Abstract

Master-slave carrier recovery is a digital signal processing technique that uses correlated phase noise in multi-channel receivers to eliminate redundant carrier recovery blocks. In this paper we experimentally investigate the performance of master-slave carrier recovery for multicore fiber transmission in the presence of inter-channel nonlinear interference. Using a triple parallel loop setup we jointly receive three spatial channels in a 7-core fiber for transmission distances of up to 1600 km. We find that an increased launch power causes a moderate penalty on the slave channels. Furthermore, we study the penalty from a non-zero inter-core skew.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single parity check-coded 16QAM over spatial superchannels in multicore fiber transmission

Tobias A. Eriksson, Ruben S. Luís, Benjamin J. Puttnam, José Manuel Delgado Mendinueta, Peter A. Andrekson, Magnus Karlsson, Yoshinari Awaji, Naoya Wada, and Erik Agrell
Opt. Express 23(11) 14569-14582 (2015)

Feed-forward carrier phase recovery for offset-QAM Nyquist WDM transmission

Haoyuan Tang, Meng Xiang, Songnian Fu, Ming Tang, Perry Shum, and Deming Liu
Opt. Express 23(5) 6215-6227 (2015)

High-capacity self-homodyne PDM-WDM-SDM transmission in a 19-core fiber

Benjamin J. Puttnam, Ruben Luis, José-Manuel Delgado-Mendinueta, Jun Sakaguchi, Werner Klaus, Yoshinari Awaji, Naoya Wada, Atsushi Kanno, and Tetsuya Kawanishi
Opt. Express 22(18) 21185-21191 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  2. D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, “10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in European Conference on Optical Communication (ECOC), (2017).
  3. G. Rademacher, R. S. Luís, B. J. Puttnam, T. A. Eriksson, E. Agrell, R. Maruyama, K. Aikawa, H. Furukawa, Y. Awaji, and N. Wada, “159 Tbit/s C+L band transmission over 1045 km 3-mode graded-index few-mode fiber,” in Optical Fiber Communication Conference (OFC), (2018), p. Th4C.4.
  4. J. C. Geyer, C. Rasmussen, B. Shah, T. Nielsen, and M. Givehchi, “Power efficient coherent transceivers,” in European Conference on Optical Communication (ECOC), (2016), pp. 109–111.
  5. M. D. Feuer, L. E. Nelson, X. Zhou, S. L. Woodward, R. Isaac, B. Zhu, T. F. Taunay, M. Fishteyn, J. M. Fini, and M. F. Yan, “Joint digital signal processing receivers for spatial superchannels,” IEEE Photonics Technol. Lett. 24(21), 1957–1960 (2012).
    [Crossref]
  6. R. G. H. Van Uden, C. M. Okonkwo, H. Chen, H. De Waardt, and A. M. J. Koonen, “28-GBd 32QAM FMF transmission with low complexity phase estimators and single DPLL,” IEEE Photonics Technol. Lett. 26(8), 765–768 (2014).
    [Crossref]
  7. L. Lundberg, E. Börjeson, C. Fougstedt, M. Mazur, M. Karlsson, P. A. Andrekson, and P. Larsson-Edefors, “Power consumption savings through joint carrier recovery for spectral and spatial superchannels,” in European Conference on Optical Communication (ECOC), (2018).
  8. R. Noé, “Phase noise-tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with feedforward carrier recovery,” J. Lightwave Technol. 23(2), 802–808 (2005).
    [Crossref]
  9. L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. A. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8(5), 718 (2018).
    [Crossref]
  10. D. V. Souto, B.-E. Olsson, C. Larsson, and D. A. A. Mello, “Joint-polarization and joint-subchannel carrier phase estimation for 16-QAM optical systems,” J. Lightwave Technol. 30(20), 3185–3191 (2012).
    [Crossref]
  11. D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Design of a 1 Tb/s superchannel coherent receiver,” J. Lightwave Technol. 34(6), 1453–1463 (2016).
    [Crossref]
  12. A. F. Alfredsson, E. Agrell, H. Wymeersch, B. J. Puttnam, G. Rademacher, R. S. Luis, and M. Karlsson, “Pilot-aided joint-channel carrier-phase estimation in space-division multiplexed multicore fiber transmission,” J. Lightwave Technol. 37(4), 1133–1142 (2019).
    [Crossref]
  13. M. Qiu, Q. Zhuge, Y. Gao, W. Wang, F. Zhang, and D. Plant, “Cycle slip mitigation with joint carrier phase recovery in coherent subcarrier multiplexing systems,” in Optical Fiber Communication Conference (OFC), (2016) p. Tu3K.2.
  14. R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express 21(22), 25685–25699 (2013).
    [Crossref]
  15. B. J. Puttnam, G. Rademacher, R. S. Luís, J. Sakaguchi, Y. Awaji, and N. Wada, “Inter-core skew measurements in temperature controlled multi-core fiber,” in Optical Fiber Communication Conference (OFC), (2018) p. Tu3B.3.
  16. B. J. Puttnam, J. Sakaguchi, J. M. D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link,” Opt. Express 21(2), 1561–1566 (2013).
    [Crossref]
  17. E. Le Taillandier de Gabory, M. Arikawa, Y. Hashimoto, T. Ito, and K. Fukuchi, “A shared carrier reception and processing scheme for compensating frequency offset and phase noise of space-division multiplexed signals over multicore fibers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), p. OM2C.2.
  18. R. S. Luís, B. J. Puttnam, G. Rademacher, Y. Awaji, and N. Wada, “PDM-128-QAM transmission using shared carrier reception in a 7-core multi-core fiber,” in Asia Communications and Photonics Conference (ACP), (2017), p. M1B.6.
  19. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [Crossref]
  20. R. S. Luis, B. J. Puttnam, J. M. Delgado Mendinueta, Y. Awaji, and N. Wada, “Impact of spatial channel skew on the performance of spatial-division multiplexed self-homodyne transmission systems,” in International Conference on Photonics in Switching (PS), (2015), pp. 37–39.
  21. R. S. Luis, B. J. Puttnam, Y. Awaji, and N. Wada, “OSNR penalties for non-zero skew in space-division multiplexed transmission link with self-homodyne detection,” in Asia Communications and Photonics Conference (APC), (2015), p. ASu5D.5.
  22. M. S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers employing multilevel formats,” J. Lightwave Technol. 35(5), 1125–1141 (2017).
    [Crossref]
  23. C. Fougstedt, P. Johannisson, L. Svensson, and P. Larsson-Edefors, “Dynamic equalizer power dissipation optimization,” in Optical Fiber Communication Conference (OFC), (2016), p. W4A.2.
  24. S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [Crossref]
  25. H. Sun, K.-T. Wu, S. Thomson, and Y. Wu, “Novel 16QAM carrier recovery based on blind phase search,” in European Conference on Optical Communication (ECOC), (2014).
  26. B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC), (2015).
  27. J. Sakaguchi, Y. Awaji, and N. Wada, “Optimal pilot-tone-aided multi-core fiber transmission using a wideband comb transmitter,” IEEE Photonics Technol. Lett. 29(15), 1245–1248 (2017).
    [Crossref]
  28. A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightwave Technol. 34(2), 707–721 (2016).
    [Crossref]
  29. T. Fehenberger, Calculate generalized mutual information, https://www.fehenberger.de/code/calcGMI.m . Accessed 2018-08-06.
  30. L. B. Du and A. J. Lowery, “The validity of “Odd and Even” channels for testing all-optical OFDM and Nyquist WDM long-haul fiber systems,” Opt. Express 20(26), B445–B451 (2012).
    [Crossref]
  31. D. J. Elson, G. Saavedra, K. Shi, D. Semrau, L. Galdino, R. Killey, B. C. Thomsen, and P. Bayvel, “Investigation of bandwidth loading in optical fibre transmission using amplified spontaneous emission noise,” Opt. Express 25(16), 19529–19537 (2017).
    [Crossref]
  32. R. S. Luís, G. Rademacher, B. J. Puttnam, Y. Awaji, and N. Wada, “Long distance crosstalk-supported transmission using homogeneous multicore fibers and SDM-MIMO demultiplexing,” Opt. Express 26(18), 24044–24053 (2018).
    [Crossref]

