Abstract

A superoscillatory lens (SOL) is known to produce a sub-diffraction hotspot that is useful for high-resolution imaging. SOLs have not yet been directly used in a confocal reflection setup, as the SOL suffers from poor imaging properties. Additionally, the illuminating intensity distribution of the SOL still has high-intensity rings called sidelobes coexisting with the central hotspot. By means of a reflection setup, which does not have the SOL in the detection chain, thereby mitigating the poor imaging properties, we assessed the resolution capabilities of a SOL. This was done for different objects, whose dimensions were both above and below the SOL field-of-view (FOV). We found that the sidelobe illumination degrades the imaging properties in the case of extended objects, limiting the applicability of a SOL system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Vectorial design of super-oscillatory lens

Tao Liu, Jiubin Tan, Jian Liu, and Hongting Wang
Opt. Express 21(13) 15090-15101 (2013)

Rigorous electromagnetic test of super-oscillatory lens

Tao Liu, Tong Wang, Shuming Yang, Lin Sun, and Zhuangde Jiang
Opt. Express 23(25) 32139-32148 (2015)

Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing

Dongliang Tang, Long Chen, and Jianjun Liu
Opt. Express 27(9) 12308-12316 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Herman and J. Lemasters, eds., Optical microscopy (Elsevier, 1993).
  2. L. Rayleigh, “On the theory of optical images, with special reference to the microscope,” J. Royal Microsc. Soc. 23, 474–482 (1903).
    [Crossref]
  3. E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. für Mikroskopische Anat. 9, 413–418 (1873).
    [Crossref]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref] [PubMed]
  5. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
    [Crossref] [PubMed]
  6. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
    [Crossref]
  7. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
    [Crossref] [PubMed]
  8. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nature Commun. 2, 218 (2011).
    [Crossref]
  9. Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
    [Crossref] [PubMed]
  10. W. Vollrath, “Ultra-high-resolution DUV microscope optics for semiconductor applications,” in Tribute to Warren Smith: A Legacy in Lens Design and Optical Engineering, vol. 5865R. E. Fischer, ed. (International Society for Optics and Photonics., 2005), pp. 58650E–58650E–9.
  11. P. W. Wachulak, A. Bartnik, and H. Fiedorowicz, “Sub-70 nm resolution tabletop microscopy at 138 nm using a compact laser-plasma EUV source,” Opt. Lett. 35, 2337–2339 (2010).
    [Crossref] [PubMed]
  12. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref] [PubMed]
  13. E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref] [PubMed]
  14. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [Crossref] [PubMed]
  15. M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
    [Crossref]
  16. E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nature Mater. 11, 432–435 (2012).
    [Crossref]
  17. G. Gbur, “Using superoscillations for superresolved imaging and subwavelength focusing,” Nanophotonics 8, 205–225 (2019).
    [Crossref]
  18. N. Shankar and Z. Zhong, “Defect detection on semiconductor wafer surfaces,” Microelectron. Eng. 77, 337–346 (2005).
    [Crossref]
  19. J. T. King and S. Granick, “Operating organic light-emitting diodes imaged by super-resolution spectroscopy,” Nature Commun. 7, 11691 (2016).
    [Crossref]
  20. G. T. Di Francia, “Super-gain antennas and optical resolving power,” Il Nuovo Cimento 9, 426–438 (1952).
    [Crossref]
  21. M. V. Berry and S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. A: Math. Gen. 39, 6965–6977 (2006).
    [Crossref]
  22. Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin- 1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
    [Crossref] [PubMed]
  23. A. M. H. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
    [Crossref] [PubMed]
  24. Y. Kozawa, D. Matsunaga, and S. Sato, “Superresolution imaging via superoscillation focusing of a radially polarized beam,” Optica 5, 86–92 (2018).
    [Crossref]
  25. D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photon. Rev. 9, 713–719 (2015).
    [Crossref]
  26. Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, and X. Luo, “Achromatic broadband super-resolution imaging by super-oscillatory metasurface,” Laser Photon. Rev. 12, 1800064 (2018).
    [Crossref]
  27. D. Tang, L. Chen, and J. Liu, “Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing,” Opt. Express 27, 12308–12316 (2019).
    [Crossref] [PubMed]
  28. P. Ferreira and A. Kempf, “Superoscillations: faster than the nyquist rate,” IEEE Trans. Signal Proc. 54, 3732–3740 (2006).
    [Crossref]
  29. E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15, 094008 (2013).
    [Crossref]
  30. J. Lindberg, “Mathematical concepts of optical superresolution,” J. Opt. 14, 083001 (2012).
    [Crossref]
  31. A. Kempf, “Four aspects of superoscillations,” Quantum Studies: Math. Found. 5, 477–484 (2018).
    [Crossref]
  32. H. J. Hyvärinen, S. Rehman, J. Tervo, J. Turunen, and C. J. R. Sheppard, “Limitations of superoscillation filters in microscopy applications,” Opt. Lett. 37, 903–905 (2012).
    [Crossref] [PubMed]
  33. K. S. Rogers, K. N. Bourdakos, G. H. Yuan, S. Mahajan, and E. T. F. Rogers, “Optimising superoscillatory spots for far-field super-resolution imaging,” Opt. Express 26, 8095–8112 (2018).
    [Crossref] [PubMed]
  34. F. Qin, K. Huang, J. Wu, J. Teng, C.-W. Qiu, and M. Hong, “A Supercritical Lens Optical Label-Free Microscopy: Sub-Diffraction Resolution and Ultra-Long Working Distance,” Adv. Mater. 29, 1602721 (2017).
    [Crossref]
  35. E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
    [Crossref]
  36. G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2015).
    [Crossref]
  37. J. Diao, W. Yuan, Y. Yu, Y. Zhu, and Y. Wu, “Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles,” Opt. Express 24, 1924–1933 (2016).
    [Crossref] [PubMed]
  38. X. H. Dong, A. M. H. Wong, M. Kim, and G. V. Eleftheriades, “Superresolution far-field imaging of complex objects using reduced superoscillating ripples,” Optica 4, 1126–1133 (2017).
    [Crossref]
  39. Y. Yu, W. Li, H. Li, M. Li, and W. Yuan, “An investigation of influencing factors on practical sub-diffraction-limit focusing of planar super-oscillation lenses,” Nanomaterials 8, 185 (2018).
    [Crossref]
  40. H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8, 20117–20123 (2018).
    [Crossref]
  41. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  42. K. G. Puschmann and F. Kneer, “On super-resolution in astronomical imaging,” Astron. Astrophys. 436, 373–378 (2005).
    [Crossref]
  43. F. Silvestri, “Surface engineering to control electromagnetic waves across the spectrum,” Ph.D. thesis, Technische Universiteit Eindhoven (2017).
  44. A. E. Murray, “Reflected light and ghosts in optical systems,” J. Opt. Soc. Am. 39, 30–35 (1949).
    [Crossref]

