Abstract

We propose an absolute distance measurement method using alternately oscillating optoelectronic oscillators (OEOs) with high speed, high precision, and long range, and describe the dynamic characteristics of the measurement system. Measurement and reference OEOs are oscillated using a 2×2 optical switch, and rough and fine measurements are achieved by low- and high-order-mode oscillation. The distance is determined by the loop length difference between the two OEOs. OEO length control is not necessary, so the system is simple and the time per measurement is only 40 ms. The maximum measurement error is 3.4 µm with an emulated distance of 7.5 km, and the relative measurement accuracy reaches 4.5×10−10.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Long-range, high-precision absolute distance measurement based on two optoelectronic oscillators

Ju Wang, Jinlong Yu, Wang Miao, Bin Sun, Shi Jia, Wenrui Wang, and Qiong Wu
Opt. Lett. 39(15) 4412-4415 (2014)

Improving accuracy of distance measurements based on an optoelectronic oscillator by measuring variation of fiber delay

Tao Zhang, Jigui Zhu, Tinghang Guo, Jing Wang, and Shenghua Ye
Appl. Opt. 52(15) 3495-3499 (2013)

Sinusoidal phase modulating absolute distance measurement interferometer combining frequency-sweeping and multi-wavelength interferometry

Shihua Zhang, Zheyi Xu, Benyong Chen, Liping Yan, and Jiandong Xie
Opt. Express 26(7) 9273-9284 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Hartig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology–Review and future trends,” CIRP Ann. 65(2), 643–665 (2016).
    [Crossref]
  2. B. D. Tapley, S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, “Grace measurements of mass variability in the Earth system,” Science 305(5683), 503–505 (2004).
    [Crossref]
  3. M. Navabi, M. Barati, and H. Bonyan, “Algebraic orbit elements difference description of dynamics models for satellite formation flying,” in Proceedings of International Conference on Recent Advances in Space Technologies277–280 (2013).
  4. J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legancy of the Apollo program,” Science 265(5171), 482–490 (1994).
    [Crossref]
  5. K. H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. 29(3), 179–182 (1998).
    [Crossref]
  6. H. J. Yang, J. Deibel, S. Nyberg, and K. Riles, “High-precision absolute distance and vibration measurement with frequency scanned interferometry,” Appl. Opt. 44(19), 3937–3944 (2005).
    [Crossref]
  7. G. D. Liu, C. Lu, B. G. Liu, F. D. Chen, and Y. Gan, “Combining sub-Nyquist sampling and chirp decomposition for a high-precision and speed absolute distance measurement method,” Appl. Opt. 55(35), 9974–9977 (2016).
    [Crossref]
  8. J. Dale, B. Hughes, A. J. Lancaster, A. J. Lewis, A. J. H. Reichold, and M. S. Warden, “Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells,” Opt. Express 22(20), 24869–24893 (2014).
    [Crossref]
  9. P. Florian, M. H. Karl, W. Martin, and A. Z. Ahmed, “Diode-laser-based high-precision absolute distance interferometer of 20 m range,” Appl. Opt. 48(32), 6188–6194 (2009).
    [Crossref]
  10. G. C. Wang, Y. S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. H. Yan, S. W. Kim, and Y. J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
    [Crossref]
  11. X. Y. Zhao, X. H. Qu, F. M. Zhang, Y. H. Zhao, and G. Q. Tang, “Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb,” Opt. Lett. 43(4), 807–810 (2018).
    [Crossref]
  12. J. Lee, Y. L. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [Crossref]
  13. J. Lee, K. Lee, S. Lee, S. W. Kim, and Y. J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
    [Crossref]
  14. X. Lu, S. Y. Zhang, C. G. Jeon, C. S. Kang, J. W. Kim, and K. B. Shi, “Time-of-flight detection of femtosecond laser pulses for precision measurement of large microelectronic step height,” Opt. Lett. 43(7), 1447–1450 (2018).
    [Crossref]
  15. K. N. Joo and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
    [Crossref]
  16. H. Z. Wu, F. M. Zhang, T. Y. Liu, J. S. Li, and X. H. Qu, “Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry,” Opt. Express 24(21), 24361–24376 (2016).
    [Crossref]
  17. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
    [Crossref]
  18. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precision absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  19. Z. B. Zhu, G. Y. Xu, K. Ni, Q. Zhou, and G. H. Wu, “Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement,” Opt. Express 26(5), 5747–5757 (2018).
    [Crossref]
  20. S. H. Zhang, Z. Y. Xu, B. Y. Chen, L. P. Yan, and J. D. Xie, “Sinusoidal phase modulating absolute distance measurement interferometer combining frequency-sweeping and multi-wavelength interferometry,” Opt. Express 26(7), 9273–9284 (2018).
    [Crossref]
  21. X. H. Zou, M. Li, W. Pan, B. Luo, L. S. Yan, and L. Y. Shao, “Optical length change measurement via RF frequency shift analysis of incoherent light source based optoelectronic oscillator,” Opt. Express 22(9), 11129–11139 (2014).
    [Crossref]
  22. J. Wang, J. L. Yu, W. Miao, B. Sun, S. Jia, W. R. Wang, and Q. Wu, “Long-range, high-precision absolute distance measurement based on two optoelectronic oscillators,” Opt. Lett. 39(15), 4412–4415 (2014).
    [Crossref]
  23. B. Chen, J. L. Yu, J. Wang, T. Y. Li, W. R. Wang, Y. Yang, and T. Y. Xie, “Inter-satellite range-finding method with high precision and large range based on optoelectronic resonance,” Chin. Opt. Lett. 14(11), 110608 (2016).
    [Crossref]
  24. X. S. Yao and L. Maleki, “Optoelectionic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [Crossref]
  25. S. Jia, J. L. Yu, J. Wang, W. R. Wang, Q. Wu, G. B. Huang, and E. Z. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).
    [Crossref]

