (2)

F. Costache, M. Henyk, and J. Reif, “Surface patterning on insulators upon femtosecond laser ablation,” Appl. Surf. Sci. 208-209, 486–491 (2003).
[Crossref]

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

2002 (1)

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197-198, 891–895 (2002).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure, I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

A.Wurtz, G.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A.Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Aguilar, A.

A. Aguilar, C. Mauclair, N. Faure, J.-P. Colombier, and R. Stoian, “In-situ high-resolution visualization of laser-induced periodic nanostructures driven by optical feedback,” Sci. Rep. 7(1), 16509 (2017).
[Crossref]

Amoruso, S.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

An, N.

F. Shen, N. An, Y. Tao, H. Zhou, Z. Jiang, and Z. Guo, “Anomalous forward scattering of gain-assisted dielectric shell-coated metallic core spherical particels,” Nanophotonics 6(5), 1063–1072 (2017).
[Crossref]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A.Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Ausanio, G.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Babin, S. A.

A. V. Dostovalov, T. J.-Y. Derrien, S. A. Lizunov, F. P. Reučil, K. A. Okotrub, T. s Mocek, V. P. Korolkov, S. A. Babin, and N. M. Bulgakova, “Lipss on thin metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation,” Appl. Surf. Sci. 491, 650–658 (2019).
[Crossref]

Bevillon, E.

H. Zhang, C. Li, E. Bevillon, G. Cheng, J. P. Colombier, and R. Stoian, “Ultrafast destructuring of laser-irradiated tungsten: Thermal or nonthermal process,” Phys. Rev. B 94(22), 224103 (2016).
[Crossref]

E. Bevillon, J. P. Colombier, V. Recoules, H. Zhang, C. Li, and R. Stoian, “Ultrafast switching of surface plasmonic conditions in nonplasmonic metals,” Phys. Rev. B 93(16), 165416 (2016).
[Crossref]

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

Bonse, J.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures–a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

A. Rudenko, J.-P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7(1), 12306 (2017).
[Crossref]

C. Dorronsoro, J. Bonse, and J. Siegel, “Self-assembly of a new type of periodic surface structure in a copolymer by excimer laser irradiation above the ablation threshold,” J. Appl. Phys. 114(15), 153105 (2013).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on zno,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Botton, G. A.

E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
[Crossref]

Bruzzese, R.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Buividas, R.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Bulgakova, N. M.

A. V. Dostovalov, T. J.-Y. Derrien, S. A. Lizunov, F. P. Reučil, K. A. Okotrub, T. s Mocek, V. P. Korolkov, S. A. Babin, and N. M. Bulgakova, “Lipss on thin metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation,” Appl. Surf. Sci. 491, 650–658 (2019).
[Crossref]

I. Gnilitskyi, T. J.-Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures:physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

Carles, P.

J.-C. Orlianges, J. Leroy, A. Crunteanu, R. Mayet, P. Carles, and C. Champeaux, “Electrical and optical properties of vanadium dioxide containing gold nanoparticles deposited by pulsed laser deposition,” Appl. Phys. Lett. 101(13), 133102 (2012).
[Crossref]

Champeaux, C.

J.-C. Orlianges, J. Leroy, A. Crunteanu, R. Mayet, P. Carles, and C. Champeaux, “Electrical and optical properties of vanadium dioxide containing gold nanoparticles deposited by pulsed laser deposition,” Appl. Phys. Lett. 101(13), 133102 (2012).
[Crossref]

Chen, H. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a znse crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Chen, X.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Cheng, G.

H. Zhang, C. Li, E. Bevillon, G. Cheng, J. P. Colombier, and R. Stoian, “Ultrafast destructuring of laser-irradiated tungsten: Thermal or nonthermal process,” Phys. Rev. B 94(22), 224103 (2016).
[Crossref]

C. Li, G. Cheng, X. Sedao, W. Zhang, H. Zhang, N. Faure, D. Jamon, J.-P. Colombier, and R. Stoian, “Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies,” Opt. Express 24(11), 11558–11568 (2016).
[Crossref]

H. Zhang, J.-P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

Colombier, J. P.

