Abstract

Recently, with rapid development of perovskite solar cells, the record efficiency has exceeded 24.2%. However, the research of efficiency improvement never stops. This work introduces an effective approach to remarkably reduce the device reflection loss by using light management (LM) cover layer. A specific model combined with ray and wave optics was built to numerically optimize the texture of the LM layers for light harvesting in photovoltaics cells and explore the optical principles in the light trapping. The LM layer texture is made of 2D periodic triangle structures. Both symmetric and asymmetric triangle structures were investigated. The results indicate that asymmetric structures possess the close performance compared with symmetric ones, and notably, on contrary to the symmetric structures, the light trapping abilities are much more insensitive to the bottom thicknesses of asymmetric structures. It will benefit the practical fabrication, since the precise bottom thickness control can be avoided. From the optimization results, 3 optimal structures are found. With the optimal LM layers, a thin active layer (165nm) device is able to produce the short circuit current intensities (Jsc) of around 21mA/cm2, which is approximately equivalent to the Jsc of a thick active layer (800nm) device without LM layers. Meanwhile, about 23% power conversion efficiency (PCE) enhancement is achieved. On the other hand, active layer thickness also makes influence on the light trapping abilities. As the active layer thickness is increased from 165nm to 800nm, the Jsc only improves by about 2.4mA/cm2, while the PCE enhancement is dropped from ~23% to ~11%. In consideration of the compromise between total device energy output and PCE enhancement, as well as material cost reduction, the active layer with around 165nm should be an optimal thickness.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Light management in perovskite solar cells and organic LEDs with microlens arrays

Akshit Peer, Rana Biswas, Joong-Mok Park, Ruth Shinar, and Joseph Shinar
Opt. Express 25(9) 10704-10709 (2017)

Enhancement of light harvesting efficiency of perovskite solar cells by using one-dimensional photonic crystals

Bipin K Singh, Ashish Bijalwan, and Vipul Rastogi
Appl. Opt. 58(29) 8046-8054 (2019)

Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures

Klaus Jäger, Lars Korte, Bernd Rech, and Steve Albrecht
Opt. Express 25(12) A473-A482 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
    [Crossref]
  2. L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
    [Crossref] [PubMed]
  3. R. Yu, H. Yao, and J. Hou, “Recent Progress in Ternary Organic Solar Cells Based on Nonfullerene Acceptors,” Adv. Energy Mater. 8(28), 1702814 (2018).
    [Crossref]
  4. M. Grätzel, “Recent Advances in Sensitized Mesoscopic Solar Cells,” Acc. Chem. Res. 42(11), 1788–1798 (2009).
    [Crossref] [PubMed]
  5. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-Sensitized Solar Cells,” Chem. Rev. 110(11), 6595–6663 (2010).
    [Crossref] [PubMed]
  6. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nat. Chem. 6(3), 242–247 (2014).
    [Crossref] [PubMed]
  7. Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian, J. Sun, G. Zhu, G. Wang, and S. Liu, “mu-Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability,” Adv. Energy Mater. 8, 1800007 (2018).
  8. Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, and Y. Hao, “High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution-Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%,” Adv. Energy Mater. 8(19), 1703432 (2018).
    [Crossref]
  9. N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I. Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
    [Crossref]
  10. Q. Zhang and Y. Yin, “All-Inorganic Metal Halide Perovskite Nanocrystals: Opportunities and Challenges,” ACS Cent. Sci. 4(6), 668–679 (2018).
    [Crossref] [PubMed]
  11. W. R. Erwin, H. F. Zarick, E. M. Talbert, and R. Bardhan, “Light trapping in mesoporous solar cells with plasmonic nanostructures,” Energy Environ. Sci. 9(5), 1577–1601 (2016).
    [Crossref]
  12. K. Li, Y. Zhang, H. Zhen, H. Wang, S. Liu, F. Yan, and Z. Zheng, “Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices,” J. Mater. Chem. A Mater. Energy Sustain. 5(3), 969–974 (2017).
    [Crossref]
  13. Z. Ren, J. Zhou, Y. Zhang, A. Ng, Q. Shen, S. H. Cheung, H. Shen, K. Li, Z. Zheng, S. K. So, A. B. Djuric, and C. Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells 179, 36–44 (2018).
    [Crossref]
  14. “Efficiency chart ” https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf .
  15. F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
    [Crossref] [PubMed]
  16. S. Haque, M. J. Mendes, O. Sanchez-Sobrado, H. Aguas, E. Fortunato, and R. Martins, “Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells,” Nano Energy 59, 91–101 (2019).
    [Crossref]
  17. J. F. Li, H. Y. Hao, J. B. Hao, L. Shi, J. J. Dong, H. Liu, and J. Xing, “Light trapping effect of textured FTO in perovskite solar cells,” IOP Conference Series: Materials Science and Engineering 479, 012046 (012047 pp.)-012046 (012047 pp.) (2019).
    [Crossref]
  18. R. Santbergen, H. Uzu, K. Yamamoto, and M. Zeman, “Optimization of Three-Terminal Perovskite/Silicon Tandem Solar Cells,” Ieee Journal of Photovoltaics 9(2), 446–451 (2019).
    [Crossref]
  19. H. Sun, P. Ruan, Z. Bao, L. Chen, and X. Zhou, “Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells,” Solid State Sci. 40, 60–66 (2015).
    [Crossref]
  20. A. Lin, F. Sze Ming, C. Bo-Ruei, Y. Sheng-Lun, Z. Yan Kai, K. Ming-Hsuan, S. Chang-Hong, S. Jia-Min, and T. Tseung Yuen, The external light trapping for perovskite solar cells using nanoimprinted polymer metamaterial patterns (2017).
  21. K. Jäger, L. Korte, B. Rech, and S. Albrecht, “Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures,” Opt. Express 25(12), A473–A482 (2017).
    [Crossref] [PubMed]
  22. J. Wei, R.-P. Xu, Y.-Q. Li, C. Li, J.-D. Chen, X.-D. Zhao, Z.-Z. Xie, C.-S. Lee, W.-J. Zhang, and J.-X. Tang, “Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrode,” Adv. Energy Mater. 7(20), 1700492 (2017).
    [Crossref]
  23. S. S. Mali, C. S. Shim, H. Kim, P. S. Patil, and C. K. Hong, “In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency,” Nanoscale 8(5), 2664–2677 (2016).
    [Crossref] [PubMed]
  24. Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li, and Y. Song, “Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping,” Adv. Energy Mater. 8(12), 1702960 (2018).
    [Crossref]
  25. S. Manzoor, Z. J. Yu, A. Ali, W. Ali, K. A. Bush, A. F. Palmstrom, S. F. Bent, M. D. McGehee, and Z. C. Holman, “Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer,” Sol. Energy Mater. Sol. Cells 173, 59–65 (2017).
    [Crossref]
  26. S. Manzoor, Z. J. Yu, A. Ali, W. Ali, Z. C. Holman, and Ieee, “Improved Light Incoupling in Planar Solar Cells via Improved Texture Morphology of PDMS Scattering Layer,” in 2017 Ieee 44th Photovoltaic Specialist Conference(2017), 1228–1232.
  27. D. H. Kim, B. Dudem, J. W. Jung, and J. S. Yu, “Boosting Light Harvesting in Perovskite Solar Cells by Biomimetic Inverted Hemispherical Architectured Polymer Layer with High Haze Factor as an Antireflective Layer,” ACS Appl. Mater. Interfaces 10(15), 13113–13123 (2018).
    [Crossref] [PubMed]
  28. K. Li, R. Wu, Y. Ruan, L. Zhang, and H. Zhen, “Numerical analysis of the angular insensitive photovoltaic light harvesting with the biomimetic scattering film inspired by the rose petal epidermal topography,” Sol. Energy 170, 800–806 (2018).
    [Crossref]
  29. C. L. Mitsas and D. I. Siapkas, “Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates,” Appl. Opt. 34(10), 1678–1683 (1995).
    [Crossref] [PubMed]
  30. A. Bou, P. Torchio, S. Vedraine, D. Barakel, B. Lucas, J. C. Bernède, P. Y. Thoulon, M. J. S. E. M. Ricci, and S. Cells, “Numerical optimization of multilayer electrodes without indium for use in organic solar cells,” 125, 310–317 (2014).
  31. P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
    [Crossref] [PubMed]

