Abstract

We report a different mechanism for rotation sensing by analyzing the polarization of light exiting from a Sagnac loop. Unlike in an interferometric fiber optic gyroscope (I-FOG), here the counter-propagating waves in the Sagnac loop are orthogonally polarized at the loop exit and, consequently, cannot directly interfere with each other when recombined at the exit. We show that the Stokes parameters s2 and s3 of the combined waves are simply the cosine and sine functions of the phase difference between the counter propagation waves, which is linearly proportional to the rotation rate, allowing precise determination of the rotation rate by polarization analysis. We build such a proof-of-concept polarimetry FOG and achieved key performance parameters comparable to those of a high-end tactical-grade gyroscope. In particular, the device shows a bias instability of 0.09°/h and an angular random walk of 0.0015°/h, with an unlimited dynamic range, demonstrating its potential use for rotation sensing. This new approach eliminates the need for phase modulation required in I-FOGs, and promotes easy photonics integration, enabling the development of low-cost FOGs for price-sensitive applications, such as autonomous and robotic vehicles.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-optic gyroscopes: from design to production [Invited]

Jagannath Nayak
Appl. Opt. 50(25) E152-E161 (2011)

High-performance fully differential photodiode amplifier for miniature fiber-optic gyroscopes

Shaobo Zhang, Chunxi Zhang, Xiong Pan, and Ningfang Song
Opt. Express 27(3) 2125-2141 (2019)

New interferometric fiber-optic gyroscope with amplified optical feedback

Chao-Xiang Shi, Toshiya Yuhara, Hisao lizuka, and Hiroshi Kajioka
Appl. Opt. 35(3) 381-387 (1996)