2019 (3)

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

G. Gbur, “Using superoscillations for superresolved imaging and subwavelength focusing,” Nanophotonics 8, 205–225 (2019).
[Crossref]

D. Tang, L. Chen, and J. Liu, “Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing,” Opt. Express 27, 12308–12316 (2019).
[Crossref] [PubMed]

2018 (6)

Y. Kozawa, D. Matsunaga, and S. Sato, “Superresolution imaging via superoscillation focusing of a radially polarized beam,” Optica 5, 86–92 (2018).
[Crossref]

A. Kempf, “Four aspects of superoscillations,” Quantum Studies: Math. Found. 5, 477–484 (2018).
[Crossref]

K. S. Rogers, K. N. Bourdakos, G. H. Yuan, S. Mahajan, and E. T. F. Rogers, “Optimising superoscillatory spots for far-field super-resolution imaging,” Opt. Express 26, 8095–8112 (2018).
[Crossref] [PubMed]

Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, and X. Luo, “Achromatic broadband super-resolution imaging by super-oscillatory metasurface,” Laser Photon. Rev. 12, 1800064 (2018).
[Crossref]

Y. Yu, W. Li, H. Li, M. Li, and W. Yuan, “An investigation of influencing factors on practical sub-diffraction-limit focusing of planar super-oscillation lenses,” Nanomaterials 8, 185 (2018).
[Crossref]

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8, 20117–20123 (2018).
[Crossref]

2017 (2)

X. H. Dong, A. M. H. Wong, M. Kim, and G. V. Eleftheriades, “Superresolution far-field imaging of complex objects using reduced superoscillating ripples,” Optica 4, 1126–1133 (2017).
[Crossref]

F. Qin, K. Huang, J. Wu, J. Teng, C.-W. Qiu, and M. Hong, “A Supercritical Lens Optical Label-Free Microscopy: Sub-Diffraction Resolution and Ultra-Long Working Distance,” Adv. Mater. 29, 1602721 (2017).
[Crossref]

