Abstract

Optically pumped rare gas lasers have the potential for scaling to output powers above the kW level. In these devices, electrical discharges through He/Rg mixtures (Rg = Ne, Ar, Kr and Xe) are used to generate metastable Rg atoms in the 1s5 state. Optical pumping to the 2p9 level, followed by collisional relaxation to 2p10, is then used to produce lasing on the 2p10-1s5 transition. Several computational models have been developed to analyze CW systems using steady-state approximations for the discharge excitation, optical pumping and lasing processes. However, recent experiments show that repetitively pulsed discharges have advantages for producing larger volume, high-pressure discharges. Here we present dynamic simulations of a CW laser that uses pulsed-discharge production of Ar metastables. Time-dependent equations are solved for both the discharge and lasing process. Two models are investigated. The first considers the conditions within the lasing medium to be spatially uniform (zero-dimensional model). The second allows for spatial variations along the lasing axis (one-dimensional model). The models were evaluated by simulating the performance characteristics of an experimentally demonstrated system that provides time-averaged output energies in the range of 3-4 W. Time-dependent species densities, laser power and longitudinal spatial distributions are presented.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Transversely optically pumped Ar:He laser with a pulsed-periodic discharge

P. A. Mikheyev, A. K. Chernyshov, M. I. Svistun, N. I. Ufimtsev, O. S. Kartamysheva, M. C. Heaven, and V. N. Azyazov
Opt. Express 27(26) 38759-38767 (2019)

Simulations for transversely diode-pumped metastable rare gas lasers

Jun Gao, Yongle He, Pengfei Sun, Zhifan Zhang, Xinbing Wang, and Duluo Zuo
J. Opt. Soc. Am. B 34(4) 814-823 (2017)