H. Zhang, C. Li, E. Bevillon, G. Cheng, J. P. Colombier, and R. Stoian, “Ultrafast destructuring of laser-irradiated tungsten: Thermal or nonthermal process,” Phys. Rev. B 94(22), 224103 (2016).
[Crossref]

E. Bevillon, J. P. Colombier, V. Recoules, H. Zhang, C. Li, and R. Stoian, “Ultrafast switching of surface plasmonic conditions in nonplasmonic metals,” Phys. Rev. B 93(16), 165416 (2016).
[Crossref]

Colombier, J.-P.

A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, and J.-P. Colombier, “Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi cylindrical and plasmonic waves,” Nanophotonics 8(3), 459–465 (2019).
[Crossref]

A. Rudenko, J.-P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7(1), 12306 (2017).
[Crossref]

A. Aguilar, C. Mauclair, N. Faure, J.-P. Colombier, and R. Stoian, “In-situ high-resolution visualization of laser-induced periodic nanostructures driven by optical feedback,” Sci. Rep. 7(1), 16509 (2017).
[Crossref]

C. Li, G. Cheng, X. Sedao, W. Zhang, H. Zhang, N. Faure, D. Jamon, J.-P. Colombier, and R. Stoian, “Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies,” Opt. Express 24(11), 11558–11568 (2016).
[Crossref]

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

H. Zhang, J.-P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

Costache, F.

F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub-damage-threshold femtosecond laser ablation from crystalline si: surface nanostructures and phase transformation,” Appl. Phys. A 79(4-6), 1429–1432 (2004).
[Crossref]

F. Costache, M. Henyk, and J. Reif, “Surface patterning on insulators upon femtosecond laser ablation,” Appl. Surf. Sci. 208-209, 486–491 (2003).
[Crossref]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197-198, 891–895 (2002).
[Crossref]

Crawford, T. H. R.

E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
[Crossref]

E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs-7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007).
[Crossref]

Crunteanu, A.

J.-C. Orlianges, J. Leroy, A. Crunteanu, R. Mayet, P. Carles, and C. Champeaux, “Electrical and optical properties of vanadium dioxide containing gold nanoparticles deposited by pulsed laser deposition,” Appl. Phys. Lett. 101(13), 133102 (2012).
[Crossref]

Cui, H.

H. Cui, P. Liu, and G. W. Yang, “Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced raman scattering,” Appl. Phys. Lett. 89(15), 153124 (2006).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Das, S. K.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on zno,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Derrien, T. J.-Y.

A. V. Dostovalov, T. J.-Y. Derrien, S. A. Lizunov, F. P. Reučil, K. A. Okotrub, T. s Mocek, V. P. Korolkov, S. A. Babin, and N. M. Bulgakova, “Lipss on thin metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation,” Appl. Surf. Sci. 491, 650–658 (2019).
[Crossref]

I. Gnilitskyi, T. J.-Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures:physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

Dorronsoro, C.

C. Dorronsoro, J. Bonse, and J. Siegel, “Self-assembly of a new type of periodic surface structure in a copolymer by excimer laser irradiation above the ablation threshold,” J. Appl. Phys. 114(15), 153105 (2013).
[Crossref]

Dostovalov, A. V.

A. V. Dostovalov, T. J.-Y. Derrien, S. A. Lizunov, F. P. Reučil, K. A. Okotrub, T. s Mocek, V. P. Korolkov, S. A. Babin, and N. M. Bulgakova, “Lipss on thin metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation,” Appl. Surf. Sci. 491, 650–658 (2019).
[Crossref]

Dufft, D.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on zno,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Ebbesen, T. W.

T. W. Ebbesen, H. J. lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Erdogan, M.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycioğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ömer Ilday, “Nonlinear laser lithography for indefinitely largearea nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A.Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Fan, S.

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref]

Fang, R.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Faure, N.

A. Aguilar, C. Mauclair, N. Faure, J.-P. Colombier, and R. Stoian, “In-situ high-resolution visualization of laser-induced periodic nanostructures driven by optical feedback,” Sci. Rep. 7(1), 16509 (2017).
[Crossref]

C. Li, G. Cheng, X. Sedao, W. Zhang, H. Zhang, N. Faure, D. Jamon, J.-P. Colombier, and R. Stoian, “Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies,” Opt. Express 24(11), 11558–11568 (2016).
[Crossref]

H. Zhang, J.-P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

Florian, C.