2016 (2)

J. T. King and S. Granick, “Operating organic light-emitting diodes imaged by super-resolution spectroscopy,” Nature Commun. 7, 11691 (2016).
[Crossref]

J. Diao, W. Yuan, Y. Yu, Y. Zhu, and Y. Wu, “Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles,” Opt. Express 24, 1924–1933 (2016).
[Crossref] [PubMed]

2015 (2)

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2015).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photon. Rev. 9, 713–719 (2015).
[Crossref]

2014 (1)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref] [PubMed]

2013 (3)

A. M. H. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref] [PubMed]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[Crossref]

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15, 094008 (2013).
[Crossref]

2012 (3)

J. Lindberg, “Mathematical concepts of optical superresolution,” J. Opt. 14, 083001 (2012).
[Crossref]

H. J. Hyvärinen, S. Rehman, J. Tervo, J. Turunen, and C. J. R. Sheppard, “Limitations of superoscillation filters in microscopy applications,” Opt. Lett. 37, 903–905 (2012).
[Crossref] [PubMed]

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nature Mater. 11, 432–435 (2012).
[Crossref]

2011 (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nature Commun. 2, 218 (2011).
[Crossref]

2010 (1)

2006 (4)

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[Crossref] [PubMed]

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

M. V. Berry and S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. A: Math. Gen. 39, 6965–6977 (2006).
[Crossref]

P. Ferreira and A. Kempf, “Superoscillations: faster than the nyquist rate,” IEEE Trans. Signal Proc. 54, 3732–3740 (2006).
[Crossref]

2005 (2)

N. Shankar and Z. Zhong, “Defect detection on semiconductor wafer surfaces,” Microelectron. Eng. 77, 337–346 (2005).
[Crossref]

K. G. Puschmann and F. Kneer, “On super-resolution in astronomical imaging,” Astron. Astrophys. 436, 373–378 (2005).
[Crossref]

2000 (2)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

1994 (1)

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[Crossref] [PubMed]

1990 (1)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

1988 (1)

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin- 1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref] [PubMed]

1952 (1)

G. T. Di Francia, “Super-gain antennas and optical resolving power,” Il Nuovo Cimento 9, 426–438 (1952).
[Crossref]

1949 (1)

1903 (1)

L. Rayleigh, “On the theory of optical images, with special reference to the microscope,” J. Royal Microsc. Soc. 23, 474–482 (1903).
[Crossref]

1873 (1)

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. für Mikroskopische Anat. 9, 413–418 (1873).
[Crossref]

Abbe, E.

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. für Mikroskopische Anat. 9, 413–418 (1873).
[Crossref]

Adamo, G.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2015).
[Crossref]

Aharonov, Y.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin- 1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref] [PubMed]

Albert, D. Z.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin- 1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref] [PubMed]

Alekseyev, L. V.

Arie, A.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Bahabad, A.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Bartnik, A.

Berry, M.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Berry, M. V.

M. V. Berry and S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. A: Math. Gen. 39, 6965–6977 (2006).
[Crossref]

Betzig, E.

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Bourdakos, K. N.

Chad, J. E.

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nature Mater. 11, 432–435 (2012).
[Crossref]

Chang, N.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8, 20117–20123 (2018).
[Crossref]

Chen, G.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Chen, H.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8, 20117–20123 (2018).
[Crossref]

Chen, L.

Chen, R.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8, 20117–20123 (2018).
[Crossref]

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nature Commun. 2, 218 (2011).
[Crossref]

Colombo, F.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Davidson, M. W.

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Dennis, M. R.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[Crossref]

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nature Mater. 11, 432–435 (2012).
[Crossref]

Diao, J.

Dong, X. H.

Eleftheriades, G. V.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

X. H. Dong, A. M. H. Wong, M. Kim, and G. V. Eleftheriades, “Superresolution far-field imaging of complex objects using reduced superoscillating ripples,” Optica 4, 1126–1133 (2017).
[Crossref]

A. M. H. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref] [PubMed]

Eliezer, Y.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Feng, C.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref] [PubMed]

Ferreira, P.

P. Ferreira and A. Kempf, “Superoscillations: faster than the nyquist rate,” IEEE Trans. Signal Proc. 54, 3732–3740 (2006).
[Crossref]

Fiedorowicz, H.