Modeling of diode pumped metastable rare gas lasers

Zining Yang, Guangqi Yu, Hongyan Wang, Qisheng Lu, and Xiaojun Xu
Opt. Express 23(11) 13823-13832 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Han and M. C. Heaven, “Gain and lasing of optically pumped metastable rare gas atoms,” Opt. Lett. 37(11), 2157–2159 (2012).
    [Crossref] [PubMed]
  2. J. Han, M. C. Heaven, P. J. Moran, G. A. Pitz, E. M. Guild, C. R. Sanderson, and B. Hokr, “Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W,” Opt. Lett. 42(22), 4627–4630 (2017).
    [Crossref] [PubMed]
  3. W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
    [Crossref] [PubMed]
  4. A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46, 375208 (2013).
    [Crossref]
  5. D. J. Emmons and D. E. Weeks, “Kinetics of high pressure argon-helium pulsed gas discharge,” J. Appl. Phys. 121, 203301 (2017).
  6. Z. Yang, G. Yu, H. Wang, Q. Lu, and X. Xu, “Modeling of diode pumped metastable rare gas lasers,” Opt. Express 23(11), 13823–13832 (2015).
    [Crossref] [PubMed]
  7. J. Han and M. C. Heaven, “Kinetics of optically pumped Ar metastables,” Opt. Lett. 39(22), 6541–6544 (2014).
    [Crossref] [PubMed]
  8. J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).
  9. P. A. Mikheyev, “Optically pumped rare-gas lasers,” Quantum Electron. 45(8), 704–708 (2015).
    [Crossref]
  10. P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).
  11. A. R. Hoskinson, J. Gregorio, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119, 233301 (2016).
  12. A. R. Hoskinson, J. Gregorio, J. Hopwood, K. L. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121, 153302 (2017).
  13. J. Gao, P. Sun, X. Wang, and D. Zuo, “Modeling of Dual-wavelength Pumped Metastable Argon Laser,” Laser Phys. Lett. 14(3), 035001 (2017).
    [Crossref]
  14. J. Gao, D. Zuo, J. Zhao, B. Li, A. Yu, and X. Wang, “Stable 811.53 nm diode laser pump source for optically pumped metastable Ar laser,” Opt. Laser Technol. 84, 48–52 (2016).
    [Crossref]
  15. P. A. Mikheyev, J. Han, A. Clark, C. R. Sanderson, and M. C. Heaven, “Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge,” J. Phys. D Appl. Phys. 50(48), 485203 (2017).
    [Crossref]
  16. D. J. Emmons, D. E. Weeks, B. Eshel, and G. P. Perram, “Metastable Ar(1s5) density dependence on pressure and argon-helium mixture in a high pressure radio frequency dielectric barrier discharge,” J. Appl. Phys. 123, 043304 (2018).
  17. S. Long, Y. Qin, H. Chen, X. Wu, M. Li, X. Tang, and T. Wen, “Two-stage excitation model of diode pumped rare gas atoms lasers,” Opt. Express 27(3), 2771–2782 (2019).
    [Crossref] [PubMed]
  18. P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
    [Crossref]
  19. B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52, 021010 (2013).
  20. F. Gao, F. Chen, J. J. Xie, D. J. Li, L. M. Zhang, G. L. Yang, J. Guo, and L. H. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
    [Crossref]
  21. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
    [Crossref]
  22. B. Eshel and G. P. Perram, “Five-level argon-helium discharge model for characterization of a diode-pumped rare-gas laser,” J. Opt. Soc. Am. B 35(1), 164–173 (2018).
    [Crossref]
  23. A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, "Kinetic analysis of rare gas metastable production and optically pumped Xe lasers," J. Phys. D: Appl. Phys. 51, 045201 (2018).
  24. G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14, 722–733 (2005).
  25. S. Pancheshnyi, B. Eismann, G. Hagelaar, and L. Pitchford, Computer code ZDPlasKin, University of Toulouse, LAPLACE, CNRS-UPS-INP, Toulouse, France, 2008.
  26. M. A. Biondi and L. M. Chanin, “Blanc’s law: ion mobilities in helium-neon mixtures,” Phys. Rev. 122, 843–847 (1961).
  27. H. J. Oskam and V. R. Mittelstadt, “Ion mobilities in helium, neon, and argon,” Phys. Rev. 132, 1435–1444 (1963).
  28. K. Thyagarajan and A. Ghatak, Lasers: Fundamentals and Applications (Springer, 2010).

2019 (1)

2018 (3)

B. Eshel and G. P. Perram, “Five-level argon-helium discharge model for characterization of a diode-pumped rare-gas laser,” J. Opt. Soc. Am. B 35(1), 164–173 (2018).
[Crossref]

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, "Kinetic analysis of rare gas metastable production and optically pumped Xe lasers," J. Phys. D: Appl. Phys. 51, 045201 (2018).

D. J. Emmons, D. E. Weeks, B. Eshel, and G. P. Perram, “Metastable Ar(1s5) density dependence on pressure and argon-helium mixture in a high pressure radio frequency dielectric barrier discharge,” J. Appl. Phys. 123, 043304 (2018).

2017 (5)

P. A. Mikheyev, J. Han, A. Clark, C. R. Sanderson, and M. C. Heaven, “Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge,” J. Phys. D Appl. Phys. 50(48), 485203 (2017).
[Crossref]

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. L. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121, 153302 (2017).

J. Gao, P. Sun, X. Wang, and D. Zuo, “Modeling of Dual-wavelength Pumped Metastable Argon Laser,” Laser Phys. Lett. 14(3), 035001 (2017).
[Crossref]

D. J. Emmons and D. E. Weeks, “Kinetics of high pressure argon-helium pulsed gas discharge,” J. Appl. Phys. 121, 203301 (2017).

J. Han, M. C. Heaven, P. J. Moran, G. A. Pitz, E. M. Guild, C. R. Sanderson, and B. Hokr, “Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W,” Opt. Lett. 42(22), 4627–4630 (2017).
[Crossref] [PubMed]

2016 (3)

J. Gao, D. Zuo, J. Zhao, B. Li, A. Yu, and X. Wang, “Stable 811.53 nm diode laser pump source for optically pumped metastable Ar laser,” Opt. Laser Technol. 84, 48–52 (2016).
[Crossref]

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119, 233301 (2016).