References

  • View by:
  • |
  • |
  • |

  1. V. Vali and R. W. Shorthill, “Fiber ring interferometer,” Appl. Opt. 15(5), 1099–1100 (1976).
    [Crossref] [PubMed]
  2. H. C. Lefèvre, “Fundamentals of the interferometric fiber-optic gyroscope,” Opt. Rev. 4(1), A20–A27 (1997).
    [Crossref]
  3. G. A. Sanders, B. Szafraniec, R. Y. Liu, M. S. Bielas, and L. K. Strandjord, “Fiber-optic gyro development for a broad range of applications,” Proc. SPIE, Fiber Optic and Laser Sensors XIII2510, 2–11 (1995).
    [Crossref]
  4. G. A. Sanders, “ Fiber optic gyros for space, marine, and aviation applications in Fiber Optic Gyros,” 20th Anniversary Conf Proc. SPIE. 61–72 (International Society for Optics and Photonics, Denver, Colorado, 1996).
  5. G. Boime, E. Sicsik-Paré, and J. Fischer, “On the road to driverless: differential GNSS+INS for land vehicle autonomous navigation qualification,” GPS World 26, 12–27 (2015).
  6. C. Goodall, S. Carmichael, N. El-Sheimy, and B. Scannell, “INS face off - MEMS versus FOGs,” InsideGNSS 7, 48–55 (2012).
  7. Wikipedia, “Self-driving car,” en.m.wikipedia.org.
  8. National Highway Traffic Safety Administration, United State Department of Transportation, “Automated vehicles for safety”, www.nhtsa.gov
  9. C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
    [Crossref]
  10. F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9(11), 14013 (2014).
  11. P. Khial, A. White, and A. Hajimiri, “Nanophotonic optical gyroscope with reciprocal sensitivity enhancement,” Nat. Photonics 12(11), 671–675 (2018).
    [Crossref]
  12. M. A. Tran, T. Komljenovic, J. C. Hulme, M. J. Kennedy, D. J. Blumenthal, and J. E. Bowers, “Integrated optical driver for interferometric optical gyroscopes,” Opt. Express 25(4), 3826–3840 (2017).
    [Crossref] [PubMed]
  13. S. Ezekiel and S. Balsamo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett. 30(9), 478–480 (1977).
    [Crossref]
  14. D. M. Shupe, “Fiber resonator gyroscope: sensitivity and thermal nonreciprocity,” Appl. Opt. 20(2), 286–289 (1981).
    [Crossref] [PubMed]
  15. R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8(12), 644–646 (1983).
    [Crossref] [PubMed]
  16. J. Li, M. G. Suh, and K. Vahala, “Microresonator Brillouin gyroscope,” Optica 4(3), 346–348 (2017).
    [Crossref]
  17. F. Zarinetchi, S. P. Smith, and S. Ezekiel, “Stimulated Brillouin fiber-optic laser gyroscope,” Opt. Lett. 16(4), 229–231 (1991).
    [Crossref] [PubMed]
  18. S. Huang, L. Thevenaz, K. Toyama, B. Y. Kim, and H. J. Shaw, “Optical Kerr-effect in fiber-optic Brillouin ring laser gyroscopes,” IEEE Photonics Technol. Lett. 5(3), 365–367 (1993).
    [Crossref]
  19. C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21(1), 556–564 (2013).
    [Crossref] [PubMed]
  20. W. Liang, V. Ilchenko, A. Savchenkov, E. Dale, D. Eliyahu, A. Matsko, and L. Maleki, “Resonant microphotonics gyroscope,” Optica 4(1), 114–117 (2017).
    [Crossref]
  21. C. Ciminelli, D. D. Agostino, G. Carnicella, F. Dell’Olio, D. Conteduca, H. Ambrosius, M. Smit, and M. Armenise, “A high-Q InP resonant angular velocity sensor for a monolithically integrated optical gyroscope,” IEEE Photonics J. 8(1), 6800418 (2016).
    [Crossref]
  22. H. C. Lefevre, The Fiber Optic Gyroscope (Artech House, 1993).
  23. R. F. Cahill and E. Udd, “Phase-nulling fiber-optic laser gyro,” Opt. Lett. 4(3), 93–95 (1979).
    [Crossref] [PubMed]
  24. S. K. Sheem, “Fiber-optic gyroscope with [3× 3] directional coupler,” Appl. Phys. Lett. 37(10), 869–871 (1980).
    [Crossref]
  25. S. Merlo, M. Norgia, and S. Donati, “Fiber gryrocope principles,” Ch. 16 in Handbook of Fiber Optic Sensing Technology (ed J. M. Lopez-Higuera,). (John Wiley & Sons Ltd, New Jersey, United States, 2000).
  26. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “All-single-mode fiber-optic gyroscope,” Opt. Lett. 6(4), 198–200 (1981).
    [Crossref] [PubMed]
  27. N. J. Frigo, “Compensation of linear sources of non-reciprocity in Sagnac interferometers,” Proc. SPIE Fiber Optic and Laser Sensors412, 268–271 (1983).
    [Crossref]
  28. Z. Li, Z. Meng, T. Liu, and X. S. Yao, “A novel method for determining and improving the quality of a quadrupolar fiber gyro coil under temperature variations,” Opt. Express 21(2), 2521–2530 (2013).
    [Crossref] [PubMed]
  29. Z. Li, Z. Meng, L. Wang, T. Liu, and X. S. Yao, “Tomographic inspection of fiber coils using optical coherence tomography,” IEEE Photonics Technol. Lett. 27(5), 549–552 (2015).
    [Crossref]
  30. S. T. Jenkins and J. Hilkert, “Sin/cosine encoder interpolation methods: encoder to digital tracking converters for rate and position loop controllers,” Proc. SPIE 6971, 6971F (2008).
    [Crossref]
  31. J. C. Kim, J. M. Kim, C. U. Kim, and C. Choi, “Ultra precision position estimation of servomotor using analog quadrature encoder,” J. Power Electron. 6, 139–145 (2006).
  32. C. R. Doerr, K. Tamura, M. Shirasaki, H. A. Haus, and E. P. Ippen, “Orthogonal polarization fiber gyroscope with increased stability and resolution,” Appl. Opt. 33(34), 8062–8068 (1994).
    [Crossref] [PubMed]
  33. M. Lynch, “Orthogonal Polarization Fiber Optic Gyroscope with Improved Bias Drift, ” (Master of Science thesis, Massachusetts Institute of Technology, USA, 1999).
  34. G. Girardin, “Road to Robots sensors and computing for autonomous vehicle,” Autonomous Vehicle Conference, June 26, 2018, San Jose, CA, USA.
  35. M. C. Wu, L. Y. Lin, S. S. Lee, and K. S. J. Pister, “Micromachined free-space integrated micro-optics,” Sens. Actuators A Phys. 50(1-2), 127–134 (1995).
    [Crossref]
  36. C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-cmos integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
    [Crossref]
  37. H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel x 2.5-Gbps optical interconnect modules based on silicon optical benches with 45 degrees micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
    [Crossref] [PubMed]
  38. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
    [Crossref]
  39. D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
    [Crossref]
  40. L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” J. Lightwave Technol. 29(4), 554–570 (2011).
    [Crossref]
  41. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31(31), 6676–6683 (1992).
    [Crossref] [PubMed]
  42. P. A. Williams, “Rotating-wave-plate Stokes polarimeter for differential group delay measurements of polarization-mode dispersion,” Appl. Opt. 38(31), 6508–6515 (1999).
    [Crossref] [PubMed]
  43. E. Dijkstra, H. Meekes, and M. Kremers, “The high-accuracy universal polarimeter,” J. Phys. D 24(10), 1861–1868 (1991).
    [Crossref]
  44. P. A. Williams, A. H. Rose, and C. M. Wang, “Rotating-polarizer polarimeter for accurate retardance measurement,” Appl. Opt. 36(25), 6466–6472 (1997).
    [Crossref] [PubMed]
  45. X. S. Yao, X. Chen, and T. Liu, “High accuracy polarization measurements using binary polarization rotators,” Opt. Express 18(7), 6667–6685 (2010).
    [Crossref] [PubMed]
  46. X. S. Yao, X. Chen, and L. Yan, “Self-calibrating binary polarization analyzer,” Opt. Lett. 31(13), 1948–1950 (2006).
    [Crossref] [PubMed]
  47. X. S. Yao, “Low Cost Polametric Detector,” (US Patent #7372568, USA, 2008).
  48. Stokes parameters, Wikipedia, en.m.wikipedia.org.
  49. P. D. Hale and G. W. Day, “Stability of birefringent linear retarders (waveplates),” Appl. Opt. 27(24), 5146–5153 (1988).
    [Crossref] [PubMed]
  50. D. M. Shupe, “Thermally induced nonreciprocity in the fiber-optic interferometer,” Appl. Opt. 19(5), 654–655 (1980).
    [Crossref] [PubMed]
  51. T. Tanaka, Y. Igarashi, M. Nara, and T. Yoshino, “Automatic north sensor using a fiber-optic gyroscope,” Appl. Opt. 33(1), 120–123 (1994).
    [Crossref] [PubMed]

