Abstract

We demonstrate focusing and imaging through a scattering medium without access to the fluorescent object by using wavefront shaping. Our concept is based on utilizing the spatial fluorescence contrast which naturally exists in the hidden target object. By scanning the angle of incidence of the illuminating laser beam and maximizing the variation of the detected fluorescence signal from the object, as measured by a bucket detector at the front of the scattering medium, we are able to generate a tightly focused excitation spot. Thereafter, an image is obtained by scanning the focus over the object within the memory effect range. The requirements for applicability of the method and the comparison with speckle-correlation based focusing methods are discussed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Noninvasive light focusing in scattering media using speckle variance optimization

Antoine Boniface, Baptiste Blochet, Jonathan Dong, and Sylvain Gigan
Optica 6(11) 1381-1385 (2019)

Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity

Tengfei Wu, Jonathan Dong, Xiaopeng Shao, and Sylvain Gigan
Opt. Express 25(22) 27182-27194 (2017)

Three-dimensional imaging through scattering media using a single pixel detector

Kobra Soltanlou and Hamid Latifi
Appl. Opt. 58(28) 7716-7726 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
    [Crossref]
  2. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
    [Crossref]
  3. I. Freund, “Looking through walls and around corners,” Phys. A 168(1), 49–65 (1990).
    [Crossref]
  4. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [Crossref]
  5. O. Katz, E. Small, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
    [Crossref]
  6. I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35(8), 1245–1247 (2010).
    [Crossref]
  7. E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
    [Crossref]
  8. C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18(20), 20723–20731 (2010).
    [Crossref]
  9. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [Crossref]
  10. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982).
    [Crossref]
  11. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
    [Crossref]
  12. A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24(15), 16835–16855 (2016).
    [Crossref]
  13. C. Julie and G. Wetzstein, “Single-shot speckle correlation fluorescence microscopy in thick scattering tissue with image reconstruction priors,” J. Biophotonics 11(3), e201700224 (2018).
    [Crossref]
  14. M. Hofer, C. Soeller, S. Brasselet, and J. Bertolotti, “Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations,” Opt. Express 26(8), 9866–9881 (2018).
    [Crossref]
  15. G. Stern and O. Katz, “Noninvasive focusing through scattering layers using speckle correlations,” Opt. Lett. 44(1), 143–146 (2019).
    [Crossref]
  16. O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1(3), 170–174 (2014).
    [Crossref]
  17. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical wave through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
    [Crossref]
  18. D. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-Wesley (1989).
  19. D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
    [Crossref]
  20. E. Edrei and G. Scarcelli,”Focusing through scattering medium: a fundamental trade-off between speckle size and intensity enhancement,” arXiv:1808.07830 , (2018).

2019 (1)

2018 (2)

C. Julie and G. Wetzstein, “Single-shot speckle correlation fluorescence microscopy in thick scattering tissue with image reconstruction priors,” J. Biophotonics 11(3), e201700224 (2018).
[Crossref]

M. Hofer, C. Soeller, S. Brasselet, and J. Bertolotti, “Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations,” Opt. Express 26(8), 9866–9881 (2018).
[Crossref]

2016 (1)

2014 (2)

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1(3), 170–174 (2014).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

2012 (3)

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

2011 (2)

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

2010 (2)

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

1995 (1)

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

1990 (1)

I. Freund, “Looking through walls and around corners,” Phys. A 168(1), 49–65 (1990).
[Crossref]

1988 (1)

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical wave through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref]

1982 (1)

Aegerter, C. M.

Akbulut, D.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

Andresen, E. R.

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

Bertolotti, J.

M. Hofer, C. Soeller, S. Brasselet, and J. Bertolotti, “Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations,” Opt. Express 26(8), 9866–9881 (2018).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Boyd, R. W.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

Brasselet, S.

Brown, A. N.

Caravaca-Aguirre, A. M.

Conkey, D. B.

Edrei, E.

E. Edrei and G. Scarcelli,”Focusing through scattering medium: a fundamental trade-off between speckle size and intensity enhancement,” arXiv:1808.07830 , (2018).

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical wave through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref]

Fienup, J. R.

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Freund, I.

I. Freund, “Looking through walls and around corners,” Phys. A 168(1), 49–65 (1990).
[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical wave through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref]

Gigan, S.

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24(15), 16835–16855 (2016).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Goldberg, D. E.

D. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-Wesley (1989).

Grange, R.

Guan, Y.

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Hofer, M.

Hsieh, C.-L.