2015 (4)

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref] [PubMed]

P. A. Mikheyev, “Optically pumped rare-gas lasers,” Quantum Electron. 45(8), 704–708 (2015).
[Crossref]

Z. Yang, G. Yu, H. Wang, Q. Lu, and X. Xu, “Modeling of diode pumped metastable rare gas lasers,” Opt. Express 23(11), 13823–13832 (2015).
[Crossref] [PubMed]

2014 (2)

J. Han and M. C. Heaven, “Kinetics of optically pumped Ar metastables,” Opt. Lett. 39(22), 6541–6544 (2014).
[Crossref] [PubMed]

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).

2013 (3)

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46, 375208 (2013).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52, 021010 (2013).

F. Gao, F. Chen, J. J. Xie, D. J. Li, L. M. Zhang, G. L. Yang, J. Guo, and L. H. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

2012 (1)

2005 (1)

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14, 722–733 (2005).

2004 (1)

1963 (1)

H. J. Oskam and V. R. Mittelstadt, “Ion mobilities in helium, neon, and argon,” Phys. Rev. 132, 1435–1444 (1963).

1961 (1)

M. A. Biondi and L. M. Chanin, “Blanc’s law: ion mobilities in helium-neon mixtures,” Phys. Rev. 122, 843–847 (1961).

Azyazov, V. N.

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, "Kinetic analysis of rare gas metastable production and optically pumped Xe lasers," J. Phys. D: Appl. Phys. 51, 045201 (2018).

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

Beach, R. J.

Biondi, M. A.

M. A. Biondi and L. M. Chanin, “Blanc’s law: ion mobilities in helium-neon mixtures,” Phys. Rev. 122, 843–847 (1961).

Chanin, L. M.

M. A. Biondi and L. M. Chanin, “Blanc’s law: ion mobilities in helium-neon mixtures,” Phys. Rev. 122, 843–847 (1961).

Chen, F.

F. Gao, F. Chen, J. J. Xie, D. J. Li, L. M. Zhang, G. L. Yang, J. Guo, and L. H. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Chen, H.

Chernyshov, A. K.

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

Clark, A.

P. A. Mikheyev, J. Han, A. Clark, C. R. Sanderson, and M. C. Heaven, “Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge,” J. Phys. D Appl. Phys. 50(48), 485203 (2017).
[Crossref]

Davis, S. J.

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. L. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121, 153302 (2017).

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119, 233301 (2016).

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref] [PubMed]

Demyanov, A. V.

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, "Kinetic analysis of rare gas metastable production and optically pumped Xe lasers," J. Phys. D: Appl. Phys. 51, 045201 (2018).

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46, 375208 (2013).
[Crossref]

Dubinskii, M. A.

Emmons, D. J.

D. J. Emmons, D. E. Weeks, B. Eshel, and G. P. Perram, “Metastable Ar(1s5) density dependence on pressure and argon-helium mixture in a high pressure radio frequency dielectric barrier discharge,” J. Appl. Phys. 123, 043304 (2018).

D. J. Emmons and D. E. Weeks, “Kinetics of high pressure argon-helium pulsed gas discharge,” J. Appl. Phys. 121, 203301 (2017).

Eshel, B.

D. J. Emmons, D. E. Weeks, B. Eshel, and G. P. Perram, “Metastable Ar(1s5) density dependence on pressure and argon-helium mixture in a high pressure radio frequency dielectric barrier discharge,” J. Appl. Phys. 123, 043304 (2018).

B. Eshel and G. P. Perram, “Five-level argon-helium discharge model for characterization of a diode-pumped rare-gas laser,” J. Opt. Soc. Am. B 35(1), 164–173 (2018).
[Crossref]

Galbally-Kinney, K.