2018 (1)

P. Khial, A. White, and A. Hajimiri, “Nanophotonic optical gyroscope with reciprocal sensitivity enhancement,” Nat. Photonics 12(11), 671–675 (2018).
[Crossref]

2017 (3)

2016 (1)

C. Ciminelli, D. D. Agostino, G. Carnicella, F. Dell’Olio, D. Conteduca, H. Ambrosius, M. Smit, and M. Armenise, “A high-Q InP resonant angular velocity sensor for a monolithically integrated optical gyroscope,” IEEE Photonics J. 8(1), 6800418 (2016).
[Crossref]

2015 (2)

G. Boime, E. Sicsik-Paré, and J. Fischer, “On the road to driverless: differential GNSS+INS for land vehicle autonomous navigation qualification,” GPS World 26, 12–27 (2015).

Z. Li, Z. Meng, L. Wang, T. Liu, and X. S. Yao, “Tomographic inspection of fiber coils using optical coherence tomography,” IEEE Photonics Technol. Lett. 27(5), 549–552 (2015).
[Crossref]

2014 (1)

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9(11), 14013 (2014).

2013 (2)

2012 (3)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

C. Goodall, S. Carmichael, N. El-Sheimy, and B. Scannell, “INS face off - MEMS versus FOGs,” InsideGNSS 7, 48–55 (2012).

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
[Crossref]

2011 (2)

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” J. Lightwave Technol. 29(4), 554–570 (2011).
[Crossref]

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-cmos integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

S. T. Jenkins and J. Hilkert, “Sin/cosine encoder interpolation methods: encoder to digital tracking converters for rate and position loop controllers,” Proc. SPIE 6971, 6971F (2008).
[Crossref]

2007 (1)

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

2006 (2)

J. C. Kim, J. M. Kim, C. U. Kim, and C. Choi, “Ultra precision position estimation of servomotor using analog quadrature encoder,” J. Power Electron. 6, 139–145 (2006).

X. S. Yao, X. Chen, and L. Yan, “Self-calibrating binary polarization analyzer,” Opt. Lett. 31(13), 1948–1950 (2006).
[Crossref] [PubMed]

1999 (1)

1997 (2)

1995 (1)

M. C. Wu, L. Y. Lin, S. S. Lee, and K. S. J. Pister, “Micromachined free-space integrated micro-optics,” Sens. Actuators A Phys. 50(1-2), 127–134 (1995).
[Crossref]

1994 (2)

1993 (1)

S. Huang, L. Thevenaz, K. Toyama, B. Y. Kim, and H. J. Shaw, “Optical Kerr-effect in fiber-optic Brillouin ring laser gyroscopes,” IEEE Photonics Technol. Lett. 5(3), 365–367 (1993).
[Crossref]

1992 (1)

1991 (2)

E. Dijkstra, H. Meekes, and M. Kremers, “The high-accuracy universal polarimeter,” J. Phys. D 24(10), 1861–1868 (1991).
[Crossref]

F. Zarinetchi, S. P. Smith, and S. Ezekiel, “Stimulated Brillouin fiber-optic laser gyroscope,” Opt. Lett. 16(4), 229–231 (1991).
[Crossref] [PubMed]

1988 (1)

1983 (1)

1981 (2)

1980 (2)

S. K. Sheem, “Fiber-optic gyroscope with [3× 3] directional coupler,” Appl. Phys. Lett. 37(10), 869–871 (1980).
[Crossref]

D. M. Shupe, “Thermally induced nonreciprocity in the fiber-optic interferometer,” Appl. Opt. 19(5), 654–655 (1980).
[Crossref] [PubMed]

1979 (1)

1977 (1)

S. Ezekiel and S. Balsamo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett. 30(9), 478–480 (1977).
[Crossref]

1976 (1)

Agostino, D. D.

C. Ciminelli, D. D. Agostino, G. Carnicella, F. Dell’Olio, D. Conteduca, H. Ambrosius, M. Smit, and M. Armenise, “A high-Q InP resonant angular velocity sensor for a monolithically integrated optical gyroscope,” IEEE Photonics J. 8(1), 6800418 (2016).
[Crossref]

Ambrosius, H.