2019 (2)

S. Haque, M. J. Mendes, O. Sanchez-Sobrado, H. Aguas, E. Fortunato, and R. Martins, “Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells,” Nano Energy 59, 91–101 (2019).
[Crossref]

R. Santbergen, H. Uzu, K. Yamamoto, and M. Zeman, “Optimization of Three-Terminal Perovskite/Silicon Tandem Solar Cells,” Ieee Journal of Photovoltaics 9(2), 446–451 (2019).
[Crossref]

2018 (11)

Z. Ren, J. Zhou, Y. Zhang, A. Ng, Q. Shen, S. H. Cheung, H. Shen, K. Li, Z. Zheng, S. K. So, A. B. Djuric, and C. Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells 179, 36–44 (2018).
[Crossref]

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
[Crossref] [PubMed]

R. Yu, H. Yao, and J. Hou, “Recent Progress in Ternary Organic Solar Cells Based on Nonfullerene Acceptors,” Adv. Energy Mater. 8(28), 1702814 (2018).
[Crossref]

Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian, J. Sun, G. Zhu, G. Wang, and S. Liu, “mu-Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability,” Adv. Energy Mater. 8, 1800007 (2018).

Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, and Y. Hao, “High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution-Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%,” Adv. Energy Mater. 8(19), 1703432 (2018).
[Crossref]

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I. Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Q. Zhang and Y. Yin, “All-Inorganic Metal Halide Perovskite Nanocrystals: Opportunities and Challenges,” ACS Cent. Sci. 4(6), 668–679 (2018).
[Crossref] [PubMed]

Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li, and Y. Song, “Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping,” Adv. Energy Mater. 8(12), 1702960 (2018).
[Crossref]

D. H. Kim, B. Dudem, J. W. Jung, and J. S. Yu, “Boosting Light Harvesting in Perovskite Solar Cells by Biomimetic Inverted Hemispherical Architectured Polymer Layer with High Haze Factor as an Antireflective Layer,” ACS Appl. Mater. Interfaces 10(15), 13113–13123 (2018).
[Crossref] [PubMed]

K. Li, R. Wu, Y. Ruan, L. Zhang, and H. Zhen, “Numerical analysis of the angular insensitive photovoltaic light harvesting with the biomimetic scattering film inspired by the rose petal epidermal topography,” Sol. Energy 170, 800–806 (2018).
[Crossref]

2017 (4)

S. Manzoor, Z. J. Yu, A. Ali, W. Ali, K. A. Bush, A. F. Palmstrom, S. F. Bent, M. D. McGehee, and Z. C. Holman, “Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer,” Sol. Energy Mater. Sol. Cells 173, 59–65 (2017).
[Crossref]

K. Li, Y. Zhang, H. Zhen, H. Wang, S. Liu, F. Yan, and Z. Zheng, “Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices,” J. Mater. Chem. A Mater. Energy Sustain. 5(3), 969–974 (2017).
[Crossref]

K. Jäger, L. Korte, B. Rech, and S. Albrecht, “Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures,” Opt. Express 25(12), A473–A482 (2017).
[Crossref] [PubMed]

J. Wei, R.-P. Xu, Y.-Q. Li, C. Li, J.-D. Chen, X.-D. Zhao, Z.-Z. Xie, C.-S. Lee, W.-J. Zhang, and J.-X. Tang, “Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrode,” Adv. Energy Mater. 7(20), 1700492 (2017).
[Crossref]

2016 (2)

S. S. Mali, C. S. Shim, H. Kim, P. S. Patil, and C. K. Hong, “In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency,” Nanoscale 8(5), 2664–2677 (2016).
[Crossref] [PubMed]

W. R. Erwin, H. F. Zarick, E. M. Talbert, and R. Bardhan, “Light trapping in mesoporous solar cells with plasmonic nanostructures,” Energy Environ. Sci. 9(5), 1577–1601 (2016).
[Crossref]

2015 (2)

H. Sun, P. Ruan, Z. Bao, L. Chen, and X. Zhou, “Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells,” Solid State Sci. 40, 60–66 (2015).
[Crossref]

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

2014 (1)

S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nat. Chem. 6(3), 242–247 (2014).
[Crossref] [PubMed]

2012 (1)

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[Crossref]

2010 (1)

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-Sensitized Solar Cells,” Chem. Rev. 110(11), 6595–6663 (2010).
[Crossref] [PubMed]

2009 (1)

M. Grätzel, “Recent Advances in Sensitized Mesoscopic Solar Cells,” Acc. Chem. Res. 42(11), 1788–1798 (2009).
[Crossref] [PubMed]

1995 (1)

Aguas, H.

S. Haque, M. J. Mendes, O. Sanchez-Sobrado, H. Aguas, E. Fortunato, and R. Martins, “Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells,” Nano Energy 59, 91–101 (2019).
[Crossref]

Albrecht, S.

Ali, A.

S. Manzoor, Z. J. Yu, A. Ali, W. Ali, K. A. Bush, A. F. Palmstrom, S. F. Bent, M. D. McGehee, and Z. C. Holman, “Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer,” Sol. Energy Mater. Sol. Cells 173, 59–65 (2017).
[Crossref]

Ali, W.

