Abstract

Epsilon-and-mu-near-zero (EMNZ) medium which possessing close to zero permittivity and permeability has peculiar electromagnetic properties and can be utilized to design various electromagnetic functional devices. Recent theoretical research shows that EMNZ medium can be achieved by simply doping normal dielectric in an epsilon-near-zero (ENZ) medium, which is easier to obtain than EMNZ medium. Practically, the permittivity will cross zero in the terahertz regime for polar dielectrics and some semiconductors, and in the visible and ultraviolet for the noble metals. While in the microwave band, it is recently found that some magnetic materials can be used to realize the ENZ medium. Here in this paper, we extend the doping theory and propose the similar way for realizing EMNZ property in magnetic ENZ medium by adding dielectric dopant. Both the theoretical analysis and full wave simulation show EMNZ can be achieved by adjusting the parameters of normal dielectric dopants, such as the size, relative permittivity, as well as the number of dopants in a magnetic ENZ with arbitrary value of permeability. To verify the proposed theory, a practical electromagnetic tunneling structure is designed and tested based on an existing magnetic ENZ material through proper dielectric doping. The proposed design method may provide realistic and meaningful guidance for the realization and application of practical EMNZ medium at microwave frequency.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Loss enhanced spin Hall effect of transmitted light through anisotropic epsilon- and mu-near-zero metamaterial slab

Tingting Tang, Jie Li, Li Luo, Ping Sun, and Yanfen Zhang
Opt. Express 25(3) 2347-2354 (2017)

Near-zero-index wires

Luigi La Spada and Lucio Vegni
Opt. Express 25(20) 23699-23708 (2017)

Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling [Invited]

A. M. Mahmoud, I. Liberal, and N. Engheta
Opt. Mater. Express 7(2) 415-424 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B Condens. Matter Mater. Phys. 75(15), 155410 (2007).
    [Crossref]
  2. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
    [Crossref] [PubMed]
  3. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
    [Crossref] [PubMed]
  4. M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
    [Crossref] [PubMed]
  5. V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
    [Crossref]
  6. M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 233104 (2008).
    [Crossref]
  7. Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 81(8), 085117 (2010).
    [Crossref]
  8. Y. Jin and S. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express 18(16), 16587–16593 (2010).
    [Crossref] [PubMed]
  9. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, (Wiley, 2006).
  10. G. V. Eleftheriades and K. G. Balmain, Negative-Refraction Metamaterials: Fundamental Principles and Applications, (Wiley, 2005).
  11. W. Cai and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications, (Springer, 2010).
  12. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4 Pt 2), 046608 (2004).
    [Crossref] [PubMed]
  13. M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
    [Crossref] [PubMed]
  14. N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
    [Crossref] [PubMed]
  15. Y. Gu, Y. Cheng, J. Wang, and X. Liu, “Controlling sound transmission with density-near-zero acoustic membrane network,” J. Appl. Phys. 118(2), 024505 (2015).
    [Crossref]
  16. S. Zhong, T. Liu, J. Huang, and Y. Ma, “Giant power enhancement for quasi-omnidirectional light radiation via ε-near-zero materials,” Opt. Express 26(3), 2231–2241 (2018).
    [Crossref] [PubMed]
  17. J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmatic antennas,” Optica 3(3), 339–345 (2016).
    [Crossref]
  18. Y. Li and N. Engheta, “Supercoupling of surface waves with ε -near-zero metastructures,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 201107 (2014).
    [Crossref]
  19. Z. H. Zhou and Y. Li, “Effective epsilon-near-zero (ENZ) antenna based on transverse cut-off mode,” IEEE Trans. Antenn. Propag. 67(4), 2289–2297 (2019).
    [Crossref]
  20. I. Liberal, Y. Li, and N. Engheta, “Magnetic field concentration assisted by epsilon-near-zero media,” Philos Trans A Math Phys Eng Sci 375(2090), 20160059 (2017).
    [Crossref] [PubMed]
  21. I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
    [Crossref] [PubMed]
  22. M. Anderegg, B. Feuerbacher, and B. Fitton, “Optically excited longitudinal plasmons in potassium,” Phys. Rev. Lett. 27(23), 1565–1568 (1971).
    [Crossref]
  23. W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
    [Crossref]
  24. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  25. N. Kinsey, C. Devault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
    [Crossref]
  26. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  27. T. Tsutaoka, K. Fukuyama, H. Kinoshita, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range,” Appl. Phys. Lett. 103(26), 261906 (2013).
    [Crossref]
  28. T. Tsutaoka, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold,” Appl. Phys. Lett. 102(18), 181904 (2013).
    [Crossref]
  29. Y. H. Wu, M. G. Han, T. Liu, and L. J. Deng, “Studies on the microwave permittivity and electromagnetic wave absorption properties of Fe-based nano-composite flakes in different sizes,” J. Appl. Phys. 118(2), 023902 (2015).
    [Crossref]
  30. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
    [Crossref] [PubMed]
  31. L. Zhao and H. H. Jiang, “Optical properties of multilayer structure of alternating SiC and SiO2 Nanofilms at a wavelength of 10.6 μm,” J. Nanoelectron. Optoelectron. 9(3), 363–367 (2014).
    [Crossref]
  32. M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009).
    [Crossref] [PubMed]
  33. J. S. Marcos, M. G. Silveirinha, and N. Engheta, “μ -near-zero supercoupling,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195112 (2015).
    [Crossref]
  34. A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε -near-zero-filled narrow channels,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1 Pt 2), 016604 (2008).
    [Crossref] [PubMed]