C. Ciminelli, D. D. Agostino, G. Carnicella, F. Dell’Olio, D. Conteduca, H. Ambrosius, M. Smit, and M. Armenise, “A high-Q InP resonant angular velocity sensor for a monolithically integrated optical gyroscope,” IEEE Photonics J. 8(1), 6800418 (2016).
[Crossref]

Armenise, M.

C. Ciminelli, D. D. Agostino, G. Carnicella, F. Dell’Olio, D. Conteduca, H. Ambrosius, M. Smit, and M. Armenise, “A high-Q InP resonant angular velocity sensor for a monolithically integrated optical gyroscope,” IEEE Photonics J. 8(1), 6800418 (2016).
[Crossref]

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9(11), 14013 (2014).

Armenise, M. N.

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21(1), 556–564 (2013).
[Crossref] [PubMed]

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
[Crossref]

Back, J.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Bakir, B. B.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-cmos integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Balsamo, S.

S. Ezekiel and S. Balsamo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett. 30(9), 478–480 (1977).
[Crossref]

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Bergh, R. A.

Bernabe, S.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-cmos integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Bielas, M. S.

G. A. Sanders, B. Szafraniec, R. Y. Liu, M. S. Bielas, and L. K. Strandjord, “Fiber-optic gyro development for a broad range of applications,” Proc. SPIE, Fiber Optic and Laser Sensors XIII2510, 2–11 (1995).
[Crossref]

Blumenthal, D. J.

Boime, G.

G. Boime, E. Sicsik-Paré, and J. Fischer, “On the road to driverless: differential GNSS+INS for land vehicle autonomous navigation qualification,” GPS World 26, 12–27 (2015).

Bowers, J. E.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. J. Kennedy, D. J. Blumenthal, and J. E. Bowers, “Integrated optical driver for interferometric optical gyroscopes,” Opt. Express 25(4), 3826–3840 (2017).
[Crossref] [PubMed]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Cahill, R. F.

Carmichael, S.

C. Goodall, S. Carmichael, N. El-Sheimy, and B. Scannell, “INS face off - MEMS versus FOGs,” InsideGNSS 7, 48–55 (2012).

Carnicella, G.

C. Ciminelli, D. D. Agostino, G. Carnicella, F. Dell’Olio, D. Conteduca, H. Ambrosius, M. Smit, and M. Armenise, “A high-Q InP resonant angular velocity sensor for a monolithically integrated optical gyroscope,” IEEE Photonics J. 8(1), 6800418 (2016).
[Crossref]

Chang, C. C.

Chang, S. F.

Chen, S. P.

Chen, X.

Choi, C.

J. C. Kim, J. M. Kim, C. U. Kim, and C. Choi, “Ultra precision position estimation of servomotor using analog quadrature encoder,” J. Power Electron. 6, 139–145 (2006).

Ciminelli, C.

C. Ciminelli, D. D. Agostino, G. Carnicella, F. Dell’Olio, D. Conteduca, H. Ambrosius, M. Smit, and M. Armenise, “A high-Q InP resonant angular velocity sensor for a monolithically integrated optical gyroscope,” IEEE Photonics J. 8(1), 6800418 (2016).
[Crossref]

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9(11), 14013 (2014).

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21(1), 556–564 (2013).
[Crossref] [PubMed]

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
[Crossref]

Coldren, L. A.

Conteduca, D.

C. Ciminelli, D. D. Agostino, G. Carnicella, F. Dell’Olio, D. Conteduca, H. Ambrosius, M. Smit, and M. Armenise, “A high-Q InP resonant angular velocity sensor for a monolithically integrated optical gyroscope,” IEEE Photonics J. 8(1), 6800418 (2016).
[Crossref]

Dai, D.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Dale, E.

Day, G. W.

Dell’Olio, F.

C. Ciminelli, D. D. Agostino, G. Carnicella, F. Dell’Olio, D. Conteduca, H. Ambrosius, M. Smit, and M. Armenise, “A high-Q InP resonant angular velocity sensor for a monolithically integrated optical gyroscope,” IEEE Photonics J. 8(1), 6800418 (2016).
[Crossref]

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9(11), 14013 (2014).

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21(1), 556–564 (2013).
[Crossref] [PubMed]

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
[Crossref]

Dentai, A. G.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Dijkstra, E.

E. Dijkstra, H. Meekes, and M. Kremers, “The high-accuracy universal polarimeter,” J. Phys. D 24(10), 1861–1868 (1991).
[Crossref]

Doerr, C. R.

Dominic, V. G.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Eliyahu, D.

El-Sheimy, N.

C. Goodall, S. Carmichael, N. El-Sheimy, and B. Scannell, “INS face off - MEMS versus FOGs,” InsideGNSS 7, 48–55 (2012).

Evans, P.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Ezekiel, S.

Fedeli, J. M.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-cmos integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Fischer, J.

G. Boime, E. Sicsik-Paré, and J. Fischer, “On the road to driverless: differential GNSS+INS for land vehicle autonomous navigation qualification,” GPS World 26, 12–27 (2015).