Julie, C.

C. Julie and G. Wetzstein, “Single-shot speckle correlation fluorescence microscopy in thick scattering tissue with image reconstruction priors,” J. Biophotonics 11(3), e201700224 (2018).
[Crossref]

Katz, O.

Klyshko, D. N.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

Laporte, G.

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

Oron, D.

Piestun, R.

Porat, A.

Psaltis, D.

Pu, Y.

Rigneault, H.

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical wave through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref]

Scarcelli, G.

E. Edrei and G. Scarcelli,”Focusing through scattering medium: a fundamental trade-off between speckle size and intensity enhancement,” arXiv:1808.07830 , (2018).

Sergienko, A. V.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

Shih, Y. H.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

Silberberg, Y.

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1(3), 170–174 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Small, E.

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1(3), 170–174 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Soeller, C.

Stern, G.

Strekalov, D. V.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

Vellekoop, I. M.

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

Wetzstein, G.

C. Julie and G. Wetzstein, “Single-shot speckle correlation fluorescence microscopy in thick scattering tissue with image reconstruction priors,” J. Biophotonics 11(3), e201700224 (2018).
[Crossref]

Appl. Opt. (1)

J. Biophotonics (1)

C. Julie and G. Wetzstein, “Single-shot speckle correlation fluorescence microscopy in thick scattering tissue with image reconstruction priors,” J. Biophotonics 11(3), e201700224 (2018).
[Crossref]

Nat. Photonics (3)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Phys. A (1)

I. Freund, “Looking through walls and around corners,” Phys. A 168(1), 49–65 (1990).
[Crossref]

Phys. Rev. Lett. (4)

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical wave through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref]

Other (2)

D. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-Wesley (1989).

E. Edrei and G. Scarcelli,”Focusing through scattering medium: a fundamental trade-off between speckle size and intensity enhancement,” arXiv:1808.07830 , (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Experiment set up (for the detailed setup see Appendix 1). A laser illuminates a thin scatterer (ground-glass) medium at an angle Ɵ. A hidden object behind the scattering medium is excited by the speckle field and fluoresces. The scattered fluorescence light is measured through the scatterer with a bulk detector. By scanning the illuminating angle Ɵ with two dimensional galvo mirrors, the speckle pattern is shifted over the object. The total intensity of the scattered fluorescence light will show small fluctuations as we shift the speckle pattern (b). For maximizing the amplitude of the variations in (b), the input field illuminating the random medium is controlled by a two-dimensional spatial light modulator (SLM) that is imaged on the diffuser. An iterative algorithm finds the spatial phase pattern that maximizes the standard deviation of the measured scattered light intensity (c). (The plots in (b) and (c) are illustrations and are for demonstration only).
Fig. 2.
Fig. 2. (a) Fluorescent hidden object; the image of the sample is taken from the transmission side of the diffuser, after averaging over 50 speckles illuminations (resulting in a constant excitation density). (b) Transmitted speckle pattern that illuminates the sample before the optimization. Due to absorption of the laser by the object, a dark print of the object is visible, which makes it convenient to visualize the proportions between the speckle field and the features of the object. (c) A bright spot as seen from the transmitted side of the diffuser (behind the scattering medium), after maximizing the variance of the fluorescent signal from the hidden object.
Fig. 3.
Fig. 3. (a) Reconstructed image of the hidden object as was retrieved by scanning the focus point over the sample, and collecting the fluorescent at the front side of the diffuser noninvasively. (b) Diffraction limited image of the hidden object taken from the transmitted side of the diffuser.
Fig. 4.
Fig. 4. (a) Fluorescent image of object with high degree of sparsity ; the image of the sample is taken from the transmission side of the diffuser, the yellow bars indicate the different scan range of the speckle field over the object as applied in (b) and (c). (b) While scanning the illuminating beam with small angular range, the optimization process converges to a solution which contains several bright foci; in particular, two bright spots can be seen from the transmitted side of the diffuser (c) By increasing the scanning angular range the optimization process converges to one single spot.
Fig. 5.
Fig. 5. Simulation results of optimization over different object’s geometries. (a),(c) and (e) Low sparsity, high sparsity and very high sparsity objects respectively are represented as binary matrix where white represent fluorescence spots and black is dark spots. For low and high sparsity the optimization results with a single focal point (b) and (d) . With very sparse object the optimization results with at least two enhanced focal spots (f). The foci are located at the same position where bright spots appear on the object.
Fig. 6.
Fig. 6. Detailed experiment set-up.

Metrics