Francia, G. T. Di

G. T. Di Francia, “Super-gain antennas and optical resolving power,” Il Nuovo Cimento 9, 426–438 (1952).
[Crossref]

Gao, P.

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photon. Rev. 9, 713–719 (2015).
[Crossref]

Gbur, G.

G. Gbur, “Using superoscillations for superresolved imaging and subwavelength focusing,” Nanophotonics 8, 205–225 (2019).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Götte, J. B.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Granick, S.

J. T. King and S. Granick, “Operating organic light-emitting diodes imaged by super-resolution spectroscopy,” Nature Commun. 7, 11691 (2016).
[Crossref]

Gu, Z.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8, 20117–20123 (2018).
[Crossref]

Guo, W.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nature Commun. 2, 218 (2011).
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref] [PubMed]

Hao, C.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[Crossref] [PubMed]

Hell, S. W.

Hess, H. F.

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Hong, M.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

F. Qin, K. Huang, J. Wu, J. Teng, C.-W. Qiu, and M. Hong, “A Supercritical Lens Optical Label-Free Microscopy: Sub-Diffraction Resolution and Ultra-Long Working Distance,” Adv. Mater. 29, 1602721 (2017).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nature Commun. 2, 218 (2011).
[Crossref]

Huang, K.

F. Qin, K. Huang, J. Wu, J. Teng, C.-W. Qiu, and M. Hong, “A Supercritical Lens Optical Label-Free Microscopy: Sub-Diffraction Resolution and Ultra-Long Working Distance,” Adv. Mater. 29, 1602721 (2017).
[Crossref]

Huang, Y.

Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, and X. Luo, “Achromatic broadband super-resolution imaging by super-oscillatory metasurface,” Laser Photon. Rev. 12, 1800064 (2018).
[Crossref]

Hyvärinen, H. J.

Jacob, Z.

Jiang, L.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8, 20117–20123 (2018).
[Crossref]

Katzav, E.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Kempf, A.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

A. Kempf, “Four aspects of superoscillations,” Quantum Studies: Math. Found. 5, 477–484 (2018).
[Crossref]

P. Ferreira and A. Kempf, “Superoscillations: faster than the nyquist rate,” IEEE Trans. Signal Proc. 54, 3732–3740 (2006).
[Crossref]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nature Commun. 2, 218 (2011).
[Crossref]

Kim, M.

King, J. T.

J. T. King and S. Granick, “Operating organic light-emitting diodes imaged by super-resolution spectroscopy,” Nature Commun. 7, 11691 (2016).
[Crossref]

Kino, G. S.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

Kneer, F.

K. G. Puschmann and F. Kneer, “On super-resolution in astronomical imaging,” Astron. Astrophys. 436, 373–378 (2005).
[Crossref]

Kong, W.

Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, and X. Luo, “Achromatic broadband super-resolution imaging by super-oscillatory metasurface,” Laser Photon. Rev. 12, 1800064 (2018).
[Crossref]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[Crossref] [PubMed]

Kozawa, Y.

Lee, S.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref] [PubMed]

Li, H.

Y. Yu, W. Li, H. Li, M. Li, and W. Yuan, “An investigation of influencing factors on practical sub-diffraction-limit focusing of planar super-oscillation lenses,” Nanomaterials 8, 185 (2018).
[Crossref]

Li, L.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nature Commun. 2, 218 (2011).
[Crossref]

Li, M.

Y. Yu, W. Li, H. Li, M. Li, and W. Yuan, “An investigation of influencing factors on practical sub-diffraction-limit focusing of planar super-oscillation lenses,” Nanomaterials 8, 185 (2018).
[Crossref]

Li, W.

Y. Yu, W. Li, H. Li, M. Li, and W. Yuan, “An investigation of influencing factors on practical sub-diffraction-limit focusing of planar super-oscillation lenses,” Nanomaterials 8, 185 (2018).
[Crossref]

Li, X.

Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, and X. Luo, “Achromatic broadband super-resolution imaging by super-oscillatory metasurface,” Laser Photon. Rev. 12, 1800064 (2018).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photon. Rev. 9, 713–719 (2015).
[Crossref]

Li, Z.

Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, and X. Luo, “Achromatic broadband super-resolution imaging by super-oscillatory metasurface,” Laser Photon. Rev. 12, 1800064 (2018).
[Crossref]

Liang, G.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Lindberg, J.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[Crossref]

J. Lindberg, “Mathematical concepts of optical superresolution,” J. Opt. 14, 083001 (2012).
[Crossref]

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nature Mater. 11, 432–435 (2012).
[Crossref]

Lindwasser, O. W.