2018 (4)

2016 (4)

2015 (2)

S. Jia, J. L. Yu, J. Wang, W. R. Wang, Q. Wu, G. B. Huang, and E. Z. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).
[Crossref]

G. C. Wang, Y. S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. H. Yan, S. W. Kim, and Y. J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
[Crossref]

2014 (3)

2012 (1)

J. Lee, K. Lee, S. Lee, S. W. Kim, and Y. J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[Crossref]

2010 (1)

J. Lee, Y. L. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

2009 (2)

P. Florian, M. H. Karl, W. Martin, and A. Z. Ahmed, “Diode-laser-based high-precision absolute distance interferometer of 20 m range,” Appl. Opt. 48(32), 6188–6194 (2009).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precision absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

2006 (1)

2005 (1)

2004 (2)

B. D. Tapley, S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, “Grace measurements of mass variability in the Earth system,” Science 305(5683), 503–505 (2004).
[Crossref]

J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
[Crossref]

1998 (1)

K. H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. 29(3), 179–182 (1998).
[Crossref]

1996 (1)

1994 (1)

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legancy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Ahmed, A. Z.

Barati, M.

M. Navabi, M. Barati, and H. Bonyan, “Algebraic orbit elements difference description of dynamics models for satellite formation flying,” in Proceedings of International Conference on Recent Advances in Space Technologies277–280 (2013).

Bechstein, K. H.

K. H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. 29(3), 179–182 (1998).
[Crossref]

Bender, P. L.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legancy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Bettadpur, S.

B. D. Tapley, S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, “Grace measurements of mass variability in the Earth system,” Science 305(5683), 503–505 (2004).
[Crossref]

Bonyan, H.

M. Navabi, M. Barati, and H. Bonyan, “Algebraic orbit elements difference description of dynamics models for satellite formation flying,” in Proceedings of International Conference on Recent Advances in Space Technologies277–280 (2013).

Chen, B.

Chen, B. Y.

Chen, F. D.

Chun, B. J.

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precision absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Dale, J.

Deibel, J.

Dickey, J. O.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legancy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Estler, W. T.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Hartig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology–Review and future trends,” CIRP Ann. 65(2), 643–665 (2016).
[Crossref]

Faller, J. E.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legancy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Florian, P.

Forbes, A.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Hartig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology–Review and future trends,” CIRP Ann. 65(2), 643–665 (2016).
[Crossref]

Fuchs, W.

K. H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. 29(3), 179–182 (1998).
[Crossref]

Galetto, M.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Hartig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology–Review and future trends,” CIRP Ann. 65(2), 643–665 (2016).
[Crossref]

Gan, Y.

Goch, G.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Hartig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology–Review and future trends,” CIRP Ann. 65(2), 643–665 (2016).
[Crossref]

Hartig, F.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Hartig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology–Review and future trends,” CIRP Ann. 65(2), 643–665 (2016).
[Crossref]

Huang, G. B.

S. Jia, J. L. Yu, J. Wang, W. R. Wang, Q. Wu, G. B. Huang, and E. Z. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).
[Crossref]

Hughes, B.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Hartig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology–Review and future trends,” CIRP Ann. 65(2), 643–665 (2016).
[Crossref]

J. Dale, B. Hughes, A. J. Lancaster, A. J. Lewis, A. J. H. Reichold, and M. S. Warden, “Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells,” Opt. Express 22(20), 24869–24893 (2014).
[Crossref]

Hyun, S.

Jang, Y. S.