2019 (1)

Z. H. Zhou and Y. Li, “Effective epsilon-near-zero (ENZ) antenna based on transverse cut-off mode,” IEEE Trans. Antenn. Propag. 67(4), 2289–2297 (2019).
[Crossref]

2018 (1)

2017 (3)

I. Liberal, Y. Li, and N. Engheta, “Magnetic field concentration assisted by epsilon-near-zero media,” Philos Trans A Math Phys Eng Sci 375(2090), 20160059 (2017).
[Crossref] [PubMed]

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref] [PubMed]

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

2016 (3)

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref] [PubMed]

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmatic antennas,” Optica 3(3), 339–345 (2016).
[Crossref]

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref] [PubMed]

2015 (4)

Y. Gu, Y. Cheng, J. Wang, and X. Liu, “Controlling sound transmission with density-near-zero acoustic membrane network,” J. Appl. Phys. 118(2), 024505 (2015).
[Crossref]

N. Kinsey, C. Devault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

Y. H. Wu, M. G. Han, T. Liu, and L. J. Deng, “Studies on the microwave permittivity and electromagnetic wave absorption properties of Fe-based nano-composite flakes in different sizes,” J. Appl. Phys. 118(2), 023902 (2015).
[Crossref]

J. S. Marcos, M. G. Silveirinha, and N. Engheta, “μ -near-zero supercoupling,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195112 (2015).
[Crossref]

2014 (2)

L. Zhao and H. H. Jiang, “Optical properties of multilayer structure of alternating SiC and SiO2 Nanofilms at a wavelength of 10.6 μm,” J. Nanoelectron. Optoelectron. 9(3), 363–367 (2014).
[Crossref]

Y. Li and N. Engheta, “Supercoupling of surface waves with ε -near-zero metastructures,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 201107 (2014).
[Crossref]

2013 (4)

N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
[Crossref] [PubMed]

T. Tsutaoka, K. Fukuyama, H. Kinoshita, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range,” Appl. Phys. Lett. 103(26), 261906 (2013).
[Crossref]

T. Tsutaoka, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold,” Appl. Phys. Lett. 102(18), 181904 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2010 (2)

Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 81(8), 085117 (2010).
[Crossref]

Y. Jin and S. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express 18(16), 16587–16593 (2010).
[Crossref] [PubMed]

2009 (1)

M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009).
[Crossref] [PubMed]

2008 (4)

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε -near-zero-filled narrow channels,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1 Pt 2), 016604 (2008).
[Crossref] [PubMed]

M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 233104 (2008).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

2007 (1)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B Condens. Matter Mater. Phys. 75(15), 155410 (2007).
[Crossref]

2006 (1)

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

2004 (1)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4 Pt 2), 046608 (2004).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1971 (1)

M. Anderegg, B. Feuerbacher, and B. Fitton, “Optically excited longitudinal plasmons in potassium,” Phys. Rev. Lett. 27(23), 1565–1568 (1971).
[Crossref]

1959 (1)

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

Alù, A.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε -near-zero-filled narrow channels,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1 Pt 2), 016604 (2008).
[Crossref] [PubMed]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B Condens. Matter Mater. Phys. 75(15), 155410 (2007).
[Crossref]

Anderegg, M.