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Liu, J.

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nature Commun. 2, 218 (2011).
[Crossref]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nature Commun. 2, 218 (2011).
[Crossref]

Luo, X.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, and X. Luo, “Achromatic broadband super-resolution imaging by super-oscillatory metasurface,” Laser Photon. Rev. 12, 1800064 (2018).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photon. Rev. 9, 713–719 (2015).
[Crossref]

Mahajan, S.

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

Matsunaga, D.

Murray, A. E.

Narimanov, E.

Ni, H.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8, 20117–20123 (2018).
[Crossref]

Olenych, S.

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Popescu, S.

M. V. Berry and S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. A: Math. Gen. 39, 6965–6977 (2006).
[Crossref]

Pu, M.

Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, and X. Luo, “Achromatic broadband super-resolution imaging by super-oscillatory metasurface,” Laser Photon. Rev. 12, 1800064 (2018).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photon. Rev. 9, 713–719 (2015).
[Crossref]

Puschmann, K. G.

K. G. Puschmann and F. Kneer, “On super-resolution in astronomical imaging,” Astron. Astrophys. 436, 373–378 (2005).
[Crossref]

Qin, F.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

F. Qin, K. Huang, J. Wu, J. Teng, C.-W. Qiu, and M. Hong, “A Supercritical Lens Optical Label-Free Microscopy: Sub-Diffraction Resolution and Ultra-Long Working Distance,” Adv. Mater. 29, 1602721 (2017).
[Crossref]

Qiu, C.-W.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

F. Qin, K. Huang, J. Wu, J. Teng, C.-W. Qiu, and M. Hong, “A Supercritical Lens Optical Label-Free Microscopy: Sub-Diffraction Resolution and Ultra-Long Working Distance,” Adv. Mater. 29, 1602721 (2017).
[Crossref]

Rayleigh, L.

L. Rayleigh, “On the theory of optical images, with special reference to the microscope,” J. Royal Microsc. Soc. 23, 474–482 (1903).
[Crossref]

Rehman, S.

Remez, R.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Rogers, E. T.

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nature Mater. 11, 432–435 (2012).
[Crossref]

Rogers, E. T. F.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

K. S. Rogers, K. N. Bourdakos, G. H. Yuan, S. Mahajan, and E. T. F. Rogers, “Optimising superoscillatory spots for far-field super-resolution imaging,” Opt. Express 26, 8095–8112 (2018).
[Crossref] [PubMed]

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2015).
[Crossref]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[Crossref]

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15, 094008 (2013).
[Crossref]

Rogers, K. S.

Roy, T.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2015).
[Crossref]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[Crossref]

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nature Mater. 11, 432–435 (2012).
[Crossref]

Sabadini, I.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Sato, S.

Savo, S.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[Crossref]

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nature Mater. 11, 432–435 (2012).
[Crossref]

Schwartz, M.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Shankar, N.

N. Shankar and Z. Zhong, “Defect detection on semiconductor wafer surfaces,” Microelectron. Eng. 77, 337–346 (2005).
[Crossref]

Shen, Z.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2015).
[Crossref]

Sheppard, C. J. R.

Silvestri, F.

F. Silvestri, “Surface engineering to control electromagnetic waves across the spectrum,” Ph.D. thesis, Technische Universiteit Eindhoven (2017).

Sougrat, R.

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Struppa, D. C.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Sun, L.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8, 20117–20123 (2018).
[Crossref]

Tang, D.

D. Tang, L. Chen, and J. Liu, “Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing,” Opt. Express 27, 12308–12316 (2019).
[Crossref] [PubMed]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photon. Rev. 9, 713–719 (2015).
[Crossref]

Teng, J.

F. Qin, K. Huang, J. Wu, J. Teng, C.-W. Qiu, and M. Hong, “A Supercritical Lens Optical Label-Free Microscopy: Sub-Diffraction Resolution and Ultra-Long Working Distance,” Adv. Mater. 29, 1602721 (2017).
[Crossref]

Tervo, J.

Tollaksen, J.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[Crossref] [PubMed]

Turunen, J.

Vaidman, L.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin- 1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref] [PubMed]

Vollrath, W.