S. Manzoor, Z. J. Yu, A. Ali, W. Ali, K. A. Bush, A. F. Palmstrom, S. F. Bent, M. D. McGehee, and Z. C. Holman, “Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer,” Sol. Energy Mater. Sol. Cells 173, 59–65 (2017).
[Crossref]

Ashari-Astani, N.

S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nat. Chem. 6(3), 242–247 (2014).
[Crossref] [PubMed]

Bai, D.

Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian, J. Sun, G. Zhu, G. Wang, and S. Liu, “mu-Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability,” Adv. Energy Mater. 8, 1800007 (2018).

Ballif, C.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Bao, Z.

H. Sun, P. Ruan, Z. Bao, L. Chen, and X. Zhou, “Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells,” Solid State Sci. 40, 60–66 (2015).
[Crossref]

Bardhan, R.

W. R. Erwin, H. F. Zarick, E. M. Talbert, and R. Bardhan, “Light trapping in mesoporous solar cells with plasmonic nanostructures,” Energy Environ. Sci. 9(5), 1577–1601 (2016).
[Crossref]

Barraud, L.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

Bent, S. F.

S. Manzoor, Z. J. Yu, A. Ali, W. Ali, K. A. Bush, A. F. Palmstrom, S. F. Bent, M. D. McGehee, and Z. C. Holman, “Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer,” Sol. Energy Mater. Sol. Cells 173, 59–65 (2017).
[Crossref]

Bian, H.

Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian, J. Sun, G. Zhu, G. Wang, and S. Liu, “mu-Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability,” Adv. Energy Mater. 8, 1800007 (2018).

Boccard, M.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

Bo-Ruei, C.

A. Lin, F. Sze Ming, C. Bo-Ruei, Y. Sheng-Lun, Z. Yan Kai, K. Ming-Hsuan, S. Chang-Hong, S. Jia-Min, and T. Tseung Yuen, The external light trapping for perovskite solar cells using nanoimprinted polymer metamaterial patterns (2017).

Boschloo, G.

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-Sensitized Solar Cells,” Chem. Rev. 110(11), 6595–6663 (2010).
[Crossref] [PubMed]

Bräuninger, M.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

Bush, K. A.

S. Manzoor, Z. J. Yu, A. Ali, W. Ali, K. A. Bush, A. F. Palmstrom, S. F. Bent, M. D. McGehee, and Z. C. Holman, “Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer,” Sol. Energy Mater. Sol. Cells 173, 59–65 (2017).
[Crossref]

Cao, Y.

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
[Crossref] [PubMed]

Cattaneo, G.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

Chang, J.

Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, and Y. Hao, “High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution-Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%,” Adv. Energy Mater. 8(19), 1703432 (2018).
[Crossref]

Chang-Hong, S.

A. Lin, F. Sze Ming, C. Bo-Ruei, Y. Sheng-Lun, Z. Yan Kai, K. Ming-Hsuan, S. Chang-Hong, S. Jia-Min, and T. Tseung Yuen, The external light trapping for perovskite solar cells using nanoimprinted polymer metamaterial patterns (2017).

Chen, D.

Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, and Y. Hao, “High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution-Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%,” Adv. Energy Mater. 8(19), 1703432 (2018).
[Crossref]

Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian, J. Sun, G. Zhu, G. Wang, and S. Liu, “mu-Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability,” Adv. Energy Mater. 8, 1800007 (2018).

Chen, J.-D.

J. Wei, R.-P. Xu, Y.-Q. Li, C. Li, J.-D. Chen, X.-D. Zhao, Z.-Z. Xie, C.-S. Lee, W.-J. Zhang, and J.-X. Tang, “Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrode,” Adv. Energy Mater. 7(20), 1700492 (2017).
[Crossref]

Chen, L.

H. Sun, P. Ruan, Z. Bao, L. Chen, and X. Zhou, “Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells,” Solid State Sci. 40, 60–66 (2015).
[Crossref]

Chen, Y.

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
[Crossref] [PubMed]

Cheung, S. H.

Z. Ren, J. Zhou, Y. Zhang, A. Ng, Q. Shen, S. H. Cheung, H. Shen, K. Li, Z. Zheng, S. K. So, A. B. Djuric, and C. Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells 179, 36–44 (2018).
[Crossref]

Curchod, B. F. E.

S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nat. Chem. 6(3), 242–247 (2014).
[Crossref] [PubMed]

De Wolf, S.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Despeisse, M.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

Diaz Leon, J. J.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

Ding, L.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
[Crossref] [PubMed]

Djuric, A. B.

Z. Ren, J. Zhou, Y. Zhang, A. Ng, Q. Shen, S. H. Cheung, H. Shen, K. Li, Z. Zheng, S. K. So, A. B. Djuric, and C. Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells 179, 36–44 (2018).
[Crossref]

Dudem, B.

D. H. Kim, B. Dudem, J. W. Jung, and J. S. Yu, “Boosting Light Harvesting in Perovskite Solar Cells by Biomimetic Inverted Hemispherical Architectured Polymer Layer with High Haze Factor as an Antireflective Layer,” ACS Appl. Mater. Interfaces 10(15), 13113–13123 (2018).
[Crossref] [PubMed]

Erwin, W. R.

W. R. Erwin, H. F. Zarick, E. M. Talbert, and R. Bardhan, “Light trapping in mesoporous solar cells with plasmonic nanostructures,” Energy Environ. Sci. 9(5), 1577–1601 (2016).
[Crossref]

Filipic, M.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Fortunato, E.

S. Haque, M. J. Mendes, O. Sanchez-Sobrado, H. Aguas, E. Fortunato, and R. Martins, “Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells,” Nano Energy 59, 91–101 (2019).
[Crossref]

Gao, P.

S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nat. Chem. 6(3), 242–247 (2014).
[Crossref] [PubMed]

Grätzel, M.

S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nat. Chem. 6(3), 242–247 (2014).
[Crossref] [PubMed]

M. Grätzel, “Recent Advances in Sensitized Mesoscopic Solar Cells,” Acc. Chem. Res. 42(11), 1788–1798 (2009).
[Crossref] [PubMed]

Hagfeldt, A.

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-Sensitized Solar Cells,” Chem. Rev. 110(11), 6595–6663 (2010).
[Crossref] [PubMed]

Hao, Y.

Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, and Y. Hao, “High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution-Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%,” Adv. Energy Mater. 8(19), 1703432 (2018).
[Crossref]

Haque, S.

S. Haque, M. J. Mendes, O. Sanchez-Sobrado, H. Aguas, E. Fortunato, and R. Martins, “Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells,” Nano Energy 59, 91–101 (2019).
[Crossref]

Holman, Z. C.