Frigo, N. J.

N. J. Frigo, “Compensation of linear sources of non-reciprocity in Sagnac interferometers,” Proc. SPIE Fiber Optic and Laser Sensors412, 268–271 (1983).
[Crossref]

Girardin, G.

G. Girardin, “Road to Robots sensors and computing for autonomous vehicle,” Autonomous Vehicle Conference, June 26, 2018, San Jose, CA, USA.

Goldstein, D. H.

Goodall, C.

C. Goodall, S. Carmichael, N. El-Sheimy, and B. Scannell, “INS face off - MEMS versus FOGs,” InsideGNSS 7, 48–55 (2012).

Grubb, S. G.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Guzzon, R. S.

Hajimiri, A.

P. Khial, A. White, and A. Hajimiri, “Nanophotonic optical gyroscope with reciprocal sensitivity enhancement,” Nat. Photonics 12(11), 671–675 (2018).
[Crossref]

Hale, P. D.

Haus, H. A.

Hilkert, J.

S. T. Jenkins and J. Hilkert, “Sin/cosine encoder interpolation methods: encoder to digital tracking converters for rate and position loop controllers,” Proc. SPIE 6971, 6971F (2008).
[Crossref]

Hsiao, H. L.

Hsu, C. H.

Huang, S.

S. Huang, L. Thevenaz, K. Toyama, B. Y. Kim, and H. J. Shaw, “Optical Kerr-effect in fiber-optic Brillouin ring laser gyroscopes,” IEEE Photonics Technol. Lett. 5(3), 365–367 (1993).
[Crossref]

Hulme, J. C.

Hurtt, S. K.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Igarashi, Y.

Ilchenko, V.

Ippen, E. P.

Jenkins, S. T.

S. T. Jenkins and J. Hilkert, “Sin/cosine encoder interpolation methods: encoder to digital tracking converters for rate and position loop controllers,” Proc. SPIE 6971, 6971F (2008).
[Crossref]

Johansson, L.

Joyner, C. H.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Kato, M.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Kauffman, M.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Kennedy, M. J.

Khial, P.

P. Khial, A. White, and A. Hajimiri, “Nanophotonic optical gyroscope with reciprocal sensitivity enhancement,” Nat. Photonics 12(11), 671–675 (2018).
[Crossref]

Kim, B. Y.

S. Huang, L. Thevenaz, K. Toyama, B. Y. Kim, and H. J. Shaw, “Optical Kerr-effect in fiber-optic Brillouin ring laser gyroscopes,” IEEE Photonics Technol. Lett. 5(3), 365–367 (1993).
[Crossref]

Kim, C. U.

J. C. Kim, J. M. Kim, C. U. Kim, and C. Choi, “Ultra precision position estimation of servomotor using analog quadrature encoder,” J. Power Electron. 6, 139–145 (2006).

Kim, J. C.

J. C. Kim, J. M. Kim, C. U. Kim, and C. Choi, “Ultra precision position estimation of servomotor using analog quadrature encoder,” J. Power Electron. 6, 139–145 (2006).

Kim, J. M.

J. C. Kim, J. M. Kim, C. U. Kim, and C. Choi, “Ultra precision position estimation of servomotor using analog quadrature encoder,” J. Power Electron. 6, 139–145 (2006).

Kish, F.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Komljenovic, T.

Kopp, C.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-cmos integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Kremers, M.

E. Dijkstra, H. Meekes, and M. Kremers, “The high-accuracy universal polarimeter,” J. Phys. D 24(10), 1861–1868 (1991).
[Crossref]

Krishnamachari, U.

Kuo, F. M.

Lambert, D.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Lan, H. C.

Lee, C. Y.

Lee, S. S.

M. C. Wu, L. Y. Lin, S. S. Lee, and K. S. J. Pister, “Micromachined free-space integrated micro-optics,” Sens. Actuators A Phys. 50(1-2), 127–134 (1995).
[Crossref]

Lefevre, H. C.

Lefèvre, H. C.

H. C. Lefèvre, “Fundamentals of the interferometric fiber-optic gyroscope,” Opt. Rev. 4(1), A20–A27 (1997).
[Crossref]

Li, J.

Li, Z.

Z. Li, Z. Meng, L. Wang, T. Liu, and X. S. Yao, “Tomographic inspection of fiber coils using optical coherence tomography,” IEEE Photonics Technol. Lett. 27(5), 549–552 (2015).
[Crossref]

Z. Li, Z. Meng, T. Liu, and X. S. Yao, “A novel method for determining and improving the quality of a quadrupolar fiber gyro coil under temperature variations,” Opt. Express 21(2), 2521–2530 (2013).
[Crossref] [PubMed]

Liang, W.

Lin, L. Y.

M. C. Wu, L. Y. Lin, S. S. Lee, and K. S. J. Pister, “Micromachined free-space integrated micro-optics,” Sens. Actuators A Phys. 50(1-2), 127–134 (1995).
[Crossref]

Lin, Y. S.