W. Vollrath, “Ultra-high-resolution DUV microscope optics for semiconductor applications,” in Tribute to Warren Smith: A Legacy in Lens Design and Optical Engineering, vol. 5865R. E. Fischer, ed. (International Society for Optics and Photonics., 2005), pp. 58650E–58650E–9.

Wachulak, P. W.

Wang, C.

Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, and X. Luo, “Achromatic broadband super-resolution imaging by super-oscillatory metasurface,” Laser Photon. Rev. 12, 1800064 (2018).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photon. Rev. 9, 713–719 (2015).
[Crossref]

Wang, Y.

Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, and X. Luo, “Achromatic broadband super-resolution imaging by super-oscillatory metasurface,” Laser Photon. Rev. 12, 1800064 (2018).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photon. Rev. 9, 713–719 (2015).
[Crossref]

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nature Commun. 2, 218 (2011).
[Crossref]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[Crossref] [PubMed]

Wen, Z.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Wichmann, J.

Wong, A. M. H.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

X. H. Dong, A. M. H. Wong, M. Kim, and G. V. Eleftheriades, “Superresolution far-field imaging of complex objects using reduced superoscillating ripples,” Optica 4, 1126–1133 (2017).
[Crossref]

A. M. H. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref] [PubMed]

Wu, J.

F. Qin, K. Huang, J. Wu, J. Teng, C.-W. Qiu, and M. Hong, “A Supercritical Lens Optical Label-Free Microscopy: Sub-Diffraction Resolution and Ultra-Long Working Distance,” Adv. Mater. 29, 1602721 (2017).
[Crossref]

Wu, Y.

Yan, Y.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, W. Li, H. Li, M. Li, and W. Yuan, “An investigation of influencing factors on practical sub-diffraction-limit focusing of planar super-oscillation lenses,” Nanomaterials 8, 185 (2018).
[Crossref]

J. Diao, W. Yuan, Y. Yu, Y. Zhu, and Y. Wu, “Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles,” Opt. Express 24, 1924–1933 (2016).
[Crossref] [PubMed]

Yuan, G.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8, 20117–20123 (2018).
[Crossref]

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2015).
[Crossref]

Yuan, G. H.

Yuan, W.

Y. Yu, W. Li, H. Li, M. Li, and W. Yuan, “An investigation of influencing factors on practical sub-diffraction-limit focusing of planar super-oscillation lenses,” Nanomaterials 8, 185 (2018).
[Crossref]

J. Diao, W. Yuan, Y. Yu, Y. Zhu, and Y. Wu, “Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles,” Opt. Express 24, 1924–1933 (2016).
[Crossref] [PubMed]

Zhang, D.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8, 20117–20123 (2018).
[Crossref]

Zhang, J.

Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, and X. Luo, “Achromatic broadband super-resolution imaging by super-oscillatory metasurface,” Laser Photon. Rev. 12, 1800064 (2018).
[Crossref]

Zhang, T.

Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, and X. Luo, “Achromatic broadband super-resolution imaging by super-oscillatory metasurface,” Laser Photon. Rev. 12, 1800064 (2018).
[Crossref]

Zhao, X.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8, 20117–20123 (2018).
[Crossref]

Zhao, Z.

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photon. Rev. 9, 713–719 (2015).
[Crossref]

Zheludev, N.

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

Zheludev, N. I.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2015).
[Crossref]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[Crossref]

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15, 094008 (2013).
[Crossref]

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nature Mater. 11, 432–435 (2012).
[Crossref]

Zhong, Z.

N. Shankar and Z. Zhong, “Defect detection on semiconductor wafer surfaces,” Microelectron. Eng. 77, 337–346 (2005).
[Crossref]

Zhu, Y.

ACS Nano (1)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

F. Qin, K. Huang, J. Wu, J. Teng, C.-W. Qiu, and M. Hong, “A Supercritical Lens Optical Label-Free Microscopy: Sub-Diffraction Resolution and Ultra-Long Working Distance,” Adv. Mater. 29, 1602721 (2017).
[Crossref]

Appl. Phys. Lett. (2)

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[Crossref]

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

Arch. für Mikroskopische Anat. (1)

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. für Mikroskopische Anat. 9, 413–418 (1873).
[Crossref]

Astron. Astrophys. (1)

K. G. Puschmann and F. Kneer, “On super-resolution in astronomical imaging,” Astron. Astrophys. 436, 373–378 (2005).
[Crossref]

IEEE Trans. Signal Proc. (1)

P. Ferreira and A. Kempf, “Superoscillations: faster than the nyquist rate,” IEEE Trans. Signal Proc. 54, 3732–3740 (2006).
[Crossref]