S. Manzoor, Z. J. Yu, A. Ali, W. Ali, K. A. Bush, A. F. Palmstrom, S. F. Bent, M. D. McGehee, and Z. C. Holman, “Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer,” Sol. Energy Mater. Sol. Cells 173, 59–65 (2017).
[Crossref]

Hong, C. K.

S. S. Mali, C. S. Shim, H. Kim, P. S. Patil, and C. K. Hong, “In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency,” Nanoscale 8(5), 2664–2677 (2016).
[Crossref] [PubMed]

Hou, J.

R. Yu, H. Yao, and J. Hou, “Recent Progress in Ternary Organic Solar Cells Based on Nonfullerene Acceptors,” Adv. Energy Mater. 8(28), 1702814 (2018).
[Crossref]

Hu, X.

Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li, and Y. Song, “Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping,” Adv. Energy Mater. 8(12), 1702960 (2018).
[Crossref]

Humphry-Baker, R.

S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nat. Chem. 6(3), 242–247 (2014).
[Crossref] [PubMed]

Jäger, K.

Jeangros, Q.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

Jeon, N. J.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I. Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Jia-Min, S.

A. Lin, F. Sze Ming, C. Bo-Ruei, Y. Sheng-Lun, Z. Yan Kai, K. Ming-Hsuan, S. Chang-Hong, S. Jia-Min, and T. Tseung Yuen, The external light trapping for perovskite solar cells using nanoimprinted polymer metamaterial patterns (2017).

Jin, Z.

Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian, J. Sun, G. Zhu, G. Wang, and S. Liu, “mu-Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability,” Adv. Energy Mater. 8, 1800007 (2018).

Jung, E. H.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I. Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Jung, J. W.

D. H. Kim, B. Dudem, J. W. Jung, and J. S. Yu, “Boosting Light Harvesting in Perovskite Solar Cells by Biomimetic Inverted Hemispherical Architectured Polymer Layer with High Haze Factor as an Antireflective Layer,” ACS Appl. Mater. Interfaces 10(15), 13113–13123 (2018).
[Crossref] [PubMed]

Kamino, B. A.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

Ke, X.

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
[Crossref] [PubMed]

Kim, D. H.

D. H. Kim, B. Dudem, J. W. Jung, and J. S. Yu, “Boosting Light Harvesting in Perovskite Solar Cells by Biomimetic Inverted Hemispherical Architectured Polymer Layer with High Haze Factor as an Antireflective Layer,” ACS Appl. Mater. Interfaces 10(15), 13113–13123 (2018).
[Crossref] [PubMed]

Kim, G.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I. Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Kim, H.

S. S. Mali, C. S. Shim, H. Kim, P. S. Patil, and C. K. Hong, “In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency,” Nanoscale 8(5), 2664–2677 (2016).
[Crossref] [PubMed]

Kloo, L.

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-Sensitized Solar Cells,” Chem. Rev. 110(11), 6595–6663 (2010).
[Crossref] [PubMed]

Korte, L.

Lee, C.-S.

J. Wei, R.-P. Xu, Y.-Q. Li, C. Li, J.-D. Chen, X.-D. Zhao, Z.-Z. Xie, C.-S. Lee, W.-J. Zhang, and J.-X. Tang, “Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrode,” Adv. Energy Mater. 7(20), 1700492 (2017).
[Crossref]

Lee, J.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I. Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Lee, Y. G.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I. Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Li, C.

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
[Crossref] [PubMed]

Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li, and Y. Song, “Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping,” Adv. Energy Mater. 8(12), 1702960 (2018).
[Crossref]

J. Wei, R.-P. Xu, Y.-Q. Li, C. Li, J.-D. Chen, X.-D. Zhao, Z.-Z. Xie, C.-S. Lee, W.-J. Zhang, and J.-X. Tang, “Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrode,” Adv. Energy Mater. 7(20), 1700492 (2017).
[Crossref]

Li, F.

Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li, and Y. Song, “Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping,” Adv. Energy Mater. 8(12), 1702960 (2018).
[Crossref]

Li, G.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[Crossref]

Li, H.

Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li, and Y. Song, “Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping,” Adv. Energy Mater. 8(12), 1702960 (2018).
[Crossref]

Li, K.

Z. Ren, J. Zhou, Y. Zhang, A. Ng, Q. Shen, S. H. Cheung, H. Shen, K. Li, Z. Zheng, S. K. So, A. B. Djuric, and C. Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells 179, 36–44 (2018).
[Crossref]

K. Li, R. Wu, Y. Ruan, L. Zhang, and H. Zhen, “Numerical analysis of the angular insensitive photovoltaic light harvesting with the biomimetic scattering film inspired by the rose petal epidermal topography,” Sol. Energy 170, 800–806 (2018).
[Crossref]

K. Li, Y. Zhang, H. Zhen, H. Wang, S. Liu, F. Yan, and Z. Zheng, “Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices,” J. Mater. Chem. A Mater. Energy Sustain. 5(3), 969–974 (2017).
[Crossref]

Li, M.

Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li, and Y. Song, “Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping,” Adv. Energy Mater. 8(12), 1702960 (2018).
[Crossref]

Li, Y.-Q.

J. Wei, R.-P. Xu, Y.-Q. Li, C. Li, J.-D. Chen, X.-D. Zhao, Z.-Z. Xie, C.-S. Lee, W.-J. Zhang, and J.-X. Tang, “Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrode,” Adv. Energy Mater. 7(20), 1700492 (2017).
[Crossref]

Lin, A.

A. Lin, F. Sze Ming, C. Bo-Ruei, Y. Sheng-Lun, Z. Yan Kai, K. Ming-Hsuan, S. Chang-Hong, S. Jia-Min, and T. Tseung Yuen, The external light trapping for perovskite solar cells using nanoimprinted polymer metamaterial patterns (2017).

Lin, Z.

Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, and Y. Hao, “High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution-Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%,” Adv. Energy Mater. 8(19), 1703432 (2018).
[Crossref]

Liu, S.

Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, and Y. Hao, “High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution-Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%,” Adv. Energy Mater. 8(19), 1703432 (2018).
[Crossref]

Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian, J. Sun, G. Zhu, G. Wang, and S. Liu, “mu-Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability,” Adv. Energy Mater. 8, 1800007 (2018).

K. Li, Y. Zhang, H. Zhen, H. Wang, S. Liu, F. Yan, and Z. Zheng, “Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices,” J. Mater. Chem. A Mater. Energy Sustain. 5(3), 969–974 (2017).
[Crossref]

Liu, X.

Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li, and Y. Song, “Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping,” Adv. Energy Mater. 8(12), 1702960 (2018).
[Crossref]

Liu, Z.

Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, and Y. Hao, “High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution-Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%,” Adv. Energy Mater. 8(19), 1703432 (2018).
[Crossref]

Löper, P.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Mali, S. S.