2019 (1)

2018 (2)

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. A. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8(5), 718 (2018).
[Crossref]

R. S. Luís, G. Rademacher, B. J. Puttnam, Y. Awaji, and N. Wada, “Long distance crosstalk-supported transmission using homogeneous multicore fibers and SDM-MIMO demultiplexing,” Opt. Express 26(18), 24044–24053 (2018).
[Crossref]

2017 (3)

2016 (2)

2014 (1)

R. G. H. Van Uden, C. M. Okonkwo, H. Chen, H. De Waardt, and A. M. J. Koonen, “28-GBd 32QAM FMF transmission with low complexity phase estimators and single DPLL,” IEEE Photonics Technol. Lett. 26(8), 765–768 (2014).
[Crossref]

2013 (3)

2012 (3)

2010 (1)

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

2009 (1)

2005 (1)

Agrell, E.

Aikawa, K.

G. Rademacher, R. S. Luís, B. J. Puttnam, T. A. Eriksson, E. Agrell, R. Maruyama, K. Aikawa, H. Furukawa, Y. Awaji, and N. Wada, “159 Tbit/s C+L band transmission over 1045 km 3-mode graded-index few-mode fiber,” in Optical Fiber Communication Conference (OFC), (2018), p. Th4C.4.

Alfredsson, A. F.

Alvarado, A.

Andrekson, P. A.

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. A. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8(5), 718 (2018).
[Crossref]

L. Lundberg, E. Börjeson, C. Fougstedt, M. Mazur, M. Karlsson, P. A. Andrekson, and P. Larsson-Edefors, “Power consumption savings through joint carrier recovery for spectral and spatial superchannels,” in European Conference on Optical Communication (ECOC), (2018).

Arikawa, M.

E. Le Taillandier de Gabory, M. Arikawa, Y. Hashimoto, T. Ito, and K. Fukuchi, “A shared carrier reception and processing scheme for compensating frequency offset and phase noise of space-division multiplexed signals over multicore fibers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), p. OM2C.2.

Awaji, Y.

R. S. Luís, G. Rademacher, B. J. Puttnam, Y. Awaji, and N. Wada, “Long distance crosstalk-supported transmission using homogeneous multicore fibers and SDM-MIMO demultiplexing,” Opt. Express 26(18), 24044–24053 (2018).
[Crossref]

J. Sakaguchi, Y. Awaji, and N. Wada, “Optimal pilot-tone-aided multi-core fiber transmission using a wideband comb transmitter,” IEEE Photonics Technol. Lett. 29(15), 1245–1248 (2017).
[Crossref]

B. J. Puttnam, J. Sakaguchi, J. M. D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link,” Opt. Express 21(2), 1561–1566 (2013).
[Crossref]

R. S. Luís, B. J. Puttnam, G. Rademacher, Y. Awaji, and N. Wada, “PDM-128-QAM transmission using shared carrier reception in a 7-core multi-core fiber,” in Asia Communications and Photonics Conference (ACP), (2017), p. M1B.6.

B. J. Puttnam, G. Rademacher, R. S. Luís, J. Sakaguchi, Y. Awaji, and N. Wada, “Inter-core skew measurements in temperature controlled multi-core fiber,” in Optical Fiber Communication Conference (OFC), (2018) p. Tu3B.3.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC), (2015).

R. S. Luis, B. J. Puttnam, Y. Awaji, and N. Wada, “OSNR penalties for non-zero skew in space-division multiplexed transmission link with self-homodyne detection,” in Asia Communications and Photonics Conference (APC), (2015), p. ASu5D.5.