Y. Fuentes-Edfuf, J. A. Sánchez-Gil, C. Florian, V. Giannini, J. Solis, and J. Siegel, “Surface plasmon polaritons on rough metal surfaces: Role in the formation of laser-induced periodic surface structures,” ACS Omega 4(4), 6939–6946 (2019).
[Crossref]

Fuentes-Edfuf, Y.

Y. Fuentes-Edfuf, J. A. Sánchez-Gil, C. Florian, V. Giannini, J. Solis, and J. Siegel, “Surface plasmon polaritons on rough metal surfaces: Role in the formation of laser-induced periodic surface structures,” ACS Omega 4(4), 6939–6946 (2019).
[Crossref]

M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Garcia-Lechuga, M.

M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Garrelie, F.

A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, and J.-P. Colombier, “Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi cylindrical and plasmonic waves,” Nanophotonics 8(3), 459–465 (2019).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Giannini, V.

Y. Fuentes-Edfuf, J. A. Sánchez-Gil, C. Florian, V. Giannini, J. Solis, and J. Siegel, “Surface plasmon polaritons on rough metal surfaces: Role in the formation of laser-induced periodic surface structures,” ACS Omega 4(4), 6939–6946 (2019).
[Crossref]

Gnilitskyi, I.

I. Gnilitskyi, T. J.-Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures:physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

Grunwald, R.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on zno,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Guo, C.

A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

Guo, Z.

F. Shen, N. An, Y. Tao, H. Zhou, Z. Jiang, and Z. Guo, “Anomalous forward scattering of gain-assisted dielectric shell-coated metallic core spherical particels,” Nanophotonics 6(5), 1063–1072 (2017).
[Crossref]

Han, W.

Haugen, H. K.

E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
[Crossref]

E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs-7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007).
[Crossref]

He, X. K.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a znse crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A.Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Henyk, M.

F. Costache, M. Henyk, and J. Reif, “Surface patterning on insulators upon femtosecond laser ablation,” Appl. Surf. Sci. 208-209, 486–491 (2003).
[Crossref]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197-198, 891–895 (2002).
[Crossref]

Höhm, S.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures–a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

A. Rudenko, J.-P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7(1), 12306 (2017).
[Crossref]

Hosson, J. T. M. D.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. D. Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Hsu, E. M.

E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
[Crossref]

E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs-7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007).
[Crossref]

Huang, M.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a znse crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Huis in ’t Veld, A. J.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, and A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

J. V. Obona, J. Z. P. Skolski, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Pulse-analysis-pulse investigation of femtosecond laser-induced periodic surface structures on silicon in air,” Opt. Express 22(8), 9254–9261 (2014).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. D. Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Iannotti, V.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Ilday, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycioğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ömer Ilday, “Nonlinear laser lithography for indefinitely largearea nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Itina, T. E.

A. Rudenko, J.-P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7(1), 12306 (2017).
[Crossref]

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

Jamon, D.

Jia, T. Q.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a znse crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Jiang, L.

Jiang, Z.

F. Shen, N. An, Y. Tao, H. Zhou, Z. Jiang, and Z. Guo, “Anomalous forward scattering of gain-assisted dielectric shell-coated metallic core spherical particels,” Nanophotonics 6(5), 1063–1072 (2017).
[Crossref]

Juodkazis, S.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A.Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Kalaycioglu, H.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycioğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ömer Ilday, “Nonlinear laser lithography for indefinitely largearea nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Kirner, S. V.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures–a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

Korolkov, V. P.

A. V. Dostovalov, T. J.-Y. Derrien, S. A. Lizunov, F. P. Reučil, K. A. Okotrub, T. s Mocek, V. P. Korolkov, S. A. Babin, and N. M. Bulgakova, “Lipss on thin metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation,” Appl. Surf. Sci. 491, 650–658 (2019).
[Crossref]

Kouteva-Arguirova, S.

F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub-damage-threshold femtosecond laser ablation from crystalline si: surface nanostructures and phase transformation,” Appl. Phys. A 79(4-6), 1429–1432 (2004).
[Crossref]

Kruger, J.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures–a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

Krüger, J.