S. S. Mali, C. S. Shim, H. Kim, P. S. Patil, and C. K. Hong, “In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency,” Nanoscale 8(5), 2664–2677 (2016).
[Crossref] [PubMed]

Manzoor, S.

S. Manzoor, Z. J. Yu, A. Ali, W. Ali, K. A. Bush, A. F. Palmstrom, S. F. Bent, M. D. McGehee, and Z. C. Holman, “Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer,” Sol. Energy Mater. Sol. Cells 173, 59–65 (2017).
[Crossref]

Martins, R.

S. Haque, M. J. Mendes, O. Sanchez-Sobrado, H. Aguas, E. Fortunato, and R. Martins, “Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells,” Nano Energy 59, 91–101 (2019).
[Crossref]

Mathew, S.

S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nat. Chem. 6(3), 242–247 (2014).
[Crossref] [PubMed]

McGehee, M. D.

S. Manzoor, Z. J. Yu, A. Ali, W. Ali, K. A. Bush, A. F. Palmstrom, S. F. Bent, M. D. McGehee, and Z. C. Holman, “Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer,” Sol. Energy Mater. Sol. Cells 173, 59–65 (2017).
[Crossref]

Mendes, M. J.

S. Haque, M. J. Mendes, O. Sanchez-Sobrado, H. Aguas, E. Fortunato, and R. Martins, “Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells,” Nano Energy 59, 91–101 (2019).
[Crossref]

Meng, L.

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
[Crossref] [PubMed]

Ming-Hsuan, K.

A. Lin, F. Sze Ming, C. Bo-Ruei, Y. Sheng-Lun, Z. Yan Kai, K. Ming-Hsuan, S. Chang-Hong, S. Jia-Min, and T. Tseung Yuen, The external light trapping for perovskite solar cells using nanoimprinted polymer metamaterial patterns (2017).

Mitsas, C. L.

Monnard, R.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

Moon, S. J.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Na, H.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I. Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Nazeeruddin, M. K.

S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nat. Chem. 6(3), 242–247 (2014).
[Crossref] [PubMed]

Ng, A.

Z. Ren, J. Zhou, Y. Zhang, A. Ng, Q. Shen, S. H. Cheung, H. Shen, K. Li, Z. Zheng, S. K. So, A. B. Djuric, and C. Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells 179, 36–44 (2018).
[Crossref]

Nicolay, S.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

Niesen, B.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Palmstrom, A. F.

S. Manzoor, Z. J. Yu, A. Ali, W. Ali, K. A. Bush, A. F. Palmstrom, S. F. Bent, M. D. McGehee, and Z. C. Holman, “Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer,” Sol. Energy Mater. Sol. Cells 173, 59–65 (2017).
[Crossref]

Patil, P. S.

S. S. Mali, C. S. Shim, H. Kim, P. S. Patil, and C. K. Hong, “In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency,” Nanoscale 8(5), 2664–2677 (2016).
[Crossref] [PubMed]

Paviet-Salomon, B.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

Pettersson, H.

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-Sensitized Solar Cells,” Chem. Rev. 110(11), 6595–6663 (2010).
[Crossref] [PubMed]

Rech, B.

Ren, Z.

Z. Ren, J. Zhou, Y. Zhang, A. Ng, Q. Shen, S. H. Cheung, H. Shen, K. Li, Z. Zheng, S. K. So, A. B. Djuric, and C. Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells 179, 36–44 (2018).
[Crossref]

Rothlisberger, U.

S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nat. Chem. 6(3), 242–247 (2014).
[Crossref] [PubMed]

Ruan, P.

H. Sun, P. Ruan, Z. Bao, L. Chen, and X. Zhou, “Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells,” Solid State Sci. 40, 60–66 (2015).
[Crossref]

Ruan, Y.

K. Li, R. Wu, Y. Ruan, L. Zhang, and H. Zhen, “Numerical analysis of the angular insensitive photovoltaic light harvesting with the biomimetic scattering film inspired by the rose petal epidermal topography,” Sol. Energy 170, 800–806 (2018).
[Crossref]

Sacchetto, D.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

Sahli, F.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

Sanchez-Sobrado, O.

S. Haque, M. J. Mendes, O. Sanchez-Sobrado, H. Aguas, E. Fortunato, and R. Martins, “Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells,” Nano Energy 59, 91–101 (2019).
[Crossref]

Santbergen, R.

R. Santbergen, H. Uzu, K. Yamamoto, and M. Zeman, “Optimization of Three-Terminal Perovskite/Silicon Tandem Solar Cells,” Ieee Journal of Photovoltaics 9(2), 446–451 (2019).
[Crossref]

Seo, J.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I. Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Seok, S. I.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I. Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Shen, H.

Z. Ren, J. Zhou, Y. Zhang, A. Ng, Q. Shen, S. H. Cheung, H. Shen, K. Li, Z. Zheng, S. K. So, A. B. Djuric, and C. Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells 179, 36–44 (2018).
[Crossref]

Shen, Q.

Z. Ren, J. Zhou, Y. Zhang, A. Ng, Q. Shen, S. H. Cheung, H. Shen, K. Li, Z. Zheng, S. K. So, A. B. Djuric, and C. Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells 179, 36–44 (2018).
[Crossref]

Sheng-Lun, Y.

A. Lin, F. Sze Ming, C. Bo-Ruei, Y. Sheng-Lun, Z. Yan Kai, K. Ming-Hsuan, S. Chang-Hong, S. Jia-Min, and T. Tseung Yuen, The external light trapping for perovskite solar cells using nanoimprinted polymer metamaterial patterns (2017).

Shim, C. S.

S. S. Mali, C. S. Shim, H. Kim, P. S. Patil, and C. K. Hong, “In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency,” Nanoscale 8(5), 2664–2677 (2016).
[Crossref] [PubMed]

Shin, H.-W.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I. Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Siapkas, D. I.

So, S. K.

Z. Ren, J. Zhou, Y. Zhang, A. Ng, Q. Shen, S. H. Cheung, H. Shen, K. Li, Z. Zheng, S. K. So, A. B. Djuric, and C. Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells 179, 36–44 (2018).
[Crossref]

Song, Y.

Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li, and Y. Song, “Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping,” Adv. Energy Mater. 8(12), 1702960 (2018).
[Crossref]

Stuckelberger, M.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Sun, H.

H. Sun, P. Ruan, Z. Bao, L. Chen, and X. Zhou, “Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells,” Solid State Sci. 40, 60–66 (2015).
[Crossref]

Sun, J.

Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian, J. Sun, G. Zhu, G. Wang, and S. Liu, “mu-Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability,” Adv. Energy Mater. 8, 1800007 (2018).

Sun, L.