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119, 233301 (2016).

Galbally-Kinney, K. L.

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. L. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121, 153302 (2017).

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref] [PubMed]

Gao, F.

F. Gao, F. Chen, J. J. Xie, D. J. Li, L. M. Zhang, G. L. Yang, J. Guo, and L. H. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Gao, J.

J. Gao, P. Sun, X. Wang, and D. Zuo, “Modeling of Dual-wavelength Pumped Metastable Argon Laser,” Laser Phys. Lett. 14(3), 035001 (2017).
[Crossref]

J. Gao, D. Zuo, J. Zhao, B. Li, A. Yu, and X. Wang, “Stable 811.53 nm diode laser pump source for optically pumped metastable Ar laser,” Opt. Laser Technol. 84, 48–52 (2016).
[Crossref]

Glebov, L. B.

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).

Gregorio, J.

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. L. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121, 153302 (2017).

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119, 233301 (2016).

Guild, E. M.

J. Han, M. C. Heaven, P. J. Moran, G. A. Pitz, E. M. Guild, C. R. Sanderson, and B. Hokr, “Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W,” Opt. Lett. 42(22), 4627–4630 (2017).
[Crossref] [PubMed]

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Guo, J.

F. Gao, F. Chen, J. J. Xie, D. J. Li, L. M. Zhang, G. L. Yang, J. Guo, and L. H. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Guo, L. H.

F. Gao, F. Chen, J. J. Xie, D. J. Li, L. M. Zhang, G. L. Yang, J. Guo, and L. H. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Guy, M. R.

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Hagelaar, G. J. M.

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14, 722–733 (2005).

Hager, G. D.

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).

Han, J.

J. Han, M. C. Heaven, P. J. Moran, G. A. Pitz, E. M. Guild, C. R. Sanderson, and B. Hokr, “Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W,” Opt. Lett. 42(22), 4627–4630 (2017).
[Crossref] [PubMed]

P. A. Mikheyev, J. Han, A. Clark, C. R. Sanderson, and M. C. Heaven, “Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge,” J. Phys. D Appl. Phys. 50(48), 485203 (2017).
[Crossref]

J. Han and M. C. Heaven, “Kinetics of optically pumped Ar metastables,” Opt. Lett. 39(22), 6541–6544 (2014).
[Crossref] [PubMed]

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).

J. Han and M. C. Heaven, “Gain and lasing of optically pumped metastable rare gas atoms,” Opt. Lett. 37(11), 2157–2159 (2012).
[Crossref] [PubMed]

Heaven, M. C.

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, "Kinetic analysis of rare gas metastable production and optically pumped Xe lasers," J. Phys. D: Appl. Phys. 51, 045201 (2018).

P. A. Mikheyev, J. Han, A. Clark, C. R. Sanderson, and M. C. Heaven, “Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge,” J. Phys. D Appl. Phys. 50(48), 485203 (2017).
[Crossref]

J. Han, M. C. Heaven, P. J. Moran, G. A. Pitz, E. M. Guild, C. R. Sanderson, and B. Hokr, “Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W,” Opt. Lett. 42(22), 4627–4630 (2017).
[Crossref] [PubMed]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref] [PubMed]

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).

J. Han and M. C. Heaven, “Kinetics of optically pumped Ar metastables,” Opt. Lett. 39(22), 6541–6544 (2014).
[Crossref] [PubMed]

J. Han and M. C. Heaven, “Gain and lasing of optically pumped metastable rare gas atoms,” Opt. Lett. 37(11), 2157–2159 (2012).
[Crossref] [PubMed]

Hokr, B.

Hopwood, J.

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. L. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121, 153302 (2017).

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119, 233301 (2016).

Hopwood, J. A.

Hoskinson, A. R.

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. L. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121, 153302 (2017).

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119, 233301 (2016).

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref] [PubMed]

Hostulter, D. A.