A. Rudenko, J.-P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7(1), 12306 (2017).
[Crossref]

Kuroda, H.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a znse crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Lalanne, P.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[Crossref]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref]

Lanotte, L.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Leroy, J.

J.-C. Orlianges, J. Leroy, A. Crunteanu, R. Mayet, P. Carles, and C. Champeaux, “Electrical and optical properties of vanadium dioxide containing gold nanoparticles deposited by pulsed laser deposition,” Appl. Phys. Lett. 101(13), 133102 (2012).
[Crossref]

Levy, Y.

I. Gnilitskyi, T. J.-Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures:physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

lezec, H. J.

T. W. Ebbesen, H. J. lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, C.

C. Li, G. Cheng, X. Sedao, W. Zhang, H. Zhang, N. Faure, D. Jamon, J.-P. Colombier, and R. Stoian, “Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies,” Opt. Express 24(11), 11558–11568 (2016).
[Crossref]

E. Bevillon, J. P. Colombier, V. Recoules, H. Zhang, C. Li, and R. Stoian, “Ultrafast switching of surface plasmonic conditions in nonplasmonic metals,” Phys. Rev. B 93(16), 165416 (2016).
[Crossref]

H. Zhang, C. Li, E. Bevillon, G. Cheng, J. P. Colombier, and R. Stoian, “Ultrafast destructuring of laser-irradiated tungsten: Thermal or nonthermal process,” Phys. Rev. B 94(22), 224103 (2016).
[Crossref]

H. Zhang, J.-P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

Li, H.

Li, R. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a znse crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Li, X.

Liao, Y.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Liu, H.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[Crossref]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref]

Liu, P.

W. Han, L. Jiang, X. Li, P. Liu, L. Xu, and Y. Lu, “Continuous modulations of femtosecond laserinduced periodic surface structures and scanned line-widths on silicon by polarization changes,” Opt. Express 21(13), 15505–15513 (2013).
[Crossref]

H. Cui, P. Liu, and G. W. Yang, “Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced raman scattering,” Appl. Phys. Lett. 89(15), 153124 (2006).
[Crossref]

Lizunov, S. A.

A. V. Dostovalov, T. J.-Y. Derrien, S. A. Lizunov, F. P. Reučil, K. A. Okotrub, T. s Mocek, V. P. Korolkov, S. A. Babin, and N. M. Bulgakova, “Lipss on thin metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation,” Appl. Surf. Sci. 491, 650–658 (2019).
[Crossref]

Lu, Y.

Ma, Y.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Malzer, S.

Mauclair, C.

A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, and J.-P. Colombier, “Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi cylindrical and plasmonic waves,” Nanophotonics 8(3), 459–465 (2019).
[Crossref]

A. Aguilar, C. Mauclair, N. Faure, J.-P. Colombier, and R. Stoian, “In-situ high-resolution visualization of laser-induced periodic nanostructures driven by optical feedback,” Sci. Rep. 7(1), 16509 (2017).
[Crossref]

Maunders, C.

E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
[Crossref]

Mayet, R.

J.-C. Orlianges, J. Leroy, A. Crunteanu, R. Mayet, P. Carles, and C. Champeaux, “Electrical and optical properties of vanadium dioxide containing gold nanoparticles deposited by pulsed laser deposition,” Appl. Phys. Lett. 101(13), 133102 (2012).
[Crossref]

Mikutis, M.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Mocek, T.

I. Gnilitskyi, T. J.-Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures:physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Munz, M.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Obona, J. V.

J. V. Obona, J. Z. P. Skolski, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Pulse-analysis-pulse investigation of femtosecond laser-induced periodic surface structures on silicon in air,” Opt. Express 22(8), 9254–9261 (2014).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, and A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. D. Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Ocelik, V.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. D. Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Okotrub, K. A.

A. V. Dostovalov, T. J.-Y. Derrien, S. A. Lizunov, F. P. Reučil, K. A. Okotrub, T. s Mocek, V. P. Korolkov, S. A. Babin, and N. M. Bulgakova, “Lipss on thin metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation,” Appl. Surf. Sci. 491, 650–658 (2019).
[Crossref]

Öktem, B.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycioğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ömer Ilday, “Nonlinear laser lithography for indefinitely largearea nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Ömer Ilday, F.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycioğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ömer Ilday, “Nonlinear laser lithography for indefinitely largearea nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Orazi, L.