Jeon, C. G.

Jia, S.

S. Jia, J. L. Yu, J. Wang, W. R. Wang, Q. Wu, G. B. Huang, and E. Z. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).
[Crossref]

J. Wang, J. L. Yu, W. Miao, B. Sun, S. Jia, W. R. Wang, and Q. Wu, “Long-range, high-precision absolute distance measurement based on two optoelectronic oscillators,” Opt. Lett. 39(15), 4412–4415 (2014).
[Crossref]

Joo, K. N.

Kang, C. S.

Kang, H. J.

Karl, M. H.

Kim, J. W.

Kim, S. W.

G. C. Wang, Y. S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. H. Yan, S. W. Kim, and Y. J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
[Crossref]

J. Lee, K. Lee, S. Lee, S. W. Kim, and Y. J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[Crossref]

J. Lee, Y. L. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

K. N. Joo and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref]

Kim, Y. J.

Kim, Y. L.

J. Lee, Y. L. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Knapp, W.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Hartig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology–Review and future trends,” CIRP Ann. 65(2), 643–665 (2016).
[Crossref]

Lancaster, A. J.

Lee, J.

J. Lee, K. Lee, S. Lee, S. W. Kim, and Y. J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[Crossref]

J. Lee, Y. L. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, K.

J. Lee, K. Lee, S. Lee, S. W. Kim, and Y. J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[Crossref]

J. Lee, Y. L. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, K. Lee, S. Lee, S. W. Kim, and Y. J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[Crossref]

J. Lee, Y. L. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lewis, A. J.

Li, J. S.

Li, M.

Li, T. Y.

Liu, B. G.

Liu, G. D.

Liu, T. Y.

Lu, C.

Lu, X.

Luo, B.

Maleki, L.

Martin, W.

Miao, W.

Morse, E.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Hartig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology–Review and future trends,” CIRP Ann. 65(2), 643–665 (2016).
[Crossref]

Navabi, M.

M. Navabi, M. Barati, and H. Bonyan, “Algebraic orbit elements difference description of dynamics models for satellite formation flying,” in Proceedings of International Conference on Recent Advances in Space Technologies277–280 (2013).

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precision absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precision absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newhall, X. X.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legancy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Ni, K.

Nyberg, S.

Pan, W.

Peterek, M.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Hartig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology–Review and future trends,” CIRP Ann. 65(2), 643–665 (2016).
[Crossref]

Qu, X. H.

Reichold, A. J. H.

Ricklefs, R. L.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legancy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Ries, J. C.

B. D. Tapley, S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, “Grace measurements of mass variability in the Earth system,” Science 305(5683), 503–505 (2004).
[Crossref]

Ries, J. G.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legancy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Riles, K.

Schmitt, R. H.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Hartig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology–Review and future trends,” CIRP Ann. 65(2), 643–665 (2016).
[Crossref]

Shao, L. Y.

Shelus, P. J.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legancy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Shi, K. B.

Sun, B.

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precision absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Tang, G. Q.

Tapley, B. D.

B. D. Tapley, S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, “Grace measurements of mass variability in the Earth system,” Science 305(5683), 503–505 (2004).
[Crossref]

Thompson, P. F.

B. D. Tapley, S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, “Grace measurements of mass variability in the Earth system,” Science 305(5683), 503–505 (2004).
[Crossref]

Veillet, C.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legancy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Wang, G. C.

Wang, J.

Wang, W. R.

Warden, M. S.

Watkins, M. M.

B. D. Tapley, S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, “Grace measurements of mass variability in the Earth system,” Science 305(5683), 503–505 (2004).
[Crossref]

Whipple, A. L.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legancy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Wiant, J. R.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legancy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Williams, J. G.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legancy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Wu, G. H.

Wu, H. Z.

Wu, Q.

S. Jia, J. L. Yu, J. Wang, W. R. Wang, Q. Wu, G. B. Huang, and E. Z. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).
[Crossref]

J. Wang, J. L. Yu, W. Miao, B. Sun, S. Jia, W. R. Wang, and Q. Wu, “Long-range, high-precision absolute distance measurement based on two optoelectronic oscillators,” Opt. Lett. 39(15), 4412–4415 (2014).
[Crossref]

Xie, J. D.

Xie, T. Y.

Xu, G. Y.

Xu, Z. Y.

Yan, L. P.

Yan, L. S.

Yan, S. H.

Yang, E. Z.

S. Jia, J. L. Yu, J. Wang, W. R. Wang, Q. Wu, G. B. Huang, and E. Z. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).
[Crossref]

Yang, H. J.

Yang, Y.

Yao, X. S.

Ye, J.

Yoder, C. F.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legancy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Yu, J. L.