Il Nuovo Cimento (1)

G. T. Di Francia, “Super-gain antennas and optical resolving power,” Il Nuovo Cimento 9, 426–438 (1952).
[Crossref]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref] [PubMed]

J. Opt. (3)

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. H. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C.-W. Qiu, A. Kempf, E. Katzav, and M. Schwartz, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019).
[Crossref]

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15, 094008 (2013).
[Crossref]

J. Lindberg, “Mathematical concepts of optical superresolution,” J. Opt. 14, 083001 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. A: Math. Gen. (1)

M. V. Berry and S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. A: Math. Gen. 39, 6965–6977 (2006).
[Crossref]

J. Royal Microsc. Soc. (1)

L. Rayleigh, “On the theory of optical images, with special reference to the microscope,” J. Royal Microsc. Soc. 23, 474–482 (1903).
[Crossref]

Laser Photon. Rev. (2)

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photon. Rev. 9, 713–719 (2015).
[Crossref]

Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, and X. Luo, “Achromatic broadband super-resolution imaging by super-oscillatory metasurface,” Laser Photon. Rev. 12, 1800064 (2018).
[Crossref]

Microelectron. Eng. (1)

N. Shankar and Z. Zhong, “Defect detection on semiconductor wafer surfaces,” Microelectron. Eng. 77, 337–346 (2005).
[Crossref]

Nanomaterials (1)

Y. Yu, W. Li, H. Li, M. Li, and W. Yuan, “An investigation of influencing factors on practical sub-diffraction-limit focusing of planar super-oscillation lenses,” Nanomaterials 8, 185 (2018).
[Crossref]

Nanophotonics (1)

G. Gbur, “Using superoscillations for superresolved imaging and subwavelength focusing,” Nanophotonics 8, 205–225 (2019).
[Crossref]

Nature Commun. (2)

J. T. King and S. Granick, “Operating organic light-emitting diodes imaged by super-resolution spectroscopy,” Nature Commun. 7, 11691 (2016).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nature Commun. 2, 218 (2011).
[Crossref]

Nature Mater. (1)

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nature Mater. 11, 432–435 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Optica (2)

Phys. Rev. Lett. (2)

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin- 1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Quantum Studies: Math. Found. (1)

A. Kempf, “Four aspects of superoscillations,” Quantum Studies: Math. Found. 5, 477–484 (2018).
[Crossref]

RSC Adv. (1)

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8, 20117–20123 (2018).
[Crossref]

Sci. Rep. (2)

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2015).
[Crossref]

A. M. H. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref] [PubMed]

Science (2)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[Crossref] [PubMed]

E. Betzig, E. Betzig, G. H. Patterson, G. H. Patterson, R. Sougrat, R. Sougrat, O. W. Lindwasser, S. Olenych, S. Olenych, J. S. Bonifacino, J. S. Bonifacino, M. W. Davidson, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Other (4)

W. Vollrath, “Ultra-high-resolution DUV microscope optics for semiconductor applications,” in Tribute to Warren Smith: A Legacy in Lens Design and Optical Engineering, vol. 5865R. E. Fischer, ed. (International Society for Optics and Photonics., 2005), pp. 58650E–58650E–9.

B. Herman and J. Lemasters, eds., Optical microscopy (Elsevier, 1993).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