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-Sensitized Solar Cells,” Chem. Rev. 110(11), 6595–6663 (2010).
[Crossref] [PubMed]

Surya, C.

Z. Ren, J. Zhou, Y. Zhang, A. Ng, Q. Shen, S. H. Cheung, H. Shen, K. Li, Z. Zheng, S. K. So, A. B. Djuric, and C. Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells 179, 36–44 (2018).
[Crossref]

Sze Ming, F.

A. Lin, F. Sze Ming, C. Bo-Ruei, Y. Sheng-Lun, Z. Yan Kai, K. Ming-Hsuan, S. Chang-Hong, S. Jia-Min, and T. Tseung Yuen, The external light trapping for perovskite solar cells using nanoimprinted polymer metamaterial patterns (2017).

Talbert, E. M.

W. R. Erwin, H. F. Zarick, E. M. Talbert, and R. Bardhan, “Light trapping in mesoporous solar cells with plasmonic nanostructures,” Energy Environ. Sci. 9(5), 1577–1601 (2016).
[Crossref]

Tang, J.-X.

J. Wei, R.-P. Xu, Y.-Q. Li, C. Li, J.-D. Chen, X.-D. Zhao, Z.-Z. Xie, C.-S. Lee, W.-J. Zhang, and J.-X. Tang, “Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrode,” Adv. Energy Mater. 7(20), 1700492 (2017).
[Crossref]

Tavernelli, I.

S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nat. Chem. 6(3), 242–247 (2014).
[Crossref] [PubMed]

Topic, M.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Tseung Yuen, T.

A. Lin, F. Sze Ming, C. Bo-Ruei, Y. Sheng-Lun, Z. Yan Kai, K. Ming-Hsuan, S. Chang-Hong, S. Jia-Min, and T. Tseung Yuen, The external light trapping for perovskite solar cells using nanoimprinted polymer metamaterial patterns (2017).

Uzu, H.

R. Santbergen, H. Uzu, K. Yamamoto, and M. Zeman, “Optimization of Three-Terminal Perovskite/Silicon Tandem Solar Cells,” Ieee Journal of Photovoltaics 9(2), 446–451 (2019).
[Crossref]

Wan, X.

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
[Crossref] [PubMed]

Wang, G.

Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian, J. Sun, G. Zhu, G. Wang, and S. Liu, “mu-Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability,” Adv. Energy Mater. 8, 1800007 (2018).

Wang, H.

K. Li, Y. Zhang, H. Zhen, H. Wang, S. Liu, F. Yan, and Z. Zheng, “Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices,” J. Mater. Chem. A Mater. Energy Sustain. 5(3), 969–974 (2017).
[Crossref]

Wang, P.

Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li, and Y. Song, “Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping,” Adv. Energy Mater. 8(12), 1702960 (2018).
[Crossref]

Wang, Q.

Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian, J. Sun, G. Zhu, G. Wang, and S. Liu, “mu-Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability,” Adv. Energy Mater. 8, 1800007 (2018).

Wang, Y.

Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li, and Y. Song, “Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping,” Adv. Energy Mater. 8(12), 1702960 (2018).
[Crossref]

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
[Crossref] [PubMed]

Wei, J.

J. Wei, R.-P. Xu, Y.-Q. Li, C. Li, J.-D. Chen, X.-D. Zhao, Z.-Z. Xie, C.-S. Lee, W.-J. Zhang, and J.-X. Tang, “Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrode,” Adv. Energy Mater. 7(20), 1700492 (2017).
[Crossref]

Werner, J.

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Wu, R.

K. Li, R. Wu, Y. Ruan, L. Zhang, and H. Zhen, “Numerical analysis of the angular insensitive photovoltaic light harvesting with the biomimetic scattering film inspired by the rose petal epidermal topography,” Sol. Energy 170, 800–806 (2018).
[Crossref]

Xia, R.

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
[Crossref] [PubMed]

Xiao, Z.

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
[Crossref] [PubMed]

Xie, Z.-Z.

J. Wei, R.-P. Xu, Y.-Q. Li, C. Li, J.-D. Chen, X.-D. Zhao, Z.-Z. Xie, C.-S. Lee, W.-J. Zhang, and J.-X. Tang, “Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrode,” Adv. Energy Mater. 7(20), 1700492 (2017).
[Crossref]

Xu, R.-P.

J. Wei, R.-P. Xu, Y.-Q. Li, C. Li, J.-D. Chen, X.-D. Zhao, Z.-Z. Xie, C.-S. Lee, W.-J. Zhang, and J.-X. Tang, “Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrode,” Adv. Energy Mater. 7(20), 1700492 (2017).
[Crossref]

Yamamoto, K.

R. Santbergen, H. Uzu, K. Yamamoto, and M. Zeman, “Optimization of Three-Terminal Perovskite/Silicon Tandem Solar Cells,” Ieee Journal of Photovoltaics 9(2), 446–451 (2019).
[Crossref]

Yan, F.

K. Li, Y. Zhang, H. Zhen, H. Wang, S. Liu, F. Yan, and Z. Zheng, “Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices,” J. Mater. Chem. A Mater. Energy Sustain. 5(3), 969–974 (2017).
[Crossref]

Yan Kai, Z.

A. Lin, F. Sze Ming, C. Bo-Ruei, Y. Sheng-Lun, Z. Yan Kai, K. Ming-Hsuan, S. Chang-Hong, S. Jia-Min, and T. Tseung Yuen, The external light trapping for perovskite solar cells using nanoimprinted polymer metamaterial patterns (2017).

Yang, T.-Y.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I. Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Yang, Y.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[Crossref]

Yang, Z.

Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, and Y. Hao, “High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution-Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%,” Adv. Energy Mater. 8(19), 1703432 (2018).
[Crossref]

Yao, H.

R. Yu, H. Yao, and J. Hou, “Recent Progress in Ternary Organic Solar Cells Based on Nonfullerene Acceptors,” Adv. Energy Mater. 8(28), 1702814 (2018).
[Crossref]

Yella, A.

S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nat. Chem. 6(3), 242–247 (2014).
[Crossref] [PubMed]

Yin, Y.

Q. Zhang and Y. Yin, “All-Inorganic Metal Halide Perovskite Nanocrystals: Opportunities and Challenges,” ACS Cent. Sci. 4(6), 668–679 (2018).
[Crossref] [PubMed]

Yip, H.-L.

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
[Crossref] [PubMed]

Yu, J. S.

D. H. Kim, B. Dudem, J. W. Jung, and J. S. Yu, “Boosting Light Harvesting in Perovskite Solar Cells by Biomimetic Inverted Hemispherical Architectured Polymer Layer with High Haze Factor as an Antireflective Layer,” ACS Appl. Mater. Interfaces 10(15), 13113–13123 (2018).
[Crossref] [PubMed]

Yu, R.