M. Anderegg, B. Feuerbacher, and B. Fitton, “Optically excited longitudinal plasmons in potassium,” Phys. Rev. Lett. 27(23), 1565–1568 (1971).
[Crossref]

Belov, P. A.

M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 233104 (2008).
[Crossref]

Beruete, M.

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Bezares, F. J.

Boltasseva, A.

Caglayan, H.

Caldwell, J. D.

Cheng, Q.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Cheng, Y.

Y. Gu, Y. Cheng, J. Wang, and X. Liu, “Controlling sound transmission with density-near-zero acoustic membrane network,” J. Appl. Phys. 118(2), 024505 (2015).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cui, T. J.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Cummer, S. A.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Deng, L. J.

Y. H. Wu, M. G. Han, T. Liu, and L. J. Deng, “Studies on the microwave permittivity and electromagnetic wave absorption properties of Fe-based nano-composite flakes in different sizes,” J. Appl. Phys. 118(2), 023902 (2015).
[Crossref]

Devault, C.

Dutta, A.

Edwards, B.

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Ellis, C. T.

Engheta, N.

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref] [PubMed]

I. Liberal, Y. Li, and N. Engheta, “Magnetic field concentration assisted by epsilon-near-zero media,” Philos Trans A Math Phys Eng Sci 375(2090), 20160059 (2017).
[Crossref] [PubMed]

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmatic antennas,” Optica 3(3), 339–345 (2016).
[Crossref]

J. S. Marcos, M. G. Silveirinha, and N. Engheta, “μ -near-zero supercoupling,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195112 (2015).
[Crossref]

Y. Li and N. Engheta, “Supercoupling of surface waves with ε -near-zero metastructures,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 201107 (2014).
[Crossref]

N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
[Crossref] [PubMed]

M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009).
[Crossref] [PubMed]

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε -near-zero-filled narrow channels,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1 Pt 2), 016604 (2008).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B Condens. Matter Mater. Phys. 75(15), 155410 (2007).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Ferrera, M.

Feuerbacher, B.

M. Anderegg, B. Feuerbacher, and B. Fitton, “Optically excited longitudinal plasmons in potassium,” Phys. Rev. Lett. 27(23), 1565–1568 (1971).
[Crossref]

Fitton, B.

M. Anderegg, B. Feuerbacher, and B. Fitton, “Optically excited longitudinal plasmons in potassium,” Phys. Rev. Lett. 27(23), 1565–1568 (1971).
[Crossref]

Fukuyama, K.

T. Tsutaoka, K. Fukuyama, H. Kinoshita, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range,” Appl. Phys. Lett. 103(26), 261906 (2013).
[Crossref]

Gentselev, A.

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Giles, A. J.

Glembocki, O. J.

Gu, Y.

Y. Gu, Y. Cheng, J. Wang, and X. Liu, “Controlling sound transmission with density-near-zero acoustic membrane network,” J. Appl. Phys. 118(2), 024505 (2015).
[Crossref]

Han, M. G.

Y. H. Wu, M. G. Han, T. Liu, and L. J. Deng, “Studies on the microwave permittivity and electromagnetic wave absorption properties of Fe-based nano-composite flakes in different sizes,” J. Appl. Phys. 118(2), 023902 (2015).
[Crossref]

Hand, T.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Hatakeyama, K.

T. Tsutaoka, K. Fukuyama, H. Kinoshita, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range,” Appl. Phys. Lett. 103(26), 261906 (2013).
[Crossref]

T. Tsutaoka, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold,” Appl. Phys. Lett. 102(18), 181904 (2013).
[Crossref]

He, S.

He, S. L.

Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 81(8), 085117 (2010).
[Crossref]

Huang, J.

Javani, M. H.

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref] [PubMed]

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref] [PubMed]

Jiang, H. H.

L. Zhao and H. H. Jiang, “Optical properties of multilayer structure of alternating SiC and SiO2 Nanofilms at a wavelength of 10.6 μm,” J. Nanoelectron. Optoelectron. 9(3), 363–367 (2014).
[Crossref]

Jin, Y.