Liu, R. Y.

G. A. Sanders, B. Szafraniec, R. Y. Liu, M. S. Bielas, and L. K. Strandjord, “Fiber-optic gyro development for a broad range of applications,” Proc. SPIE, Fiber Optic and Laser Sensors XIII2510, 2–11 (1995).
[Crossref]

Liu, T.

Maleki, L.

Mathur, A.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Matsko, A.

Meekes, H.

E. Dijkstra, H. Meekes, and M. Kremers, “The high-accuracy universal polarimeter,” J. Phys. D 24(10), 1861–1868 (1991).
[Crossref]

Mehuys, D. G.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Melle, S.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Meng, Z.

Z. Li, Z. Meng, L. Wang, T. Liu, and X. S. Yao, “Tomographic inspection of fiber coils using optical coherence tomography,” IEEE Photonics Technol. Lett. 27(5), 549–552 (2015).
[Crossref]

Z. Li, Z. Meng, T. Liu, and X. S. Yao, “A novel method for determining and improving the quality of a quadrupolar fiber gyro coil under temperature variations,” Opt. Express 21(2), 2521–2530 (2013).
[Crossref] [PubMed]

Meyer, R. E.

Missey, M.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Mitchell, M. L.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Murthy, S.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Nagarajan, R.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Nara, M.

Nicholes, S. C.

Nilsson, A. C.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Norberg, E. J.

Orobtchouk, R.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-cmos integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Passenberg, W.

Perkins, D.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Pister, K. S. J.

M. C. Wu, L. Y. Lin, S. S. Lee, and K. S. J. Pister, “Micromachined free-space integrated micro-optics,” Sens. Actuators A Phys. 50(1-2), 127–134 (1995).
[Crossref]

Pleumeekers, J. L.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Porte, H.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-cmos integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Reffle, M.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Ristic, S.

Rose, A. H.

Salvatore, R. A.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Sanders, G. A.

G. A. Sanders, B. Szafraniec, R. Y. Liu, M. S. Bielas, and L. K. Strandjord, “Fiber-optic gyro development for a broad range of applications,” Proc. SPIE, Fiber Optic and Laser Sensors XIII2510, 2–11 (1995).
[Crossref]

Savchenkov, A.

Scannell, B.

C. Goodall, S. Carmichael, N. El-Sheimy, and B. Scannell, “INS face off - MEMS versus FOGs,” InsideGNSS 7, 48–55 (2012).

Schneider, R. P.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Schrank, F.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-cmos integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Shaw, H. J.

S. Huang, L. Thevenaz, K. Toyama, B. Y. Kim, and H. J. Shaw, “Optical Kerr-effect in fiber-optic Brillouin ring laser gyroscopes,” IEEE Photonics Technol. Lett. 5(3), 365–367 (1993).
[Crossref]

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “All-single-mode fiber-optic gyroscope,” Opt. Lett. 6(4), 198–200 (1981).
[Crossref] [PubMed]

Sheem, S. K.

S. K. Sheem, “Fiber-optic gyroscope with [3× 3] directional coupler,” Appl. Phys. Lett. 37(10), 869–871 (1980).
[Crossref]

Shi, J. W.

Shirasaki, M.

Shorthill, R. W.

Shupe, D. M.

Sicsik-Paré, E.

G. Boime, E. Sicsik-Paré, and J. Fischer, “On the road to driverless: differential GNSS+INS for land vehicle autonomous navigation qualification,” GPS World 26, 12–27 (2015).

Smit, M.

C. Ciminelli, D. D. Agostino, G. Carnicella, F. Dell’Olio, D. Conteduca, H. Ambrosius, M. Smit, and M. Armenise, “A high-Q InP resonant angular velocity sensor for a monolithically integrated optical gyroscope,” IEEE Photonics J. 8(1), 6800418 (2016).
[Crossref]

Smith, S. P.

Soares, F. M.

Stowe, D. W.

Strandjord, L. K.

G. A. Sanders, B. Szafraniec, R. Y. Liu, M. S. Bielas, and L. K. Strandjord, “Fiber-optic gyro development for a broad range of applications,” Proc. SPIE, Fiber Optic and Laser Sensors XIII2510, 2–11 (1995).
[Crossref]

Suh, M. G.

Szafraniec, B.

G. A. Sanders, B. Szafraniec, R. Y. Liu, M. S. Bielas, and L. K. Strandjord, “Fiber-optic gyro development for a broad range of applications,” Proc. SPIE, Fiber Optic and Laser Sensors XIII2510, 2–11 (1995).
[Crossref]

Tamura, K.

Tanaka, T.

Tatoli, T.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9(11), 14013 (2014).

Tekin, T.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-cmos integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Tekippe, V. J.

Thevenaz, L.

S. Huang, L. Thevenaz, K. Toyama, B. Y. Kim, and H. J. Shaw, “Optical Kerr-effect in fiber-optic Brillouin ring laser gyroscopes,” IEEE Photonics Technol. Lett. 5(3), 365–367 (1993).
[Crossref]

Toyama, K.