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Kanz, V. K.

Knize, R. J.

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52, 021010 (2013).

Kochetov, I. V.

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, "Kinetic analysis of rare gas metastable production and optically pumped Xe lasers," J. Phys. D: Appl. Phys. 51, 045201 (2018).

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46, 375208 (2013).
[Crossref]

Krupke, W. F.

Lange, M. A.

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Li, B.

J. Gao, D. Zuo, J. Zhao, B. Li, A. Yu, and X. Wang, “Stable 811.53 nm diode laser pump source for optically pumped metastable Ar laser,” Opt. Laser Technol. 84, 48–52 (2016).
[Crossref]

Li, D. J.

F. Gao, F. Chen, J. J. Xie, D. J. Li, L. M. Zhang, G. L. Yang, J. Guo, and L. H. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Li, M.

Lockwood, N. P.

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Long, S.

Lu, Q.

McCord, J. E.

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Merkle, L. D.

Mikheyev, P. A.

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, "Kinetic analysis of rare gas metastable production and optically pumped Xe lasers," J. Phys. D: Appl. Phys. 51, 045201 (2018).

P. A. Mikheyev, J. Han, A. Clark, C. R. Sanderson, and M. C. Heaven, “Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge,” J. Phys. D Appl. Phys. 50(48), 485203 (2017).
[Crossref]

P. A. Mikheyev, “Optically pumped rare-gas lasers,” Quantum Electron. 45(8), 704–708 (2015).
[Crossref]

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46, 375208 (2013).
[Crossref]

Mittelstadt, V. R.

H. J. Oskam and V. R. Mittelstadt, “Ion mobilities in helium, neon, and argon,” Phys. Rev. 132, 1435–1444 (1963).

Moran, P. J.

J. Han, M. C. Heaven, P. J. Moran, G. A. Pitz, E. M. Guild, C. R. Sanderson, and B. Hokr, “Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W,” Opt. Lett. 42(22), 4627–4630 (2017).
[Crossref] [PubMed]

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Oskam, H. J.

H. J. Oskam and V. R. Mittelstadt, “Ion mobilities in helium, neon, and argon,” Phys. Rev. 132, 1435–1444 (1963).

Payne, S. A.

Perram, G. P.

D. J. Emmons, D. E. Weeks, B. Eshel, and G. P. Perram, “Metastable Ar(1s5) density dependence on pressure and argon-helium mixture in a high pressure radio frequency dielectric barrier discharge,” J. Appl. Phys. 123, 043304 (2018).

B. Eshel and G. P. Perram, “Five-level argon-helium discharge model for characterization of a diode-pumped rare-gas laser,” J. Opt. Soc. Am. B 35(1), 164–173 (2018).
[Crossref]

Pitchford, L. C.

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14, 722–733 (2005).

Pitz, G. A.

J. Han, M. C. Heaven, P. J. Moran, G. A. Pitz, E. M. Guild, C. R. Sanderson, and B. Hokr, “Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W,” Opt. Lett. 42(22), 4627–4630 (2017).
[Crossref] [PubMed]

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Qin, Y.

Rawlins, W. T.

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. L. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121, 153302 (2017).

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119, 233301 (2016).

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref] [PubMed]

Sanderson, C. R.

J. Han, M. C. Heaven, P. J. Moran, G. A. Pitz, E. M. Guild, C. R. Sanderson, and B. Hokr, “Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W,” Opt. Lett. 42(22), 4627–4630 (2017).
[Crossref] [PubMed]

P. A. Mikheyev, J. Han, A. Clark, C. R. Sanderson, and M. C. Heaven, “Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge,” J. Phys. D Appl. Phys. 50(48), 485203 (2017).
[Crossref]

Sun, P.

J. Gao, P. Sun, X. Wang, and D. Zuo, “Modeling of Dual-wavelength Pumped Metastable Argon Laser,” Laser Phys. Lett. 14(3), 035001 (2017).
[Crossref]

Tang, X.