Y. Jin and S. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express 18(16), 16587–16593 (2010).
[Crossref] [PubMed]

Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 81(8), 085117 (2010).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kasagi, T.

T. Tsutaoka, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold,” Appl. Phys. Lett. 102(18), 181904 (2013).
[Crossref]

T. Tsutaoka, K. Fukuyama, H. Kinoshita, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range,” Appl. Phys. Lett. 103(26), 261906 (2013).
[Crossref]

Kildishev, A. V.

Kim, J.

Kinoshita, H.

T. Tsutaoka, K. Fukuyama, H. Kinoshita, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range,” Appl. Phys. Lett. 103(26), 261906 (2013).
[Crossref]

Kinsey, N.

Kleinman, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

Kuznetsov, S.

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Li, Y.

Z. H. Zhou and Y. Li, “Effective epsilon-near-zero (ENZ) antenna based on transverse cut-off mode,” IEEE Trans. Antenn. Propag. 67(4), 2289–2297 (2019).
[Crossref]

I. Liberal, Y. Li, and N. Engheta, “Magnetic field concentration assisted by epsilon-near-zero media,” Philos Trans A Math Phys Eng Sci 375(2090), 20160059 (2017).
[Crossref] [PubMed]

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref] [PubMed]

Y. Li and N. Engheta, “Supercoupling of surface waves with ε -near-zero metastructures,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 201107 (2014).
[Crossref]

Liberal, I.

I. Liberal, Y. Li, and N. Engheta, “Magnetic field concentration assisted by epsilon-near-zero media,” Philos Trans A Math Phys Eng Sci 375(2090), 20160059 (2017).
[Crossref] [PubMed]

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref] [PubMed]

Liu, R.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Liu, T.

S. Zhong, T. Liu, J. Huang, and Y. Ma, “Giant power enhancement for quasi-omnidirectional light radiation via ε-near-zero materials,” Opt. Express 26(3), 2231–2241 (2018).
[Crossref] [PubMed]

Y. H. Wu, M. G. Han, T. Liu, and L. J. Deng, “Studies on the microwave permittivity and electromagnetic wave absorption properties of Fe-based nano-composite flakes in different sizes,” J. Appl. Phys. 118(2), 023902 (2015).
[Crossref]

Liu, X.

Y. Gu, Y. Cheng, J. Wang, and X. Liu, “Controlling sound transmission with density-near-zero acoustic membrane network,” J. Appl. Phys. 118(2), 024505 (2015).
[Crossref]

Ma, Y.

Mahmoud, A. M.

Marcos, J. S.

J. S. Marcos, M. G. Silveirinha, and N. Engheta, “μ -near-zero supercoupling,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195112 (2015).
[Crossref]

Mock, J. J.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Naik, G. V.

Pacheco-Peña, V.

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B Condens. Matter Mater. Phys. 75(15), 155410 (2007).
[Crossref]

Shalaev, V. M.

N. Kinsey, C. Devault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Silveirinha, M.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Silveirinha, M. G.

J. S. Marcos, M. G. Silveirinha, and N. Engheta, “μ -near-zero supercoupling,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195112 (2015).
[Crossref]

M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009).
[Crossref] [PubMed]

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε -near-zero-filled narrow channels,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1 Pt 2), 016604 (2008).
[Crossref] [PubMed]

M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 233104 (2008).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B Condens. Matter Mater. Phys. 75(15), 155410 (2007).
[Crossref]

Smith, D. R.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Spitzer, W. G.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

Stockman, M. I.

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref] [PubMed]

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref] [PubMed]

Tischler, J. G.

Tsutaoka, T.

T. Tsutaoka, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold,” Appl. Phys. Lett. 102(18), 181904 (2013).
[Crossref]

T. Tsutaoka, K. Fukuyama, H. Kinoshita, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range,” Appl. Phys. Lett. 103(26), 261906 (2013).
[Crossref]

Walsh, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

Wang, J.

Y. Gu, Y. Cheng, J. Wang, and X. Liu, “Controlling sound transmission with density-near-zero acoustic membrane network,” J. Appl. Phys. 118(2), 024505 (2015).
[Crossref]

Wu, Y. H.