R. Yu, H. Yao, and J. Hou, “Recent Progress in Ternary Organic Solar Cells Based on Nonfullerene Acceptors,” Adv. Energy Mater. 8(28), 1702814 (2018).
[Crossref]

Yu, Z. J.

S. Manzoor, Z. J. Yu, A. Ali, W. Ali, K. A. Bush, A. F. Palmstrom, S. F. Bent, M. D. McGehee, and Z. C. Holman, “Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer,” Sol. Energy Mater. Sol. Cells 173, 59–65 (2017).
[Crossref]

Yum, J. H.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Zarick, H. F.

W. R. Erwin, H. F. Zarick, E. M. Talbert, and R. Bardhan, “Light trapping in mesoporous solar cells with plasmonic nanostructures,” Energy Environ. Sci. 9(5), 1577–1601 (2016).
[Crossref]

Zeman, M.

R. Santbergen, H. Uzu, K. Yamamoto, and M. Zeman, “Optimization of Three-Terminal Perovskite/Silicon Tandem Solar Cells,” Ieee Journal of Photovoltaics 9(2), 446–451 (2019).
[Crossref]

Zhang, C.

Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, and Y. Hao, “High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution-Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%,” Adv. Energy Mater. 8(19), 1703432 (2018).
[Crossref]

Zhang, L.

K. Li, R. Wu, Y. Ruan, L. Zhang, and H. Zhen, “Numerical analysis of the angular insensitive photovoltaic light harvesting with the biomimetic scattering film inspired by the rose petal epidermal topography,” Sol. Energy 170, 800–806 (2018).
[Crossref]

Zhang, Q.

Q. Zhang and Y. Yin, “All-Inorganic Metal Halide Perovskite Nanocrystals: Opportunities and Challenges,” ACS Cent. Sci. 4(6), 668–679 (2018).
[Crossref] [PubMed]

Zhang, W.-J.

J. Wei, R.-P. Xu, Y.-Q. Li, C. Li, J.-D. Chen, X.-D. Zhao, Z.-Z. Xie, C.-S. Lee, W.-J. Zhang, and J.-X. Tang, “Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrode,” Adv. Energy Mater. 7(20), 1700492 (2017).
[Crossref]

Zhang, X.

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
[Crossref] [PubMed]

Zhang, Y.

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
[Crossref] [PubMed]

Z. Ren, J. Zhou, Y. Zhang, A. Ng, Q. Shen, S. H. Cheung, H. Shen, K. Li, Z. Zheng, S. K. So, A. B. Djuric, and C. Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells 179, 36–44 (2018).
[Crossref]

K. Li, Y. Zhang, H. Zhen, H. Wang, S. Liu, F. Yan, and Z. Zheng, “Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices,” J. Mater. Chem. A Mater. Energy Sustain. 5(3), 969–974 (2017).
[Crossref]

Zhao, X.-D.

J. Wei, R.-P. Xu, Y.-Q. Li, C. Li, J.-D. Chen, X.-D. Zhao, Z.-Z. Xie, C.-S. Lee, W.-J. Zhang, and J.-X. Tang, “Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrode,” Adv. Energy Mater. 7(20), 1700492 (2017).
[Crossref]

Zhen, H.

K. Li, R. Wu, Y. Ruan, L. Zhang, and H. Zhen, “Numerical analysis of the angular insensitive photovoltaic light harvesting with the biomimetic scattering film inspired by the rose petal epidermal topography,” Sol. Energy 170, 800–806 (2018).
[Crossref]

K. Li, Y. Zhang, H. Zhen, H. Wang, S. Liu, F. Yan, and Z. Zheng, “Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices,” J. Mater. Chem. A Mater. Energy Sustain. 5(3), 969–974 (2017).
[Crossref]

Zheng, Z.

Z. Ren, J. Zhou, Y. Zhang, A. Ng, Q. Shen, S. H. Cheung, H. Shen, K. Li, Z. Zheng, S. K. So, A. B. Djuric, and C. Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells 179, 36–44 (2018).
[Crossref]

K. Li, Y. Zhang, H. Zhen, H. Wang, S. Liu, F. Yan, and Z. Zheng, “Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices,” J. Mater. Chem. A Mater. Energy Sustain. 5(3), 969–974 (2017).
[Crossref]

Zhou, J.

Z. Ren, J. Zhou, Y. Zhang, A. Ng, Q. Shen, S. H. Cheung, H. Shen, K. Li, Z. Zheng, S. K. So, A. B. Djuric, and C. Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells 179, 36–44 (2018).
[Crossref]

Zhou, L.

Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, and Y. Hao, “High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution-Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%,” Adv. Energy Mater. 8(19), 1703432 (2018).
[Crossref]

Zhou, X.

Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li, and Y. Song, “Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping,” Adv. Energy Mater. 8(12), 1702960 (2018).
[Crossref]

H. Sun, P. Ruan, Z. Bao, L. Chen, and X. Zhou, “Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells,” Solid State Sci. 40, 60–66 (2015).
[Crossref]

Zhu, G.

Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian, J. Sun, G. Zhu, G. Wang, and S. Liu, “mu-Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability,” Adv. Energy Mater. 8, 1800007 (2018).

Zhu, R.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[Crossref]

Acc. Chem. Res. (1)

M. Grätzel, “Recent Advances in Sensitized Mesoscopic Solar Cells,” Acc. Chem. Res. 42(11), 1788–1798 (2009).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

D. H. Kim, B. Dudem, J. W. Jung, and J. S. Yu, “Boosting Light Harvesting in Perovskite Solar Cells by Biomimetic Inverted Hemispherical Architectured Polymer Layer with High Haze Factor as an Antireflective Layer,” ACS Appl. Mater. Interfaces 10(15), 13113–13123 (2018).
[Crossref] [PubMed]

ACS Cent. Sci. (1)

Q. Zhang and Y. Yin, “All-Inorganic Metal Halide Perovskite Nanocrystals: Opportunities and Challenges,” ACS Cent. Sci. 4(6), 668–679 (2018).
[Crossref] [PubMed]

Adv. Energy Mater. (5)

Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian, J. Sun, G. Zhu, G. Wang, and S. Liu, “mu-Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability,” Adv. Energy Mater. 8, 1800007 (2018).

Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, and Y. Hao, “High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution-Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%,” Adv. Energy Mater. 8(19), 1703432 (2018).
[Crossref]

R. Yu, H. Yao, and J. Hou, “Recent Progress in Ternary Organic Solar Cells Based on Nonfullerene Acceptors,” Adv. Energy Mater. 8(28), 1702814 (2018).
[Crossref]

J. Wei, R.-P. Xu, Y.-Q. Li, C. Li, J.-D. Chen, X.-D. Zhao, Z.-Z. Xie, C.-S. Lee, W.-J. Zhang, and J.-X. Tang, “Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrode,” Adv. Energy Mater. 7(20), 1700492 (2017).
[Crossref]

Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li, and Y. Song, “Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping,” Adv. Energy Mater. 8(12), 1702960 (2018).
[Crossref]

Appl. Opt. (1)

Chem. Rev. (1)

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-Sensitized Solar Cells,” Chem. Rev. 110(11), 6595–6663 (2010).
[Crossref] [PubMed]

Energy Environ. Sci. (1)

W. R. Erwin, H. F. Zarick, E. M. Talbert, and R. Bardhan, “Light trapping in mesoporous solar cells with plasmonic nanostructures,” Energy Environ. Sci. 9(5), 1577–1601 (2016).
[Crossref]

Ieee Journal of Photovoltaics (1)

R. Santbergen, H. Uzu, K. Yamamoto, and M. Zeman, “Optimization of Three-Terminal Perovskite/Silicon Tandem Solar Cells,” Ieee Journal of Photovoltaics 9(2), 446–451 (2019).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

K. Li, Y. Zhang, H. Zhen, H. Wang, S. Liu, F. Yan, and Z. Zheng, “Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices,” J. Mater. Chem. A Mater. Energy Sustain. 5(3), 969–974 (2017).
[Crossref]

J. Phys. Chem. Lett. (1)

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Nano Energy (1)

S. Haque, M. J. Mendes, O. Sanchez-Sobrado, H. Aguas, E. Fortunato, and R. Martins, “Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells,” Nano Energy 59, 91–101 (2019).
[Crossref]

Nanoscale (1)

S. S. Mali, C. S. Shim, H. Kim, P. S. Patil, and C. K. Hong, “In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency,” Nanoscale 8(5), 2664–2677 (2016).
[Crossref] [PubMed]

Nat. Chem. (1)

S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nat. Chem. 6(3), 242–247 (2014).
[Crossref] [PubMed]

Nat. Energy (1)

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I. Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Nat. Mater. (1)

F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820–826 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[Crossref]

Opt. Express (1)

Science (1)

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science 361(6407), 1094–1098 (2018).
[Crossref] [PubMed]

Sol. Energy (1)

K. Li, R. Wu, Y. Ruan, L. Zhang, and H. Zhen, “Numerical analysis of the angular insensitive photovoltaic light harvesting with the biomimetic scattering film inspired by the rose petal epidermal topography,” Sol. Energy 170, 800–806 (2018).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

S. Manzoor, Z. J. Yu, A. Ali, W. Ali, K. A. Bush, A. F. Palmstrom, S. F. Bent, M. D. McGehee, and Z. C. Holman, “Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer,” Sol. Energy Mater. Sol. Cells 173, 59–65 (2017).
[Crossref]

Z. Ren, J. Zhou, Y. Zhang, A. Ng, Q. Shen, S. H. Cheung, H. Shen, K. Li, Z. Zheng, S. K. So, A. B. Djuric, and C. Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells 179, 36–44 (2018).
[Crossref]

Solid State Sci. (1)

H. Sun, P. Ruan, Z. Bao, L. Chen, and X. Zhou, “Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells,” Solid State Sci. 40, 60–66 (2015).
[Crossref]

Other (5)

A. Lin, F. Sze Ming, C. Bo-Ruei, Y. Sheng-Lun, Z. Yan Kai, K. Ming-Hsuan, S. Chang-Hong, S. Jia-Min, and T. Tseung Yuen, The external light trapping for perovskite solar cells using nanoimprinted polymer metamaterial patterns (2017).

J. F. Li, H. Y. Hao, J. B. Hao, L. Shi, J. J. Dong, H. Liu, and J. Xing, “Light trapping effect of textured FTO in perovskite solar cells,” IOP Conference Series: Materials Science and Engineering 479, 012046 (012047 pp.)-012046 (012047 pp.) (2019).
[Crossref]

“Efficiency chart ” https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf .

S. Manzoor, Z. J. Yu, A. Ali, W. Ali, Z. C. Holman, and Ieee, “Improved Light Incoupling in Planar Solar Cells via Improved Texture Morphology of PDMS Scattering Layer,” in 2017 Ieee 44th Photovoltaic Specialist Conference(2017), 1228–1232.

A. Bou, P. Torchio, S. Vedraine, D. Barakel, B. Lucas, J. C. Bernède, P. Y. Thoulon, M. J. S. E. M. Ricci, and S. Cells, “Numerical optimization of multilayer electrodes without indium for use in organic solar cells,” 125, 310–317 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Perovskite solar cells device structure with LM layer. Parameters, α, β and t, decide the texture. The optical simulation combines the optical methods, the ray tracing and TMM, to investigate the light trapping performance of LM layers.
Fig. 2
Fig. 2 (a) refractive index, n and extinction coefficient, k, for the active layer material, the simulated wavelength is ranged from 300 nm to 850nm [31]; (b) produced Jsc and RL for the device thin film stacks with different active layer thicknesses.
Fig. 3
Fig. 3 (a) the Jsc and its enhancement for the devices with different LM layer structure, where the bottom thickness is fixed at 0.1 and α and β is scanned from 0° to 90°. The triangle maximum height is limited under 1.5, so data in the top right corner is ignored. The 3 optimal textures are marked as A, B and C. Rays propagation mode 1 and 2 is plotted in dash dot lines and solid lines respectively. (b) the ray tracing paths for the structure A, B and C. (c) the light trapping efficiency and absorption enhancement for structure A, B and C. (d) absorption spectra for each layer in the control device and the ones with the optical LM layers (A, B and C).
Fig. 4
Fig. 4 (a) bottom thickness optimization for texture A, B and C. (b) the explanation that Jsc changes with bottom thicknesses for texture B. For the optimal t, most the light beans support trapped modes. While in the worst condition, all the light beams will be leaked outsides.
Fig. 5
Fig. 5 The produced Jsc versus active layer thicknesses from 50nm to 800nm. The control devices and the ones with LM layer of texture A, B and C are simulated. Compared with the control devices, the Jsc enhancement is also depicted.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A tot (λ)= θ ( I s (θ,λ) A s (θ,λ)+ I p (θ,λ) A p (θ,λ)) I tot (λ)
TAP(λ)= λ min λ max I AM1.5 (λ) A tot (λ) hc/λ dλ
{ nsin(θ)=sin(α) γ=αθ θ TIR =αsin(1/n) 90°>φ=θ+2γ> θ TIR
{ nsin(θ)=sin(α) γ=α-θ σ=β-γ θ TIR =αsin(1/n) 90°>σ> θ TIR
{ 2ttanγ+(tanα+2t)tanγ=1 1 2tanγ 1 2 tanα=t

Metrics