Ufimtsev, N. I.

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

Venus, G. B.

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).

Vorontsova, E. A.

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

Wang, H.

Wang, X.

J. Gao, P. Sun, X. Wang, and D. Zuo, “Modeling of Dual-wavelength Pumped Metastable Argon Laser,” Laser Phys. Lett. 14(3), 035001 (2017).
[Crossref]

J. Gao, D. Zuo, J. Zhao, B. Li, A. Yu, and X. Wang, “Stable 811.53 nm diode laser pump source for optically pumped metastable Ar laser,” Opt. Laser Technol. 84, 48–52 (2016).
[Crossref]

Weeks, D. E.

D. J. Emmons, D. E. Weeks, B. Eshel, and G. P. Perram, “Metastable Ar(1s5) density dependence on pressure and argon-helium mixture in a high pressure radio frequency dielectric barrier discharge,” J. Appl. Phys. 123, 043304 (2018).

D. J. Emmons and D. E. Weeks, “Kinetics of high pressure argon-helium pulsed gas discharge,” J. Appl. Phys. 121, 203301 (2017).

Wen, T.

Wu, X.

Xie, J. J.

F. Gao, F. Chen, J. J. Xie, D. J. Li, L. M. Zhang, G. L. Yang, J. Guo, and L. H. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Xu, X.

Yang, G. L.

F. Gao, F. Chen, J. J. Xie, D. J. Li, L. M. Zhang, G. L. Yang, J. Guo, and L. H. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Yang, Z.

Yu, A.

J. Gao, D. Zuo, J. Zhao, B. Li, A. Yu, and X. Wang, “Stable 811.53 nm diode laser pump source for optically pumped metastable Ar laser,” Opt. Laser Technol. 84, 48–52 (2016).
[Crossref]

Yu, G.

Zhang, L. M.

F. Gao, F. Chen, J. J. Xie, D. J. Li, L. M. Zhang, G. L. Yang, J. Guo, and L. H. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Zhao, J.

J. Gao, D. Zuo, J. Zhao, B. Li, A. Yu, and X. Wang, “Stable 811.53 nm diode laser pump source for optically pumped metastable Ar laser,” Opt. Laser Technol. 84, 48–52 (2016).
[Crossref]

Zhdanov, B. V.

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52, 021010 (2013).

Zuo, D.

J. Gao, P. Sun, X. Wang, and D. Zuo, “Modeling of Dual-wavelength Pumped Metastable Argon Laser,” Laser Phys. Lett. 14(3), 035001 (2017).
[Crossref]

J. Gao, D. Zuo, J. Zhao, B. Li, A. Yu, and X. Wang, “Stable 811.53 nm diode laser pump source for optically pumped metastable Ar laser,” Opt. Laser Technol. 84, 48–52 (2016).
[Crossref]

J. Appl. Phys. (4)

D. J. Emmons and D. E. Weeks, “Kinetics of high pressure argon-helium pulsed gas discharge,” J. Appl. Phys. 121, 203301 (2017).

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119, 233301 (2016).

A. R. Hoskinson, J. Gregorio, J. Hopwood, K. L. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121, 153302 (2017).

D. J. Emmons, D. E. Weeks, B. Eshel, and G. P. Perram, “Metastable Ar(1s5) density dependence on pressure and argon-helium mixture in a high pressure radio frequency dielectric barrier discharge,” J. Appl. Phys. 123, 043304 (2018).

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (2)

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46, 375208 (2013).
[Crossref]

P. A. Mikheyev, J. Han, A. Clark, C. R. Sanderson, and M. C. Heaven, “Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge,” J. Phys. D Appl. Phys. 50(48), 485203 (2017).
[Crossref]

J. Phys. D: Appl. Phys. (1)

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, "Kinetic analysis of rare gas metastable production and optically pumped Xe lasers," J. Phys. D: Appl. Phys. 51, 045201 (2018).