Zhang, F. M.

Zhang, S. H.

Zhang, S. Y.

Zhao, X. Y.

Zhao, Y. H.

Zhou, Q.

Zhu, Z. B.

Zou, X. H.

Appl. Opt. (3)

Chin. Opt. Lett. (1)

CIRP Ann. (1)

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Hartig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology–Review and future trends,” CIRP Ann. 65(2), 643–665 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Jia, J. L. Yu, J. Wang, W. R. Wang, Q. Wu, G. B. Huang, and E. Z. Yang, “A novel optoelectronic oscillator based on wavelength multiplexing,” IEEE Photonics Technol. Lett. 27(2), 213–216 (2015).
[Crossref]

J. Opt. (1)

K. H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. 29(3), 179–182 (1998).
[Crossref]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

J. Lee, K. Lee, S. Lee, S. W. Kim, and Y. J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[Crossref]

Nat. Photonics (2)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precision absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

J. Lee, Y. L. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Opt. Express (7)

Z. B. Zhu, G. Y. Xu, K. Ni, Q. Zhou, and G. H. Wu, “Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement,” Opt. Express 26(5), 5747–5757 (2018).
[Crossref]

S. H. Zhang, Z. Y. Xu, B. Y. Chen, L. P. Yan, and J. D. Xie, “Sinusoidal phase modulating absolute distance measurement interferometer combining frequency-sweeping and multi-wavelength interferometry,” Opt. Express 26(7), 9273–9284 (2018).
[Crossref]

X. H. Zou, M. Li, W. Pan, B. Luo, L. S. Yan, and L. Y. Shao, “Optical length change measurement via RF frequency shift analysis of incoherent light source based optoelectronic oscillator,” Opt. Express 22(9), 11129–11139 (2014).
[Crossref]

K. N. Joo and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref]

H. Z. Wu, F. M. Zhang, T. Y. Liu, J. S. Li, and X. H. Qu, “Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry,” Opt. Express 24(21), 24361–24376 (2016).
[Crossref]

G. C. Wang, Y. S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. H. Yan, S. W. Kim, and Y. J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
[Crossref]

J. Dale, B. Hughes, A. J. Lancaster, A. J. Lewis, A. J. H. Reichold, and M. S. Warden, “Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells,” Opt. Express 22(20), 24869–24893 (2014).
[Crossref]

Opt. Lett. (4)

Science (2)

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legancy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

B. D. Tapley, S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, “Grace measurements of mass variability in the Earth system,” Science 305(5683), 503–505 (2004).
[Crossref]

Other (1)

M. Navabi, M. Barati, and H. Bonyan, “Algebraic orbit elements difference description of dynamics models for satellite formation flying,” in Proceedings of International Conference on Recent Advances in Space Technologies277–280 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Basic structure of ADM system based on OEOs. LD: laser diode, MOD: modulator, OS: magneto-optic switch, CL: collimator, SMF: single-mode fiber, PD: photodetector, AMP: amplifier, MS: microwave switch, BPF: band-pass filter, LPF: low-pass filter, PS: phase shifter, MC: microwave coupler, MIX: mixer.
Fig. 2.
Fig. 2. Measurement process. (a) Status of the OS, MS, and frequency measurement, C: cross status, P: parallel status; (b) Loop length measurements of OEO1 and OEO2 and measured distances.
Fig. 3.
Fig. 3. Measurement timing and results. (a) Switching time and frequency counting timing diagram; (b) Measured low-order oscillation frequencies of OEO1 and OEO2; (c) Measured high-order oscillation frequencies of OEO1 and OEO2; (d) Measured loop lengths and absolute distances.
Fig. 4.
Fig. 4. Measured distances and their residuals. Results obtained with SMF lengths of (a) 5 km, (b) 1 km, and (c) 10 km.
Fig. 5.
Fig. 5. Measured system dynamic characteristics. (a) Measured frequencies and corresponding loop lengths of OEO1 and OEO2; (b) Measured distances and residuals compared with interferometer results.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

L = c f b ,
L = c N h m f h m .
N h m = [ f h m f b ] ,
L = c [ f h m f b ] f h m .
Δ N l m i = [ Δ f l m i ] kHz / [ Δ f l m i ] kHz f b gcd f b gcd ,
N l m = [ f l m Δ f b min ] ,
f b = f l m N l m .
L = c N h m f h m = c [ f h m f b ] f h m .
L 1 = 2 n a i r D + n f i b e r L f i b e r + n c i r c u i t L c u r c u i t ,
L 2 = n f i b e r L f i b e r + n c i r c u i t L c u r c u i t ,
D i = 1 2 ( L 1 i + 1 L 2 i + L 2 i + 1 2 ) .

Metrics