R. S. Luis, B. J. Puttnam, J. M. Delgado Mendinueta, Y. Awaji, and N. Wada, “Impact of spatial channel skew on the performance of spatial-division multiplexed self-homodyne transmission systems,” in International Conference on Photonics in Switching (PS), (2015), pp. 37–39.

G. Rademacher, R. S. Luís, B. J. Puttnam, T. A. Eriksson, E. Agrell, R. Maruyama, K. Aikawa, H. Furukawa, Y. Awaji, and N. Wada, “159 Tbit/s C+L band transmission over 1045 km 3-mode graded-index few-mode fiber,” in Optical Fiber Communication Conference (OFC), (2018), p. Th4C.4.

Bayvel, P.

Beppu, S.

D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, “10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in European Conference on Optical Communication (ECOC), (2017).

Börjeson, E.

L. Lundberg, E. Börjeson, C. Fougstedt, M. Mazur, M. Karlsson, P. A. Andrekson, and P. Larsson-Edefors, “Power consumption savings through joint carrier recovery for spectral and spatial superchannels,” in European Conference on Optical Communication (ECOC), (2018).

Chen, H.

R. G. H. Van Uden, C. M. Okonkwo, H. Chen, H. De Waardt, and A. M. J. Koonen, “28-GBd 32QAM FMF transmission with low complexity phase estimators and single DPLL,” IEEE Photonics Technol. Lett. 26(8), 765–768 (2014).
[Crossref]

Dar, R.

De Waardt, H.

R. G. H. Van Uden, C. M. Okonkwo, H. Chen, H. De Waardt, and A. M. J. Koonen, “28-GBd 32QAM FMF transmission with low complexity phase estimators and single DPLL,” IEEE Photonics Technol. Lett. 26(8), 765–768 (2014).
[Crossref]

Delgado Mendinueta, J. M.

R. S. Luis, B. J. Puttnam, J. M. Delgado Mendinueta, Y. Awaji, and N. Wada, “Impact of spatial channel skew on the performance of spatial-division multiplexed self-homodyne transmission systems,” in International Conference on Photonics in Switching (PS), (2015), pp. 37–39.

Delgado Mendinueta, J.-M.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC), (2015).

Du, L. B.

Elson, D. J.

Eriksson, T. A.

G. Rademacher, R. S. Luís, B. J. Puttnam, T. A. Eriksson, E. Agrell, R. Maruyama, K. Aikawa, H. Furukawa, Y. Awaji, and N. Wada, “159 Tbit/s C+L band transmission over 1045 km 3-mode graded-index few-mode fiber,” in Optical Fiber Communication Conference (OFC), (2018), p. Th4C.4.

Faruk, M. S.

Feder, M.

Fehenberger, T.

T. Fehenberger, Calculate generalized mutual information, https://www.fehenberger.de/code/calcGMI.m . Accessed 2018-08-06.

Feuer, M. D.

M. D. Feuer, L. E. Nelson, X. Zhou, S. L. Woodward, R. Isaac, B. Zhu, T. F. Taunay, M. Fishteyn, J. M. Fini, and M. F. Yan, “Joint digital signal processing receivers for spatial superchannels,” IEEE Photonics Technol. Lett. 24(21), 1957–1960 (2012).
[Crossref]

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

M. D. Feuer, L. E. Nelson, X. Zhou, S. L. Woodward, R. Isaac, B. Zhu, T. F. Taunay, M. Fishteyn, J. M. Fini, and M. F. Yan, “Joint digital signal processing receivers for spatial superchannels,” IEEE Photonics Technol. Lett. 24(21), 1957–1960 (2012).
[Crossref]

Fishteyn, M.

M. D. Feuer, L. E. Nelson, X. Zhou, S. L. Woodward, R. Isaac, B. Zhu, T. F. Taunay, M. Fishteyn, J. M. Fini, and M. F. Yan, “Joint digital signal processing receivers for spatial superchannels,” IEEE Photonics Technol. Lett. 24(21), 1957–1960 (2012).
[Crossref]

Fougstedt, C.

L. Lundberg, E. Börjeson, C. Fougstedt, M. Mazur, M. Karlsson, P. A. Andrekson, and P. Larsson-Edefors, “Power consumption savings through joint carrier recovery for spectral and spatial superchannels,” in European Conference on Optical Communication (ECOC), (2018).

C. Fougstedt, P. Johannisson, L. Svensson, and P. Larsson-Edefors, “Dynamic equalizer power dissipation optimization,” in Optical Fiber Communication Conference (OFC), (2016), p. W4A.2.

Fukuchi, K.

E. Le Taillandier de Gabory, M. Arikawa, Y. Hashimoto, T. Ito, and K. Fukuchi, “A shared carrier reception and processing scheme for compensating frequency offset and phase noise of space-division multiplexed signals over multicore fibers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), p. OM2C.2.

Furukawa, H.

G. Rademacher, R. S. Luís, B. J. Puttnam, T. A. Eriksson, E. Agrell, R. Maruyama, K. Aikawa, H. Furukawa, Y. Awaji, and N. Wada, “159 Tbit/s C+L band transmission over 1045 km 3-mode graded-index few-mode fiber,” in Optical Fiber Communication Conference (OFC), (2018), p. Th4C.4.

Galdino, L.

Gao, Y.

M. Qiu, Q. Zhuge, Y. Gao, W. Wang, F. Zhang, and D. Plant, “Cycle slip mitigation with joint carrier phase recovery in coherent subcarrier multiplexing systems,” in Optical Fiber Communication Conference (OFC), (2016) p. Tu3K.2.

Geyer, J. C.

J. C. Geyer, C. Rasmussen, B. Shah, T. Nielsen, and M. Givehchi, “Power efficient coherent transceivers,” in European Conference on Optical Communication (ECOC), (2016), pp. 109–111.

Givehchi, M.

J. C. Geyer, C. Rasmussen, B. Shah, T. Nielsen, and M. Givehchi, “Power efficient coherent transceivers,” in European Conference on Optical Communication (ECOC), (2016), pp. 109–111.