I. Gnilitskyi, T. J.-Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures:physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

Orlianges, J.-C.

J.-C. Orlianges, J. Leroy, A. Crunteanu, R. Mayet, P. Carles, and C. Champeaux, “Electrical and optical properties of vanadium dioxide containing gold nanoparticles deposited by pulsed laser deposition,” Appl. Phys. Lett. 101(13), 133102 (2012).
[Crossref]

Pandelov, S. V.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197-198, 891–895 (2002).
[Crossref]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A.Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Pavlov, I.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycioğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ömer Ilday, “Nonlinear laser lithography for indefinitely largearea nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A.Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A.Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure, I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Puerto, D.

M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Qiu, J. R.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a znse crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Recoules, V.

E. Bevillon, J. P. Colombier, V. Recoules, H. Zhang, C. Li, and R. Stoian, “Ultrafast switching of surface plasmonic conditions in nonplasmonic metals,” Phys. Rev. B 93(16), 165416 (2016).
[Crossref]

Reif, J.

F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub-damage-threshold femtosecond laser ablation from crystalline si: surface nanostructures and phase transformation,” Appl. Phys. A 79(4-6), 1429–1432 (2004).
[Crossref]

F. Costache, M. Henyk, and J. Reif, “Surface patterning on insulators upon femtosecond laser ablation,” Appl. Surf. Sci. 208-209, 486–491 (2003).
[Crossref]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197-198, 891–895 (2002).
[Crossref]

Rétif, C.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[Crossref]

Reucil, F. P.

A. V. Dostovalov, T. J.-Y. Derrien, S. A. Lizunov, F. P. Reučil, K. A. Okotrub, T. s Mocek, V. P. Korolkov, S. A. Babin, and N. M. Bulgakova, “Lipss on thin metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation,” Appl. Surf. Sci. 491, 650–658 (2019).
[Crossref]

Römer, G. R. B. E.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, and A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

J. V. Obona, J. Z. P. Skolski, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Pulse-analysis-pulse investigation of femtosecond laser-induced periodic surface structures on silicon in air,” Opt. Express 22(8), 9254–9261 (2014).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. D. Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Rosenfeld, A.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures–a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

A. Rudenko, J.-P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7(1), 12306 (2017).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on zno,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Ruan, Z.

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref]

Rudenko, A.

A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, and J.-P. Colombier, “Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi cylindrical and plasmonic waves,” Nanophotonics 8(3), 459–465 (2019).
[Crossref]

A. Rudenko, J.-P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7(1), 12306 (2017).
[Crossref]

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

Rybak, A.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycioğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ömer Ilday, “Nonlinear laser lithography for indefinitely largearea nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

s Mocek, T.

A. V. Dostovalov, T. J.-Y. Derrien, S. A. Lizunov, F. P. Reučil, K. A. Okotrub, T. s Mocek, V. P. Korolkov, S. A. Babin, and N. M. Bulgakova, “Lipss on thin metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation,” Appl. Surf. Sci. 491, 650–658 (2019).
[Crossref]

Sánchez-Gil, J. A.

Y. Fuentes-Edfuf, J. A. Sánchez-Gil, C. Florian, V. Giannini, J. Solis, and J. Siegel, “Surface plasmon polaritons on rough metal surfaces: Role in the formation of laser-induced periodic surface structures,” ACS Omega 4(4), 6939–6946 (2019).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Sedao, X.

Shen, F.

F. Shen, N. An, Y. Tao, H. Zhou, Z. Jiang, and Z. Guo, “Anomalous forward scattering of gain-assisted dielectric shell-coated metallic core spherical particels,” Nanophotonics 6(5), 1063–1072 (2017).
[Crossref]

Siegel, J.