J. Quant. Spectrosc. Radiat. Transf. (1)

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

Laser Phys. Lett. (1)

J. Gao, P. Sun, X. Wang, and D. Zuo, “Modeling of Dual-wavelength Pumped Metastable Argon Laser,” Laser Phys. Lett. 14(3), 035001 (2017).
[Crossref]

Opt. Eng. (1)

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52, 021010 (2013).

Opt. Express (3)

Opt. Laser Technol. (1)

J. Gao, D. Zuo, J. Zhao, B. Li, A. Yu, and X. Wang, “Stable 811.53 nm diode laser pump source for optically pumped metastable Ar laser,” Opt. Laser Technol. 84, 48–52 (2016).
[Crossref]

Opt. Lett. (3)

Optik (Stuttg.) (1)

F. Gao, F. Chen, J. J. Xie, D. J. Li, L. M. Zhang, G. L. Yang, J. Guo, and L. H. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Phys. Rev. (2)

M. A. Biondi and L. M. Chanin, “Blanc’s law: ion mobilities in helium-neon mixtures,” Phys. Rev. 122, 843–847 (1961).

H. J. Oskam and V. R. Mittelstadt, “Ion mobilities in helium, neon, and argon,” Phys. Rev. 132, 1435–1444 (1963).

Plasma Sources Sci. Technol. (1)

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14, 722–733 (2005).

Proc. SPIE (2)

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).

Quantum Electron. (1)

P. A. Mikheyev, “Optically pumped rare-gas lasers,” Quantum Electron. 45(8), 704–708 (2015).
[Crossref]

Other (2)

S. Pancheshnyi, B. Eismann, G. Hagelaar, and L. Pitchford, Computer code ZDPlasKin, University of Toulouse, LAPLACE, CNRS-UPS-INP, Toulouse, France, 2008.

K. Thyagarajan and A. Ghatak, Lasers: Fundamentals and Applications (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Three-level diagram of OPRGL.
Fig. 2
Fig. 2 Equivalent electrical circuit for the pulsed discharge.
Fig. 3
Fig. 3 Schematic diagram showing propagation directions and mesh elements.
Fig. 4
Fig. 4 (a) Averaged Ar(1s5) density before optical excitation, (b) averaged output laser power and (c) conversion efficiency. Temperature: 300K-600K. Beam area: 2-3 mm2 in (b) and (c). (zero-dimensional model)
Fig. 5
Fig. 5 Temporal behavior of (a) absorbed pump power and output laser power (zero and one-dimensional models), (b) Ar(1s5) density in mesh elements m = 1, y/2 and y (one-dimensional model), and (c) intracavity laser power in mesh elements m = 1, y/2 and y (one-dimensional model). The time between successive 80 ns discharge pulses is 5000 ns.

Tables (1)

Tables Icon

Table 1 Arrhenius equations for temperature dependent energy transfer rate constants