S. Huang, L. Thevenaz, K. Toyama, B. Y. Kim, and H. J. Shaw, “Optical Kerr-effect in fiber-optic Brillouin ring laser gyroscopes,” IEEE Photonics Technol. Lett. 5(3), 365–367 (1993).
[Crossref]

Tran, M. A.

Udd, E.

Vahala, K.

Vali, V.

Vanleeuwen, M.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Wang, C. M.

Wang, L.

Z. Li, Z. Meng, L. Wang, T. Liu, and X. S. Yao, “Tomographic inspection of fiber coils using optical coherence tomography,” IEEE Photonics Technol. Lett. 27(5), 549–552 (2015).
[Crossref]

Webjorn, J.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Welch, D. F.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

White, A.

P. Khial, A. White, and A. Hajimiri, “Nanophotonic optical gyroscope with reciprocal sensitivity enhancement,” Nat. Photonics 12(11), 671–675 (2018).
[Crossref]

Williams, P. A.

Wu, M. C.

M. C. Wu, L. Y. Lin, S. S. Lee, and K. S. J. Pister, “Micromachined free-space integrated micro-optics,” Sens. Actuators A Phys. 50(1-2), 127–134 (1995).
[Crossref]

Wu, M. L.

Yan, L.

Yao, X. S.

Yoshino, T.

Zarinetchi, F.

Ziari, M.

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Zimmermann, L.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-cmos integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Appl. Opt. (9)

Appl. Phys. Lett. (2)

S. K. Sheem, “Fiber-optic gyroscope with [3× 3] directional coupler,” Appl. Phys. Lett. 37(10), 869–871 (1980).
[Crossref]

S. Ezekiel and S. Balsamo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett. 30(9), 478–480 (1977).
[Crossref]

GPS World (1)

G. Boime, E. Sicsik-Paré, and J. Fischer, “On the road to driverless: differential GNSS+INS for land vehicle autonomous navigation qualification,” GPS World 26, 12–27 (2015).

IEEE J. Sel. Top. Quantum Electron. (2)

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-cmos integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

D. F. Welch, F. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. Evans, M. Kauffman, D. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. Vanleeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

IEEE Photonics J. (2)

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
[Crossref]

C. Ciminelli, D. D. Agostino, G. Carnicella, F. Dell’Olio, D. Conteduca, H. Ambrosius, M. Smit, and M. Armenise, “A high-Q InP resonant angular velocity sensor for a monolithically integrated optical gyroscope,” IEEE Photonics J. 8(1), 6800418 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. Huang, L. Thevenaz, K. Toyama, B. Y. Kim, and H. J. Shaw, “Optical Kerr-effect in fiber-optic Brillouin ring laser gyroscopes,” IEEE Photonics Technol. Lett. 5(3), 365–367 (1993).
[Crossref]

Z. Li, Z. Meng, L. Wang, T. Liu, and X. S. Yao, “Tomographic inspection of fiber coils using optical coherence tomography,” IEEE Photonics Technol. Lett. 27(5), 549–552 (2015).
[Crossref]

InsideGNSS (1)

C. Goodall, S. Carmichael, N. El-Sheimy, and B. Scannell, “INS face off - MEMS versus FOGs,” InsideGNSS 7, 48–55 (2012).

J. Eur. Opt. Soc. Rapid Publ. (1)

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9(11), 14013 (2014).

J. Lightwave Technol. (1)

J. Phys. D (1)

E. Dijkstra, H. Meekes, and M. Kremers, “The high-accuracy universal polarimeter,” J. Phys. D 24(10), 1861–1868 (1991).
[Crossref]

J. Power Electron. (1)

J. C. Kim, J. M. Kim, C. U. Kim, and C. Choi, “Ultra precision position estimation of servomotor using analog quadrature encoder,” J. Power Electron. 6, 139–145 (2006).

Light Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Nat. Photonics (1)

P. Khial, A. White, and A. Hajimiri, “Nanophotonic optical gyroscope with reciprocal sensitivity enhancement,” Nat. Photonics 12(11), 671–675 (2018).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Opt. Rev. (1)

H. C. Lefèvre, “Fundamentals of the interferometric fiber-optic gyroscope,” Opt. Rev. 4(1), A20–A27 (1997).
[Crossref]

Optica (2)

Proc. SPIE (1)

S. T. Jenkins and J. Hilkert, “Sin/cosine encoder interpolation methods: encoder to digital tracking converters for rate and position loop controllers,” Proc. SPIE 6971, 6971F (2008).
[Crossref]

Sens. Actuators A Phys. (1)

M. C. Wu, L. Y. Lin, S. S. Lee, and K. S. J. Pister, “Micromachined free-space integrated micro-optics,” Sens. Actuators A Phys. 50(1-2), 127–134 (1995).
[Crossref]

Other (11)

M. Lynch, “Orthogonal Polarization Fiber Optic Gyroscope with Improved Bias Drift, ” (Master of Science thesis, Massachusetts Institute of Technology, USA, 1999).