Y. Fuentes-Edfuf, J. A. Sánchez-Gil, C. Florian, V. Giannini, J. Solis, and J. Siegel, “Surface plasmon polaritons on rough metal surfaces: Role in the formation of laser-induced periodic surface structures,” ACS Omega 4(4), 6939–6946 (2019).
[Crossref]

M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

C. Dorronsoro, J. Bonse, and J. Siegel, “Self-assembly of a new type of periodic surface structure in a copolymer by excimer laser irradiation above the ablation threshold,” J. Appl. Phys. 114(15), 153105 (2013).
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure, I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Skolski, J. Z. P.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, and A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

J. V. Obona, J. Z. P. Skolski, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Pulse-analysis-pulse investigation of femtosecond laser-induced periodic surface structures on silicon in air,” Opt. Express 22(8), 9254–9261 (2014).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. D. Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Smiet, C. B.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[Crossref]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Solis, J.

Y. Fuentes-Edfuf, J. A. Sánchez-Gil, C. Florian, V. Giannini, J. Solis, and J. Siegel, “Surface plasmon polaritons on rough metal surfaces: Role in the formation of laser-induced periodic surface structures,” ACS Omega 4(4), 6939–6946 (2019).
[Crossref]

M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Spinelli, N.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Stoian, R.

A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, and J.-P. Colombier, “Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi cylindrical and plasmonic waves,” Nanophotonics 8(3), 459–465 (2019).
[Crossref]

A. Aguilar, C. Mauclair, N. Faure, J.-P. Colombier, and R. Stoian, “In-situ high-resolution visualization of laser-induced periodic nanostructures driven by optical feedback,” Sci. Rep. 7(1), 16509 (2017).
[Crossref]

C. Li, G. Cheng, X. Sedao, W. Zhang, H. Zhang, N. Faure, D. Jamon, J.-P. Colombier, and R. Stoian, “Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies,” Opt. Express 24(11), 11558–11568 (2016).
[Crossref]

H. Zhang, C. Li, E. Bevillon, G. Cheng, J. P. Colombier, and R. Stoian, “Ultrafast destructuring of laser-irradiated tungsten: Thermal or nonthermal process,” Phys. Rev. B 94(22), 224103 (2016).
[Crossref]

E. Bevillon, J. P. Colombier, V. Recoules, H. Zhang, C. Li, and R. Stoian, “Ultrafast switching of surface plasmonic conditions in nonplasmonic metals,” Phys. Rev. B 93(16), 165416 (2016).
[Crossref]

H. Zhang, J.-P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

Sturm, H.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Tao, Y.

F. Shen, N. An, Y. Tao, H. Zhou, Z. Jiang, and Z. Guo, “Anomalous forward scattering of gain-assisted dielectric shell-coated metallic core spherical particels,” Nanophotonics 6(5), 1063–1072 (2017).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tiedje, H. F.

E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs-7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007).
[Crossref]

van Beijnum, F.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[Crossref]

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure, I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

van Exter, M. P.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[Crossref]

Velotta, R.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Vitiello, M.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

Wang, K.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Wang, L. J.

Wang, Q.

Wang, X.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wu, Q.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Xu, L.

Xu, Z. Z.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a znse crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Yang, G. W.

H. Cui, P. Liu, and G. W. Yang, “Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced raman scattering,” Appl. Phys. Lett. 89(15), 153124 (2006).
[Crossref]

Yavas, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycioğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ömer Ilday, “Nonlinear laser lithography for indefinitely largearea nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure, I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Yu, Q.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A.Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Zhang, H.

H. Zhang, C. Li, E. Bevillon, G. Cheng, J. P. Colombier, and R. Stoian, “Ultrafast destructuring of laser-irradiated tungsten: Thermal or nonthermal process,” Phys. Rev. B 94(22), 224103 (2016).
[Crossref]

E. Bevillon, J. P. Colombier, V. Recoules, H. Zhang, C. Li, and R. Stoian, “Ultrafast switching of surface plasmonic conditions in nonplasmonic metals,” Phys. Rev. B 93(16), 165416 (2016).
[Crossref]

C. Li, G. Cheng, X. Sedao, W. Zhang, H. Zhang, N. Faure, D. Jamon, J.-P. Colombier, and R. Stoian, “Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies,” Opt. Express 24(11), 11558–11568 (2016).
[Crossref]

H. Zhang, J.-P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

Zhang, J.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a znse crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zhang, W.

Zhao, F. L.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a znse crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zhao, Q. Z.

Zhou, H.