F. Silvestri, “Surface engineering to control electromagnetic waves across the spectrum,” Ph.D. thesis, Technische Universiteit Eindhoven (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Experimental Setup and SOL Characterization. (a) Schematic of the experimental setup. The SOL is illuminated by a 632.8 nm collimated polarised laser beam. The light intensity pattern produced by the SOL is reimaged onto the sample plane using a pupil relay. The object is snake scanned in steps of 30 nm in the XY plane (see inset), and the reflected signal is focused into the CCD with a tube lens. (b) Full width at half maximum (FWHM) of the central hotspot for various Z distances from the SOL surface. The red and black curves indicate the FWHM across the X and Y planes respectively. The error bars indicate 95% confidence interval in the gaussian fitting. The black dotted line represents the Abbé diffraction limit (333 nm). Insets show the intensity-patterns at various Z distances captured by the CCD.
Fig. 2
Fig. 2 SOL nanoscope vs LSCM: Imaging double bars. Double bars (500 nm × 180 nm) with c.t.c. separation of (A) 500 nm and (B) 330 nm respectively. (a, f) SEM images of Au bars on ITO glass substrate. (b, g) Numerical simulation of imaging with the SOL nanoscope. (c, h) LSCM imaging. (d, i) Imaging with the SOL nanoscope. (e, j) Intensity profiles along the central black dashed lines in (c, d) and (h, i) respectively. The white scale bar represents 200 nm.
Fig. 3
Fig. 3 Imaging 1D array with a c.t.c. spacing (A)bove & (B)elow the Abbé diffraction limit. Arrays consisting of 10 bars (500 nm × 180 nm) with c.t.c. separation of (A) 500 nm and (B) 330 nm respectively. (a, e) SEM images of Au arrays on ITO glass substrate. (b, f) Numerical simulation of imaging with a LSCM. (c, g) Numerical simulation of imaging with the SOL nanoscope. (d, h) Imaging with the SOL nanoscope. The white scale bar represents 200 nm.
Fig. 4
Fig. 4 Leakage into the detector due to sidelobe illumination. A closely spaced extended object (gray) is imaged with a SOL CSF (CSFI) (red curve) using a lens system (L1, L2). Although the rays from the sidelobe illumination (blue) do not seem to enter the pinhole (PH), there is a noticeable leakage from the ripples of the detection CSF (CSFD) at the detector as highlighted by the black dotted circle. The green rays show the imaging from the central hotspot. The stars indicate the intensities of the central hotspot and the first sidelobe, respectively.
Fig. 5
Fig. 5 Imaging 2D objects under SOL illumination.(A)bove: Cluster of circles of diameter 200 nm with various c.t.c. separations.(B)elow: 10×10 array of squares of size 100 nm in a square lattice with 280 nm periodicity. (a, d) SEM images of Au arrays on ITO glass substrate. (b, e) Numerical simulation of imaging under SOL illumination. (c, f) Imaging with the SOL nanoscope. The white scale bar represents 200 nm.
Fig. 6
Fig. 6 AFM scan of the fabricated SOL containing concentric Ti rings of 100 nm thickness in a 700 μm glass substrate.
Fig. 7
Fig. 7 Numerically simulated intensity pattern for an imaging system consisting of a SOL and two objectives as shown in the insert. The black curve represents ideal NA=1 system. The red-dotted curve corresponding for NA=0.95 traces the black curve quite well preserving the central sub-diffracted spot. The green curve represents NA=0.85, depicting the onset of this central spot. Super-oscillation is completely destroyed when 0.2 NA objectives are used as seen in the blue curve.
Fig. 8
Fig. 8 Calibrating the pixel size of the nanoscope. Black circles represents the data points and the red line is the linear fit.
Fig. 9
Fig. 9 The hotspot at Z≈4 μm. The white scale bar represents 500 nm.
Fig. 10
Fig. 10 Line profile along horizontal axis of the hotspot at Z ≈ 4 μm from the SOL surface. Dotted red lines represents the Field of View (FOV) of the SOL which is ≈500 nm.
Fig. 11
Fig. 11 Numerically simulated phase profile of the SOL along one axis. The red dot represents the peak location of the central hotspot and the stars represent the peak locations of the first sidelobe.
Fig. 12
Fig. 12 Line profile across the center of the Fig. 3(b, c) of the main text. The black line represents the LSCM while the red line represents the SOL Nanoscope.
Fig. 13
Fig. 13 Line profile across the center of the Fig. 3(d) of the main text.
Fig. 14
Fig. 14 Line profile across the center of the Fig. 3(h) of the main text.
Fig. 15
Fig. 15 Line profile across the center of the Fig. 5(e) of the main text.

Tables (1)

Tables Icon

Table 1 D.P.V. of the SOL Nanoscope Compared to a LSCM.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = I m a x exp  ( ( x x 0 ) 2 2 σ x 2 + ( y y 0 ) 2 2 σ y 2 ) + I o f f
F W H M = σ [ 2 2 ln  ( 2 ) ]
G ( ϵ , ϕ ) = y m i n y m a x x m i n x m a x C S F I ( x ϵ , y ϕ ) C S F D ( x ϵ , y ϕ ) O ( x , y ) d x d y 2
C S F I ( x , y ) P S F S O L ( x , y ) & C S F D ( x , y ) = 2 J 1 ( 2 π N A λ x 2 + y 2 ) ( 2 π N A λ x 2 + y 2 )
d . p . v = m i n ( I P 1 , I P 2 ) I V

Metrics