Hashimoto, Y.

E. Le Taillandier de Gabory, M. Arikawa, Y. Hashimoto, T. Ito, and K. Fukuchi, “A shared carrier reception and processing scheme for compensating frequency offset and phase noise of space-division multiplexed signals over multicore fibers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), p. OM2C.2.

Hayashi, T.

D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, “10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in European Conference on Optical Communication (ECOC), (2017).

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC), (2015).

Hirano, M.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC), (2015).

Hoffmann, S.

Igarashi, K.

D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, “10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in European Conference on Optical Communication (ECOC), (2017).

Isaac, R.

M. D. Feuer, L. E. Nelson, X. Zhou, S. L. Woodward, R. Isaac, B. Zhu, T. F. Taunay, M. Fishteyn, J. M. Fini, and M. F. Yan, “Joint digital signal processing receivers for spatial superchannels,” IEEE Photonics Technol. Lett. 24(21), 1957–1960 (2012).
[Crossref]

Ito, T.

E. Le Taillandier de Gabory, M. Arikawa, Y. Hashimoto, T. Ito, and K. Fukuchi, “A shared carrier reception and processing scheme for compensating frequency offset and phase noise of space-division multiplexed signals over multicore fibers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), p. OM2C.2.

Johannisson, P.

C. Fougstedt, P. Johannisson, L. Svensson, and P. Larsson-Edefors, “Dynamic equalizer power dissipation optimization,” in Optical Fiber Communication Conference (OFC), (2016), p. W4A.2.

Kanno, A.

Karlsson, M.

A. F. Alfredsson, E. Agrell, H. Wymeersch, B. J. Puttnam, G. Rademacher, R. S. Luis, and M. Karlsson, “Pilot-aided joint-channel carrier-phase estimation in space-division multiplexed multicore fiber transmission,” J. Lightwave Technol. 37(4), 1133–1142 (2019).
[Crossref]

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. A. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8(5), 718 (2018).
[Crossref]

L. Lundberg, E. Börjeson, C. Fougstedt, M. Mazur, M. Karlsson, P. A. Andrekson, and P. Larsson-Edefors, “Power consumption savings through joint carrier recovery for spectral and spatial superchannels,” in European Conference on Optical Communication (ECOC), (2018).

Kawanishi, T.

Killey, R.

Klaus, W.

B. J. Puttnam, J. Sakaguchi, J. M. D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link,” Opt. Express 21(2), 1561–1566 (2013).
[Crossref]

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC), (2015).

Koike-Akino, T.

Kojima, K.

Koonen, A. M. J.

R. G. H. Van Uden, C. M. Okonkwo, H. Chen, H. De Waardt, and A. M. J. Koonen, “28-GBd 32QAM FMF transmission with low complexity phase estimators and single DPLL,” IEEE Photonics Technol. Lett. 26(8), 765–768 (2014).
[Crossref]

Larsson, C.

Larsson-Edefors, P.

L. Lundberg, E. Börjeson, C. Fougstedt, M. Mazur, M. Karlsson, P. A. Andrekson, and P. Larsson-Edefors, “Power consumption savings through joint carrier recovery for spectral and spatial superchannels,” in European Conference on Optical Communication (ECOC), (2018).

C. Fougstedt, P. Johannisson, L. Svensson, and P. Larsson-Edefors, “Dynamic equalizer power dissipation optimization,” in Optical Fiber Communication Conference (OFC), (2016), p. W4A.2.

Lavery, D.

Le Taillandier de Gabory, E.

E. Le Taillandier de Gabory, M. Arikawa, Y. Hashimoto, T. Ito, and K. Fukuchi, “A shared carrier reception and processing scheme for compensating frequency offset and phase noise of space-division multiplexed signals over multicore fibers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), p. OM2C.2.

Lorences-Riesgo, A.

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. A. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8(5), 718 (2018).
[Crossref]

Lowery, A. J.

Luis, R. S.

A. F. Alfredsson, E. Agrell, H. Wymeersch, B. J. Puttnam, G. Rademacher, R. S. Luis, and M. Karlsson, “Pilot-aided joint-channel carrier-phase estimation in space-division multiplexed multicore fiber transmission,” J. Lightwave Technol. 37(4), 1133–1142 (2019).
[Crossref]

R. S. Luis, B. J. Puttnam, J. M. Delgado Mendinueta, Y. Awaji, and N. Wada, “Impact of spatial channel skew on the performance of spatial-division multiplexed self-homodyne transmission systems,” in International Conference on Photonics in Switching (PS), (2015), pp. 37–39.

R. S. Luis, B. J. Puttnam, Y. Awaji, and N. Wada, “OSNR penalties for non-zero skew in space-division multiplexed transmission link with self-homodyne detection,” in Asia Communications and Photonics Conference (APC), (2015), p. ASu5D.5.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC), (2015).

Luís, R. S.

R. S. Luís, G. Rademacher, B. J. Puttnam, Y. Awaji, and N. Wada, “Long distance crosstalk-supported transmission using homogeneous multicore fibers and SDM-MIMO demultiplexing,” Opt. Express 26(18), 24044–24053 (2018).
[Crossref]

B. J. Puttnam, G. Rademacher, R. S. Luís, J. Sakaguchi, Y. Awaji, and N. Wada, “Inter-core skew measurements in temperature controlled multi-core fiber,” in Optical Fiber Communication Conference (OFC), (2018) p. Tu3B.3.

G. Rademacher, R. S. Luís, B. J. Puttnam, T. A. Eriksson, E. Agrell, R. Maruyama, K. Aikawa, H. Furukawa, Y. Awaji, and N. Wada, “159 Tbit/s C+L band transmission over 1045 km 3-mode graded-index few-mode fiber,” in Optical Fiber Communication Conference (OFC), (2018), p. Th4C.4.