F. Shen, N. An, Y. Tao, H. Zhou, Z. Jiang, and Z. Guo, “Anomalous forward scattering of gain-assisted dielectric shell-coated metallic core spherical particels,” Nanophotonics 6(5), 1063–1072 (2017).
[Crossref]

ACS Omega (1)

Y. Fuentes-Edfuf, J. A. Sánchez-Gil, C. Florian, V. Giannini, J. Solis, and J. Siegel, “Surface plasmon polaritons on rough metal surfaces: Role in the formation of laser-induced periodic surface structures,” ACS Omega 4(4), 6939–6946 (2019).
[Crossref]

ACS Photonics (1)

M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Appl. Phys. A (1)

F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub-damage-threshold femtosecond laser ablation from crystalline si: surface nanostructures and phase transformation,” Appl. Phys. A 79(4-6), 1429–1432 (2004).
[Crossref]

Appl. Phys. Lett. (6)

E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs-7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007).
[Crossref]

E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
[Crossref]

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

H. Cui, P. Liu, and G. W. Yang, “Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced raman scattering,” Appl. Phys. Lett. 89(15), 153124 (2006).
[Crossref]

J.-C. Orlianges, J. Leroy, A. Crunteanu, R. Mayet, P. Carles, and C. Champeaux, “Electrical and optical properties of vanadium dioxide containing gold nanoparticles deposited by pulsed laser deposition,” Appl. Phys. Lett. 101(13), 133102 (2012).
[Crossref]

Appl. Surf. Sci. (3)

F. Costache, M. Henyk, and J. Reif, “Surface patterning on insulators upon femtosecond laser ablation,” Appl. Surf. Sci. 208-209, 486–491 (2003).
[Crossref]

A. V. Dostovalov, T. J.-Y. Derrien, S. A. Lizunov, F. P. Reučil, K. A. Okotrub, T. s Mocek, V. P. Korolkov, S. A. Babin, and N. M. Bulgakova, “Lipss on thin metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation,” Appl. Surf. Sci. 491, 650–658 (2019).
[Crossref]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197-198, 891–895 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures–a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

J. Appl. Phys. (6)

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

C. Dorronsoro, J. Bonse, and J. Siegel, “Self-assembly of a new type of periodic surface structure in a copolymer by excimer laser irradiation above the ablation threshold,” J. Appl. Phys. 114(15), 153105 (2013).
[Crossref]

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on zno,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, and A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

Nanophotonics (2)

A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, and J.-P. Colombier, “Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi cylindrical and plasmonic waves,” Nanophotonics 8(3), 459–465 (2019).
[Crossref]

F. Shen, N. An, Y. Tao, H. Zhou, Z. Jiang, and Z. Guo, “Anomalous forward scattering of gain-assisted dielectric shell-coated metallic core spherical particels,” Nanophotonics 6(5), 1063–1072 (2017).
[Crossref]

Nat. Mater. (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A.Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Nat. Photonics (1)

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycioğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ömer Ilday, “Nonlinear laser lithography for indefinitely largearea nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Nature (3)

T. W. Ebbesen, H. J. lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref]

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (7)

E. Bevillon, J. P. Colombier, V. Recoules, H. Zhang, C. Li, and R. Stoian, “Ultrafast switching of surface plasmonic conditions in nonplasmonic metals,” Phys. Rev. B 93(16), 165416 (2016).
[Crossref]

H. Zhang, C. Li, E. Bevillon, G. Cheng, J. P. Colombier, and R. Stoian, “Ultrafast destructuring of laser-irradiated tungsten: Thermal or nonthermal process,” Phys. Rev. B 94(22), 224103 (2016).
[Crossref]

H. Zhang, J.-P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. D. Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a znse crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure, I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Phys. Rev. Lett. (1)

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref]

Prog. Quantum Electron. (1)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Sci. Rep. (3)

A. Rudenko, J.-P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7(1), 12306 (2017).
[Crossref]

I. Gnilitskyi, T. J.-Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures:physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

A. Aguilar, C. Mauclair, N. Faure, J.-P. Colombier, and R. Stoian, “In-situ high-resolution visualization of laser-induced periodic nanostructures driven by optical feedback,” Sci. Rep. 7(1), 16509 (2017).
[Crossref]