Y. H. Wu, M. G. Han, T. Liu, and L. J. Deng, “Studies on the microwave permittivity and electromagnetic wave absorption properties of Fe-based nano-composite flakes in different sizes,” J. Appl. Phys. 118(2), 023902 (2015).
[Crossref]

Yamamoto, S.

T. Tsutaoka, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold,” Appl. Phys. Lett. 102(18), 181904 (2013).
[Crossref]

T. Tsutaoka, K. Fukuyama, H. Kinoshita, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range,” Appl. Phys. Lett. 103(26), 261906 (2013).
[Crossref]

Young, M. E.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Zhang, P.

Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 81(8), 085117 (2010).
[Crossref]

Zhao, L.

L. Zhao and H. H. Jiang, “Optical properties of multilayer structure of alternating SiC and SiO2 Nanofilms at a wavelength of 10.6 μm,” J. Nanoelectron. Optoelectron. 9(3), 363–367 (2014).
[Crossref]

Zhong, S.

Zhou, Z. H.

Z. H. Zhou and Y. Li, “Effective epsilon-near-zero (ENZ) antenna based on transverse cut-off mode,” IEEE Trans. Antenn. Propag. 67(4), 2289–2297 (2019).
[Crossref]

Ziolkowski, R. W.

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4 Pt 2), 046608 (2004).
[Crossref] [PubMed]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

T. Tsutaoka, K. Fukuyama, H. Kinoshita, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range,” Appl. Phys. Lett. 103(26), 261906 (2013).
[Crossref]

T. Tsutaoka, T. Kasagi, S. Yamamoto, and K. Hatakeyama, “Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold,” Appl. Phys. Lett. 102(18), 181904 (2013).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

Z. H. Zhou and Y. Li, “Effective epsilon-near-zero (ENZ) antenna based on transverse cut-off mode,” IEEE Trans. Antenn. Propag. 67(4), 2289–2297 (2019).
[Crossref]

J. Appl. Phys. (2)

Y. H. Wu, M. G. Han, T. Liu, and L. J. Deng, “Studies on the microwave permittivity and electromagnetic wave absorption properties of Fe-based nano-composite flakes in different sizes,” J. Appl. Phys. 118(2), 023902 (2015).
[Crossref]

Y. Gu, Y. Cheng, J. Wang, and X. Liu, “Controlling sound transmission with density-near-zero acoustic membrane network,” J. Appl. Phys. 118(2), 024505 (2015).
[Crossref]

J. Nanoelectron. Optoelectron. (1)

L. Zhao and H. H. Jiang, “Optical properties of multilayer structure of alternating SiC and SiO2 Nanofilms at a wavelength of 10.6 μm,” J. Nanoelectron. Optoelectron. 9(3), 363–367 (2014).
[Crossref]

Opt. Express (2)

Optica (2)

Philos Trans A Math Phys Eng Sci (1)

I. Liberal, Y. Li, and N. Engheta, “Magnetic field concentration assisted by epsilon-near-zero media,” Philos Trans A Math Phys Eng Sci 375(2090), 20160059 (2017).
[Crossref] [PubMed]

Phys. Rev. (1)

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

Phys. Rev. Appl. (1)

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (5)

J. S. Marcos, M. G. Silveirinha, and N. Engheta, “μ -near-zero supercoupling,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195112 (2015).
[Crossref]

M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 233104 (2008).
[Crossref]

Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 81(8), 085117 (2010).
[Crossref]

Y. Li and N. Engheta, “Supercoupling of surface waves with ε -near-zero metastructures,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 201107 (2014).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B Condens. Matter Mater. Phys. 75(15), 155410 (2007).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4 Pt 2), 046608 (2004).
[Crossref] [PubMed]

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε -near-zero-filled narrow channels,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1 Pt 2), 016604 (2008).
[Crossref] [PubMed]

Phys. Rev. Lett. (7)

M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009).
[Crossref] [PubMed]

M. Anderegg, B. Feuerbacher, and B. Fitton, “Optically excited longitudinal plasmons in potassium,” Phys. Rev. Lett. 27(23), 1565–1568 (1971).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref] [PubMed]

Science (2)

N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
[Crossref] [PubMed]

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref] [PubMed]

Other (3)

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, (Wiley, 2006).

G. V. Eleftheriades and K. G. Balmain, Negative-Refraction Metamaterials: Fundamental Principles and Applications, (Wiley, 2005).