R. S. Luís, B. J. Puttnam, G. Rademacher, Y. Awaji, and N. Wada, “PDM-128-QAM transmission using shared carrier reception in a 7-core multi-core fiber,” in Asia Communications and Photonics Conference (ACP), (2017), p. M1B.6.

Lundberg, L.

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. A. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8(5), 718 (2018).
[Crossref]

L. Lundberg, E. Börjeson, C. Fougstedt, M. Mazur, M. Karlsson, P. A. Andrekson, and P. Larsson-Edefors, “Power consumption savings through joint carrier recovery for spectral and spatial superchannels,” in European Conference on Optical Communication (ECOC), (2018).

Maher, R.

Marciante, J.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC), (2015).

Maruyama, R.

G. Rademacher, R. S. Luís, B. J. Puttnam, T. A. Eriksson, E. Agrell, R. Maruyama, K. Aikawa, H. Furukawa, Y. Awaji, and N. Wada, “159 Tbit/s C+L band transmission over 1045 km 3-mode graded-index few-mode fiber,” in Optical Fiber Communication Conference (OFC), (2018), p. Th4C.4.

Mazur, M.

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. A. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8(5), 718 (2018).
[Crossref]

L. Lundberg, E. Börjeson, C. Fougstedt, M. Mazur, M. Karlsson, P. A. Andrekson, and P. Larsson-Edefors, “Power consumption savings through joint carrier recovery for spectral and spatial superchannels,” in European Conference on Optical Communication (ECOC), (2018).

Mecozzi, A.

Mello, D. A. A.

Mendinueta, J. M. D.

Millar, D. S.

Morita, I.

D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, “10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in European Conference on Optical Communication (ECOC), (2017).

Nagashima, T.

D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, “10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in European Conference on Optical Communication (ECOC), (2017).

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

M. D. Feuer, L. E. Nelson, X. Zhou, S. L. Woodward, R. Isaac, B. Zhu, T. F. Taunay, M. Fishteyn, J. M. Fini, and M. F. Yan, “Joint digital signal processing receivers for spatial superchannels,” IEEE Photonics Technol. Lett. 24(21), 1957–1960 (2012).
[Crossref]

Nielsen, T.

J. C. Geyer, C. Rasmussen, B. Shah, T. Nielsen, and M. Givehchi, “Power efficient coherent transceivers,” in European Conference on Optical Communication (ECOC), (2016), pp. 109–111.

Noé, R.

Okonkwo, C. M.

R. G. H. Van Uden, C. M. Okonkwo, H. Chen, H. De Waardt, and A. M. J. Koonen, “28-GBd 32QAM FMF transmission with low complexity phase estimators and single DPLL,” IEEE Photonics Technol. Lett. 26(8), 765–768 (2014).
[Crossref]

Olsson, B.-E.

Pajovic, M.

Parsons, K.

Paskov, M.

Pfau, T.

Plant, D.

M. Qiu, Q. Zhuge, Y. Gao, W. Wang, F. Zhang, and D. Plant, “Cycle slip mitigation with joint carrier phase recovery in coherent subcarrier multiplexing systems,” in Optical Fiber Communication Conference (OFC), (2016) p. Tu3K.2.

Puttnam, B. J.

A. F. Alfredsson, E. Agrell, H. Wymeersch, B. J. Puttnam, G. Rademacher, R. S. Luis, and M. Karlsson, “Pilot-aided joint-channel carrier-phase estimation in space-division multiplexed multicore fiber transmission,” J. Lightwave Technol. 37(4), 1133–1142 (2019).
[Crossref]

R. S. Luís, G. Rademacher, B. J. Puttnam, Y. Awaji, and N. Wada, “Long distance crosstalk-supported transmission using homogeneous multicore fibers and SDM-MIMO demultiplexing,” Opt. Express 26(18), 24044–24053 (2018).
[Crossref]

B. J. Puttnam, J. Sakaguchi, J. M. D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link,” Opt. Express 21(2), 1561–1566 (2013).
[Crossref]

G. Rademacher, R. S. Luís, B. J. Puttnam, T. A. Eriksson, E. Agrell, R. Maruyama, K. Aikawa, H. Furukawa, Y. Awaji, and N. Wada, “159 Tbit/s C+L band transmission over 1045 km 3-mode graded-index few-mode fiber,” in Optical Fiber Communication Conference (OFC), (2018), p. Th4C.4.

R. S. Luís, B. J. Puttnam, G. Rademacher, Y. Awaji, and N. Wada, “PDM-128-QAM transmission using shared carrier reception in a 7-core multi-core fiber,” in Asia Communications and Photonics Conference (ACP), (2017), p. M1B.6.

R. S. Luis, B. J. Puttnam, J. M. Delgado Mendinueta, Y. Awaji, and N. Wada, “Impact of spatial channel skew on the performance of spatial-division multiplexed self-homodyne transmission systems,” in International Conference on Photonics in Switching (PS), (2015), pp. 37–39.

B. J. Puttnam, G. Rademacher, R. S. Luís, J. Sakaguchi, Y. Awaji, and N. Wada, “Inter-core skew measurements in temperature controlled multi-core fiber,” in Optical Fiber Communication Conference (OFC), (2018) p. Tu3B.3.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC), (2015).

R. S. Luis, B. J. Puttnam, Y. Awaji, and N. Wada, “OSNR penalties for non-zero skew in space-division multiplexed transmission link with self-homodyne detection,” in Asia Communications and Photonics Conference (APC), (2015), p. ASu5D.5.

Qiu, M.

M. Qiu, Q. Zhuge, Y. Gao, W. Wang, F. Zhang, and D. Plant, “Cycle slip mitigation with joint carrier phase recovery in coherent subcarrier multiplexing systems,” in Optical Fiber Communication Conference (OFC), (2016) p. Tu3K.2.

Rademacher, G.