Science (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Other (1)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. A schematic of the model. A ultrafast laser pulse polarized along z-direction impinges on the sample with nano-scaled surface roughness. The absorbed photon energy density inside the sample is calculated by numerically solving the full set of Maxwell’s equations in 3D. The topography of the illuminated area is then updated according to this photon energy density and the ablation criterion. This new topography is subsequently used for the simulation of the next pulse and the cycle repeats until the last pulse. The definition of the axes is used throughout the paper.
Fig. 2.
Fig. 2. Surface topographies (a) after the irradiation of N consecutive pulses calculated from FDTD-feedback simulations, which shows the development of both LSFLs and HSFLs. Note that only a portion ($1.75\,{\mu} {\textrm {m}}\times 3\,{\mu} {\textrm {m}}$) of the simulated $7\,{\mu} {\textrm {m}}\times 15\,{\mu} {\textrm {m}}$ surface area is shown for a better visibility. The N=0 image in (a) shows the initial surface topography with randomly generated nano-particles before irradiation. The dimension $(d_x,d_y,d_z)$ of all the nano-particles is $(10,75,75)\,{\textrm {nm}}$. The double arrow in blue indicates the polarization of the laser pulse. Two-dimension (2D) Fourier transform amplitudes of the surface topographies are shown in (b). Their signatures in the frequency domain are identified as type-s and type-r features as illustrated in the N=8 and N=10 images. The spatial frequency $k_z$ and $k_y$ are normalized by $k_0$, the wavenumber of 800 nm light in vacuum. In the topography plot, darker color represents locally higher area, while whiter color represents lower area. In the FFT plot, the Fourier amplitudes are normalized by their corresponding maximum values. Brighter content refers to higher Fourier transform amplitude. The refractive index used in the simulation is $-10.46+16.38i$, representing tungsten with a high electronic temperature.
Fig. 3.
Fig. 3. Calculated surface topographies ((a), (b)) and their Fourier transform amplitudes ((c), (d)) after the irradiation of N consecutive pulses, for small initial roughness particles ((a), (c)) with $(d_x,d_y,d_z)=(10,15,15)\,{\textrm {nm}}$ and large initial roughness particles ((b), (d)) with $(d_x,d_y,d_z)=(10,150,150)\,{\textrm {nm}}$. Note that in (a) and (b) only a portion ($1.75\,{\mu} {\textrm {m}}\times 3\,{\mu} {\textrm {m}}$) of the simulated $7\,{\mu} {\textrm {m}}\times 15\,{\mu} {\textrm {m}}$ surface area is shown for a better visibility of HSFLs.
Fig. 4.
Fig. 4. Cross sections (along $k_y=0$) of the Fourier transform amplitudes of the surface topographies simulated with different initial roughness particle size: (a) $(10,15,15)\,{\textrm {nm}}$, (b) $(10,30,30)\,{\textrm {nm}}$, (c) $(10,60,60)\,{\textrm {nm}}$, (d) $(10,105,105)\,{\textrm {nm}}$ as a function of irradiated number of pulses $N$. (a) and (b) show the feedback paths towards HSFLs, (c) shows the feedback path towards a coexistence of HSFLs and LSFLs, and (d) shows the feedback path towards LSFLs.
Fig. 5.
Fig. 5. (a) Surface topographies and (b) their Fourier transform amplitudes after $N=10$ consecutive pulses, simulated with initial roughness particles of various sizes of $(d_x,d_y,d_z)=(10,d,d)\,{\textrm {nm}}$, where the values of $d$ are labeled on each sub-figures. Cross sections of (b) along $k_y=0$ are shown in (c).
Fig. 6.
Fig. 6. The logarithm of normalized amplitude (a) and phase (b) of the scattered field ($E_{zs}$) on metal surface by a single square-shaped nano-particle of size ${\textrm 10}\,{\textrm{nm}}\times 135\,{\textrm{nm}}\times 135\,{\textrm{nm}}$. The squares in the middle illustrate the position and shape of the nano-particle. Cross sections along $y=0$ of (a) and (b) are shown in (c) and (d), respectively. Cross sections of the scattered field amplitude by particles of different sizes ${\textrm 10}\,{\textrm{nm}}\times {\textrm{d}}\times {\textrm{d}}$ are also shown in (c). The red lines in the cross section plots indicate the near-field region while the black lines indicate the far-field region.

Metrics