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

a A+ b B a 'A+ c C [ + δε ]
d n i d t = j = 1 j max Q i j ( t )
R j = k j [ n A ] a [ n B ] b
Q A j = ( a ' a ) R j , Q B j = b R j , Q C j = c R j
V p c = V 0 e R A g n e v d r V c
R a μ + T e Λ 2
W p u m p = η d ν I p i n ( ν ) l g h ν p { 1 exp [ σ p ( ν ) ( n 3 g 3 g 1 n 1 ) l g ] } { t p + t p 3 r p exp [ σ p ( ν ) ( n 3 g 3 g 1 n 1 ) l g ] }
W l a s e r = σ l ( ν l ) ( n 2 g 2 g 1 n 1 ) h ν l I a v e
d I a v e d t = { t s t l 4 r l exp [ 2 l g σ l ( ν l ) ( n 2 g 2 g 1 n 1 ) ] 1 } I a v e c 2 l c + n 2 c 2 σ l ( ν l ) h ν l S l g
I a b s = η d ν I p i n ( ν ) { 1 t p 2 exp [ σ p ( ν ) ( n 3 g 3 g 1 n 1 ) l g ] }
I o u t = I a v e t l σ l ( ν l ) ( n 2 g 2 g 1 n 1 ) l g ( 1 r l ) exp [ σ l ( ν l ) ( n 2 g 2 g 1 n 1 ) l g ] { exp [ σ l ( ν l ) ( n 2 g 2 g 1 n 1 ) l g ] 1 } { 1 + t l 2 r l exp [ σ l ( ν l ) ( n 2 g 2 g 1 n 1 ) l g ] }
dt = l g y c
W p u m p ( t , m ) = σ p ( ν ) h ν p [ n 3 ( t - dt , m ) g 3 g 1 n 1 ( t - dt , m ) ] { [ I P R ( t - dt , ν , m ) + I P R ( t - dt , ν , m + 1 ) ] 2 + [ I P L ( t - dt , ν , m ) + I P L ( t - dt , ν , m 1 ) ] 2 } d ν
W l a s e r ( t , m ) = σ l ( ν l ) h ν l [ n 2 ( t - dt , m ) g 2 g 1 n 1 ( t - dt , m ) ] { [ I L R ( t - dt , ν , m ) + I L R ( t - dt , ν , m + 1 ) ] 2 + [ I L L ( t - dt , ν , m ) + I L L ( t - dt , ν , m 1 ) ] 2 }
I P R ( t , ν , m ) = { σ P ( ν ) [ n 3 ( t - dt , m 1 ) g 3 g 1 n 1 ( t - dt , m 1 ) ] c dt + 1 } I P R ( t - dt , ν , m 1 )
I L R ( t , m ) = { σ l ( ν l ) [ n 2 ( t - dt , m 1 ) g 2 g 1 n 1 ( t - dt , m 1 ) ] c dt + 1 } I L R ( t - dt , m 1 ) + n 2 ( t - dt , m 1 ) c 2 σ l ( ν l ) h ν l S l g dt
I L L ( t , m ) = { σ l ( ν l ) [ n 2 ( t - dt , m + 1 ) g 2 g 1 n 1 ( t - dt , m + 1 ) ] c dt + 1 } I L L ( t - dt , m + 1 ) + n 2 ( t - dt , m + 1 ) c 2 σ l ( ν l ) h ν l S l g dt
I P R ( t , ν , 1 ) = t p I p i n ( t l c l g 2 c , ν )
I L R ( t , 1 ) = t s t l 2 ( { σ l ( ν l ) [ n 2 ( t - t os , 1 ) g 2 g 1 n 1 ( t - t os , 1 ) ] c dt + 1 } I L L ( t - t os , 1 ) + n 2 ( t - t os , 1 ) c 2 σ l ( ν l ) h ν l S l g dt )
I L L ( t , y ) = r l t l 2 ( { σ l ( ν l ) [ n 2 ( t - t os , y ) g 2 g 1 n 1 ( t - t os , y ) ] c dt + 1 } I L R ( t - t os , y ) + n 2 ( t - t os , y ) c 2 σ l ( ν l ) h ν l S l g dt )
I P a b s ( t ) = ( I p i n ( t l c c , ν ) { σ P ( ν ) [ n 3 ( t ( l c l g ) 2 c dt, y ) g 3 g 1 n 1 ( t l c l g 2 c dt, y ) ] c dt+1 } t p I P R ( t ( l c l g ) 2 c dt, ν , y ) ) d ν
I L o u t ( t ) = ( 1 r l ) t l ( { σ l ( ν l ) [ n 2 ( t ( l c l g ) 2 c dt, y ) g 2 g 1 n 1 ( t ( l c l g ) 2 c dt, y ) ] c dt+1 } I L R ( t ( l c l g ) 2 c dt, y ) + n 2 ( t ( l c l g ) 2 c dt, y ) c 2 σ l ( ν l ) h ν l S l g dt )

Metrics