A. F. Alfredsson, E. Agrell, H. Wymeersch, B. J. Puttnam, G. Rademacher, R. S. Luis, and M. Karlsson, “Pilot-aided joint-channel carrier-phase estimation in space-division multiplexed multicore fiber transmission,” J. Lightwave Technol. 37(4), 1133–1142 (2019).
[Crossref]

R. S. Luís, G. Rademacher, B. J. Puttnam, Y. Awaji, and N. Wada, “Long distance crosstalk-supported transmission using homogeneous multicore fibers and SDM-MIMO demultiplexing,” Opt. Express 26(18), 24044–24053 (2018).
[Crossref]

B. J. Puttnam, G. Rademacher, R. S. Luís, J. Sakaguchi, Y. Awaji, and N. Wada, “Inter-core skew measurements in temperature controlled multi-core fiber,” in Optical Fiber Communication Conference (OFC), (2018) p. Tu3B.3.

G. Rademacher, R. S. Luís, B. J. Puttnam, T. A. Eriksson, E. Agrell, R. Maruyama, K. Aikawa, H. Furukawa, Y. Awaji, and N. Wada, “159 Tbit/s C+L band transmission over 1045 km 3-mode graded-index few-mode fiber,” in Optical Fiber Communication Conference (OFC), (2018), p. Th4C.4.

R. S. Luís, B. J. Puttnam, G. Rademacher, Y. Awaji, and N. Wada, “PDM-128-QAM transmission using shared carrier reception in a 7-core multi-core fiber,” in Asia Communications and Photonics Conference (ACP), (2017), p. M1B.6.

Rasmussen, C.

J. C. Geyer, C. Rasmussen, B. Shah, T. Nielsen, and M. Givehchi, “Power efficient coherent transceivers,” in European Conference on Optical Communication (ECOC), (2016), pp. 109–111.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Saavedra, G.

Sakaguchi, J.

J. Sakaguchi, Y. Awaji, and N. Wada, “Optimal pilot-tone-aided multi-core fiber transmission using a wideband comb transmitter,” IEEE Photonics Technol. Lett. 29(15), 1245–1248 (2017).
[Crossref]

B. J. Puttnam, J. Sakaguchi, J. M. D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link,” Opt. Express 21(2), 1561–1566 (2013).
[Crossref]

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC), (2015).

B. J. Puttnam, G. Rademacher, R. S. Luís, J. Sakaguchi, Y. Awaji, and N. Wada, “Inter-core skew measurements in temperature controlled multi-core fiber,” in Optical Fiber Communication Conference (OFC), (2018) p. Tu3B.3.

Savory, S. J.

Schröder, J.

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. A. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8(5), 718 (2018).
[Crossref]

Semrau, D.

Shah, B.

J. C. Geyer, C. Rasmussen, B. Shah, T. Nielsen, and M. Givehchi, “Power efficient coherent transceivers,” in European Conference on Optical Communication (ECOC), (2016), pp. 109–111.

Shi, K.

Shtaif, M.

Soma, D.

D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, “10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in European Conference on Optical Communication (ECOC), (2017).

Souto, D. V.

Sumita, S.

D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, “10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in European Conference on Optical Communication (ECOC), (2017).

Sun, H.

H. Sun, K.-T. Wu, S. Thomson, and Y. Wu, “Novel 16QAM carrier recovery based on blind phase search,” in European Conference on Optical Communication (ECOC), (2014).

Suzuki, M.

D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, “10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in European Conference on Optical Communication (ECOC), (2017).

D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, “10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in European Conference on Optical Communication (ECOC), (2017).

Svensson, L.

C. Fougstedt, P. Johannisson, L. Svensson, and P. Larsson-Edefors, “Dynamic equalizer power dissipation optimization,” in Optical Fiber Communication Conference (OFC), (2016), p. W4A.2.

Takahashi, H.

D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, “10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in European Conference on Optical Communication (ECOC), (2017).

Tamura, Y.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC), (2015).

Taunay, T. F.

M. D. Feuer, L. E. Nelson, X. Zhou, S. L. Woodward, R. Isaac, B. Zhu, T. F. Taunay, M. Fishteyn, J. M. Fini, and M. F. Yan, “Joint digital signal processing receivers for spatial superchannels,” IEEE Photonics Technol. Lett. 24(21), 1957–1960 (2012).
[Crossref]

Thomsen, B. C.

Thomson, S.

H. Sun, K.-T. Wu, S. Thomson, and Y. Wu, “Novel 16QAM carrier recovery based on blind phase search,” in European Conference on Optical Communication (ECOC), (2014).

Torres-Company, V.

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. A. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8(5), 718 (2018).
[Crossref]

Tsuritani, T.

D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, “10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in European Conference on Optical Communication (ECOC), (2017).

Van Uden, R. G. H.

R. G. H. Van Uden, C. M. Okonkwo, H. Chen, H. De Waardt, and A. M. J. Koonen, “28-GBd 32QAM FMF transmission with low complexity phase estimators and single DPLL,” IEEE Photonics Technol. Lett. 26(8), 765–768 (2014).
[Crossref]

Wada, N.

R. S. Luís, G. Rademacher, B. J. Puttnam, Y. Awaji, and N. Wada, “Long distance crosstalk-supported transmission using homogeneous multicore fibers and SDM-MIMO demultiplexing,” Opt. Express 26(18), 24044–24053 (2018).
[Crossref]

J. Sakaguchi, Y. Awaji, and N. Wada, “Optimal pilot-tone-aided multi-core fiber transmission using a wideband comb transmitter,” IEEE Photonics Technol. Lett. 29(15), 1245–1248 (2017).
[Crossref]

B. J. Puttnam, J. Sakaguchi, J. M. D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link,” Opt. Express 21(2), 1561–1566 (2013).
[Crossref]

G. Rademacher, R. S. Luís, B. J. Puttnam, T. A. Eriksson, E. Agrell, R. Maruyama, K. Aikawa, H. Furukawa, Y. Awaji, and N. Wada, “159 Tbit/s C+L band transmission over 1045 km 3-mode graded-index few-mode fiber,” in Optical Fiber Communication Conference (OFC), (2018), p. Th4C.4.