W. Cai and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications, (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematics of magnetic ENZ medium filled with dielectric dopants. (a) A 2D magnetic ENZ medium with several macroscopic non-magnetic dielectric dopants and an alternating magnetic current IM embedded in the ENZ medium whose magnetic field H is polarized along y axis.(b) The equivalent homogeneous 2D ENZ medium with the same cross-sectional shape and near-zero permittivity, but a uniform equivalent relative permeability μeff.
Fig. 2
Fig. 2 Effective relative permeability (μeff) of the doped magnetic ENZ medium (μr0 = 5) as a function of the rod radius rd.
Fig. 3
Fig. 3 The equivalent EMNZ medium realized by magnetic ENZ medium (μr0 = 5) filled with a dielectric dopant. The simulation result of magnetic field distribution with (a) an ideal EMNZ slab, (b) an ENZ slab with the same cross section area, (c) an ENZ body filled with a dopant (rd/λ0 = 0.15659), and (d) an ENZ body filled with a dopant (rd/λ0 = 0.15625).
Fig. 4
Fig. 4 The equivalent EMNZ medium realized by magnetic ENZ material with different permeability filled with a proper dopant. (a), (c), (e), and (g) indicate simulation results of magnetic field in ENZ material with different permeability (μr0 = −1, −0.5, 1.25, 2), respectively. (b), (d), (f), and (h) indicate the simulation results of magnetic field in ENZ material with different permeability (μr0 = −1, −0.5, 1.25, 2) filled with a proper dopant, respectively.
Fig. 5
Fig. 5 The comparison of EM wave transmission through ENZ slab with different values of permeability with and without dopant.
Fig. 6
Fig. 6 The simulation results of the practical Cu/YIG composite material (μr0 = 0.42924) filled with dielectric dopant. The simulated magnetic field distributions for (a) a Cu/YIG composite material slab, and (b) the slab with dielectric dopant (rd /λ0 = 0.1605). (c) The electromagnetic institutive parameters of the Cu/YIG composite material. (d) EM wave transmission through the Cu/YIG composite material (considered as an ENZ medium) filled with the dopant.
Fig. 7
Fig. 7 EM wave radiation in 2D magnetic ENZ material containing a dielectric dopant. Radiated magnetic field distributions with the 2D point source (a) embedded in an ENZ ring area, (b) in the center of the ENZ ring, (c) embedded in the ENZ ring containing a dielectric dopant, (d) in the center of the ENZ ring containing a dielectric dopant, (e) embedded in an EMNZ ring material with the same cross section, (f) embedded in an ENZ square ring (with the same cross section) containing a dielectric dopant.
Fig. 8
Fig. 8 Realization of electromagnetic wave tunneling effect based on the doped magnetic ENZ material. The simulated magnetic field distributions for EM wave propagating through a sub-wavelength slot in a PEC slab for different cases: (a) slotted PEC in the free space; (b) slotted PEC embedded in a magnetic ENZ slab (μr0 = 5); (c) slotted PEC embedded in an equivalent EMNZ material which is realized by doping the magnetic ENZ material with ten similar dielectric rods; (d) slotted PEC embedded in an EMNZ material with the same cross section area as that of the magnetic ENZ material in (b).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S 0 =S i=1 n S i .
l E t ·dl= S (× E 1 )· dS= S 0 jω μ r0 μ 0 H 1 ·d S 0 i=1 n S i jω μ ri μ 0 H i ·d S i I M ,
l E t ·dl= S (× E 2 )· dS= S jω μ eff μ 0 H 2 ·dS I M ,
μ eff μ 0 H 2 ·S= μ r0 μ 0 H 1 · S 0 + i=1 n S i μ ri μ 0 H i · d S i .
μ eff = μ r0 + i=1 n ( μ ri | H 2 |S S i H i ·d S i r0 S i S ).
H i = H 0 ψ n (r),
μ eff r0 + i=1 n 1 S [ μ ri S i ψ n (r) dS i - μ r0 S i ] .
ψ n (r) =J 0 ( k d r) /J 0 ( k d r d ),
μ eff r1 + 1 S ( S 1 J 0 ( k d r) J 0 ( k d r d ) dS- μ r1 S 1 ).

Metrics