G. Girardin, “Road to Robots sensors and computing for autonomous vehicle,” Autonomous Vehicle Conference, June 26, 2018, San Jose, CA, USA.

H. C. Lefevre, The Fiber Optic Gyroscope (Artech House, 1993).

N. J. Frigo, “Compensation of linear sources of non-reciprocity in Sagnac interferometers,” Proc. SPIE Fiber Optic and Laser Sensors412, 268–271 (1983).
[Crossref]

S. Merlo, M. Norgia, and S. Donati, “Fiber gryrocope principles,” Ch. 16 in Handbook of Fiber Optic Sensing Technology (ed J. M. Lopez-Higuera,). (John Wiley & Sons Ltd, New Jersey, United States, 2000).

G. A. Sanders, B. Szafraniec, R. Y. Liu, M. S. Bielas, and L. K. Strandjord, “Fiber-optic gyro development for a broad range of applications,” Proc. SPIE, Fiber Optic and Laser Sensors XIII2510, 2–11 (1995).
[Crossref]

G. A. Sanders, “ Fiber optic gyros for space, marine, and aviation applications in Fiber Optic Gyros,” 20th Anniversary Conf Proc. SPIE. 61–72 (International Society for Optics and Photonics, Denver, Colorado, 1996).

Wikipedia, “Self-driving car,” en.m.wikipedia.org.

National Highway Traffic Safety Administration, United State Department of Transportation, “Automated vehicles for safety”, www.nhtsa.gov

X. S. Yao, “Low Cost Polametric Detector,” (US Patent #7372568, USA, 2008).

Stokes parameters, Wikipedia, en.m.wikipedia.org.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Comparison between (a) I-FOG ; (b) P-FOG configurations. NPBS: non-polarizing beam splitter; Wollaston PBS: polarizing beam splitter made with Wollaston prisms; PM fiber: polarization-maintaining optical fiber; PD signals: photodetector signals.
Fig. 2
Fig. 2 Illustration of how the SOP is measured and its behavior. (a)The space-division polarization analyzer for simultaneous polarization measurements; (b) SOP trace on a Poincaré sphere; (c) the SOP trace in s2 and s3 planes as the P-FOG rotates. The wedged substrate, which comprises four facets with distinctive angles, divides the input beam into four subbeams propagating in slightly different directions. Each subbeam passes through a polarizer chip with a particular orientation before being focused on its corresponding PD chip, which converts the optical power into a photovoltage. The four photovoltages give the Stokes parameters of the input beam. The 2 × 2 PD array in a) is similar to a quadrant photodetector commonly used for position sensing.
Fig. 3
Fig. 3 Photos of the proof-of-concept P-FOG. (a) Assembled optical module of the P-FOG configuration with a size of 24.5 × 17.5 × 9 mm3; (b) Fully packaged P-FOG in an aluminum enclosure, including the optical module, an SLED light source, PM fiber, and all of the supporting electronics with a size of 98 × 98 × 47.1 mm3. The coil made with 165 m-diameter PM fiber has a length, inner diameter, outer diameter, and height of 585 m, 83.1 mm, 91.7 mm, and 12.64 mm, respectively.
Fig. 4
Fig. 4 P-FOG performance demonstration. (a)Real-time P-FOG output of the phase difference Δϕ as the P-FOG is rotated back and forth at increasing rotation rates; (b) Δϕ as a function of rotation rate Ω. The linear fit (solid line) of the measured data points yields the scale factor.
Fig. 5
Fig. 5 Detection sensitivity measurement of the P-FOG. (a) The P-FOG is mounted on a leveled rotation stage to sense a fraction of the earth’s rotation rate; (b) P-FOG output as a function of rotation stage angle. The solid line is obtained by fitting the data points with a sine function.
Fig. 6
Fig. 6 Bias instability measurements of P-FOG and I-FOG. (a) Bias instability of P-FOG at 25°C; (b) Bias instability of P-FOG in a variable temperature environment (solid line); (c) Bias instability of a closed-loop I-FOG at 25°C. Inset: closed-loop I-FOG configuration; (d) Bias instability of the closed-loop I-FOG (solid line) with only the PM fiber coil placed in the temperature chamber. The dashed lines represent the programmed temperature profiles. Both gyroscopes are stationary and heating and cooling rates amount to 1°C/min.

Tables (2)

Tables Icon

Table 1 Performance grade classification of gyroscopes [22]

Tables Icon

Table 2 Comparison of the performance data for the first proof-of-concept P-FOG and a modified commercial closed-loop I-FOG using the same fiber coil

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E i n = ( E 0 / 2 ) ( x ^ + y ^ )
E o u t = ( E 0 / 2 ) ( x ^ + y ^ e i Δ ϕ )
Δ ϕ = 2 π D G D / λ 0 = ( 2 π L D / λ 0 c ) Ω
s 1 = 0
s 2 = cos Δ ϕ
s 3 = sin Δ ϕ
Ω = Ω 0 cos Ψ cos θ

Metrics