R. S. Luis, B. J. Puttnam, J. M. Delgado Mendinueta, Y. Awaji, and N. Wada, “Impact of spatial channel skew on the performance of spatial-division multiplexed self-homodyne transmission systems,” in International Conference on Photonics in Switching (PS), (2015), pp. 37–39.

R. S. Luis, B. J. Puttnam, Y. Awaji, and N. Wada, “OSNR penalties for non-zero skew in space-division multiplexed transmission link with self-homodyne detection,” in Asia Communications and Photonics Conference (APC), (2015), p. ASu5D.5.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC), (2015).

B. J. Puttnam, G. Rademacher, R. S. Luís, J. Sakaguchi, Y. Awaji, and N. Wada, “Inter-core skew measurements in temperature controlled multi-core fiber,” in Optical Fiber Communication Conference (OFC), (2018) p. Tu3B.3.

R. S. Luís, B. J. Puttnam, G. Rademacher, Y. Awaji, and N. Wada, “PDM-128-QAM transmission using shared carrier reception in a 7-core multi-core fiber,” in Asia Communications and Photonics Conference (ACP), (2017), p. M1B.6.

Wakayama, Y.

D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, “10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in European Conference on Optical Communication (ECOC), (2017).

Wang, W.

M. Qiu, Q. Zhuge, Y. Gao, W. Wang, F. Zhang, and D. Plant, “Cycle slip mitigation with joint carrier phase recovery in coherent subcarrier multiplexing systems,” in Optical Fiber Communication Conference (OFC), (2016) p. Tu3K.2.

Woodward, S. L.

M. D. Feuer, L. E. Nelson, X. Zhou, S. L. Woodward, R. Isaac, B. Zhu, T. F. Taunay, M. Fishteyn, J. M. Fini, and M. F. Yan, “Joint digital signal processing receivers for spatial superchannels,” IEEE Photonics Technol. Lett. 24(21), 1957–1960 (2012).
[Crossref]

Wu, K.-T.

H. Sun, K.-T. Wu, S. Thomson, and Y. Wu, “Novel 16QAM carrier recovery based on blind phase search,” in European Conference on Optical Communication (ECOC), (2014).

Wu, Y.

H. Sun, K.-T. Wu, S. Thomson, and Y. Wu, “Novel 16QAM carrier recovery based on blind phase search,” in European Conference on Optical Communication (ECOC), (2014).

Wymeersch, H.

Yan, M. F.

M. D. Feuer, L. E. Nelson, X. Zhou, S. L. Woodward, R. Isaac, B. Zhu, T. F. Taunay, M. Fishteyn, J. M. Fini, and M. F. Yan, “Joint digital signal processing receivers for spatial superchannels,” IEEE Photonics Technol. Lett. 24(21), 1957–1960 (2012).
[Crossref]

Zhang, F.

M. Qiu, Q. Zhuge, Y. Gao, W. Wang, F. Zhang, and D. Plant, “Cycle slip mitigation with joint carrier phase recovery in coherent subcarrier multiplexing systems,” in Optical Fiber Communication Conference (OFC), (2016) p. Tu3K.2.

Zhou, X.

M. D. Feuer, L. E. Nelson, X. Zhou, S. L. Woodward, R. Isaac, B. Zhu, T. F. Taunay, M. Fishteyn, J. M. Fini, and M. F. Yan, “Joint digital signal processing receivers for spatial superchannels,” IEEE Photonics Technol. Lett. 24(21), 1957–1960 (2012).
[Crossref]

Zhu, B.

M. D. Feuer, L. E. Nelson, X. Zhou, S. L. Woodward, R. Isaac, B. Zhu, T. F. Taunay, M. Fishteyn, J. M. Fini, and M. F. Yan, “Joint digital signal processing receivers for spatial superchannels,” IEEE Photonics Technol. Lett. 24(21), 1957–1960 (2012).
[Crossref]

Zhuge, Q.

M. Qiu, Q. Zhuge, Y. Gao, W. Wang, F. Zhang, and D. Plant, “Cycle slip mitigation with joint carrier phase recovery in coherent subcarrier multiplexing systems,” in Optical Fiber Communication Conference (OFC), (2016) p. Tu3K.2.

Appl. Sci. (1)

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. A. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8(5), 718 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. D. Feuer, L. E. Nelson, X. Zhou, S. L. Woodward, R. Isaac, B. Zhu, T. F. Taunay, M. Fishteyn, J. M. Fini, and M. F. Yan, “Joint digital signal processing receivers for spatial superchannels,” IEEE Photonics Technol. Lett. 24(21), 1957–1960 (2012).
[Crossref]

R. G. H. Van Uden, C. M. Okonkwo, H. Chen, H. De Waardt, and A. M. J. Koonen, “28-GBd 32QAM FMF transmission with low complexity phase estimators and single DPLL,” IEEE Photonics Technol. Lett. 26(8), 765–768 (2014).
[Crossref]

J. Sakaguchi, Y. Awaji, and N. Wada, “Optimal pilot-tone-aided multi-core fiber transmission using a wideband comb transmitter,” IEEE Photonics Technol. Lett. 29(15), 1245–1248 (2017).
[Crossref]

J. Lightwave Technol. (7)

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightwave Technol. 34(2), 707–721 (2016).
[Crossref]

D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Design of a 1 Tb/s superchannel coherent receiver,” J. Lightwave Technol. 34(6), 1453–1463 (2016).
[Crossref]

R. Noé, “Phase noise-tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with feedforward carrier recovery,” J. Lightwave Technol. 23(2), 802–808 (2005).
[Crossref]

M. S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers employing multilevel formats,” J. Lightwave Technol. 35(5), 1125–1141 (2017).
[Crossref]

A. F. Alfredsson, E. Agrell, H. Wymeersch, B. J. Puttnam, G. Rademacher, R. S. Luis, and M. Karlsson, “Pilot-aided joint-channel carrier-phase estimation in space-division multiplexed multicore fiber transmission,” J. Lightwave Technol. 37(4), 1133–1142 (2019).
[Crossref]

D. V. Souto, B.-E. Olsson, C. Larsson, and D. A. A. Mello, “Joint-polarization and joint-subchannel carrier phase estimation for 16-QAM optical systems,” J. Lightwave Technol. 30(20), 3185–3191 (2012).
[Crossref]

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
[Crossref]

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (5)

Other (14)

D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, “10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in European Conference on Optical Communication (ECOC), (2017).

G. Rademacher, R. S. Luís, B. J. Puttnam, T. A. Eriksson, E. Agrell, R. Maruyama, K. Aikawa, H. Furukawa, Y. Awaji, and N. Wada, “159 Tbit/s C+L band transmission over 1045 km 3-mode graded-index few-mode fiber,” in Optical Fiber Communication Conference (OFC), (2018), p. Th4C.4.

J. C. Geyer, C. Rasmussen, B. Shah, T. Nielsen, and M. Givehchi, “Power efficient coherent transceivers,” in European Conference on Optical Communication (ECOC), (2016), pp. 109–111.

L. Lundberg, E. Börjeson, C. Fougstedt, M. Mazur, M. Karlsson, P. A. Andrekson, and P. Larsson-Edefors, “Power consumption savings through joint carrier recovery for spectral and spatial superchannels,” in European Conference on Optical Communication (ECOC), (2018).

H. Sun, K.-T. Wu, S. Thomson, and Y. Wu, “Novel 16QAM carrier recovery based on blind phase search,” in European Conference on Optical Communication (ECOC), (2014).

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC), (2015).

M. Qiu, Q. Zhuge, Y. Gao, W. Wang, F. Zhang, and D. Plant, “Cycle slip mitigation with joint carrier phase recovery in coherent subcarrier multiplexing systems,” in Optical Fiber Communication Conference (OFC), (2016) p. Tu3K.2.

B. J. Puttnam, G. Rademacher, R. S. Luís, J. Sakaguchi, Y. Awaji, and N. Wada, “Inter-core skew measurements in temperature controlled multi-core fiber,” in Optical Fiber Communication Conference (OFC), (2018) p. Tu3B.3.

E. Le Taillandier de Gabory, M. Arikawa, Y. Hashimoto, T. Ito, and K. Fukuchi, “A shared carrier reception and processing scheme for compensating frequency offset and phase noise of space-division multiplexed signals over multicore fibers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), p. OM2C.2.

R. S. Luís, B. J. Puttnam, G. Rademacher, Y. Awaji, and N. Wada, “PDM-128-QAM transmission using shared carrier reception in a 7-core multi-core fiber,” in Asia Communications and Photonics Conference (ACP), (2017), p. M1B.6.

R. S. Luis, B. J. Puttnam, J. M. Delgado Mendinueta, Y. Awaji, and N. Wada, “Impact of spatial channel skew on the performance of spatial-division multiplexed self-homodyne transmission systems,” in International Conference on Photonics in Switching (PS), (2015), pp. 37–39.

R. S. Luis, B. J. Puttnam, Y. Awaji, and N. Wada, “OSNR penalties for non-zero skew in space-division multiplexed transmission link with self-homodyne detection,” in Asia Communications and Photonics Conference (APC), (2015), p. ASu5D.5.

C. Fougstedt, P. Johannisson, L. Svensson, and P. Larsson-Edefors, “Dynamic equalizer power dissipation optimization,” in Optical Fiber Communication Conference (OFC), (2016), p. W4A.2.

T. Fehenberger, Calculate generalized mutual information, https://www.fehenberger.de/code/calcGMI.m . Accessed 2018-08-06.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Principle of a multicore fiber link enabling joint carrier recovery. (b) Master-slave carrier recovery performed inside the update loop of the main adaptive equalizer used for polarization demultiplexing with a decision directed (DD) tap update algorithm. This way, slow differences between the master and slave channels can be tracked by the equalizer. MCF: Multicore fiber.
Fig. 2.
Fig. 2. Schematic of the experimental setup. (a) Wavelength division multiplexing transmitter based on an optical frequency comb. (b) Triple parallel loop setup and three-channel receiver. AWG: arbitrary waveform generator, DP-IQ: Dual polarization in-phase-quadrature modulator, OP: Optical processor, AOM: Acousto-optic modulator, RDF: Reverse-dispersion fiber, SMF: Standard singlemode fiber, RX: Receiver, ADC: Analog-to-digital converter, ECL: External cavity laser, Pol-scr: Polarization scrambler, MCF: Multicore fiber.
Fig. 3.
Fig. 3. Experimental results for 16QAM. Comparison of the GMI using either standard independent carrier recovery or master-slave carrier recovery. The master phase is taken from either of the remaining two cores. (a) Outer-core performance. (b) Center-core performance. The insets show constellation diagrams for master-slave carrier recovery at optimal and at the highest launch power.
Fig. 4.
Fig. 4. Experimental results for 64QAM. Comparison of the GMI using either standard independent carrier recovery or master-slave carrier recovery. The master phase is taken from either of the remaining two cores. (a) Outer-core performance. (b) Center-core performance.
Fig. 5.
Fig. 5. Split-step simulation results with random and independent data on the interfering channels. The single-polarization GMI-values have been doubled to make comparisons with experimental results easier. (a) 16QAM (b) 64QAM.
Fig. 6.
Fig. 6. Experimental results for transmission with intercore skew. Performance of the center core with a launch power of $-4$ dBm per channel is shown. (a) and (b) Comparison of the GMI as a function of transmission distance for different amounts of inter-core skew for 16QAM and 64QAM respectively. (c) and (d) Contour plot of the GMI as a function of transmission distance and total accumulated skew for 16QAM and 64QAM respectively. White areas represent combinations were no measurements were made.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ slave ( t ) = ϕ ( t ) ϕ ( t T ) .

Metrics