T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]
P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]
N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24(3), 2981–3002 (2016).
[Crossref]
I. H. Hameed, I. A. Ibraheam, and H. J. Kadhim, “Gas chromatography mass spectrum and fourier-transform infrared spectroscopy analysis of methanolic extract of Rosmarinus oficinalis leaves,” J. Pharmacogn. Phytother. 7(6), 90–106 (2015).
[Crossref]
H. J. Al-Tameme, M. Y. Hadi, and I. H. Hameed, “Phytochemical analysis of Urtica dioica leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry,” J. Pharmacogn. Phytother. 7(10), 238–252 (2015).
[Crossref]
A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]
H. de Faria Jr, J. G. S. Costa, and J. L. M. Olivas, “A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis,” Renewable Sustainable Energy Rev. 46, 201–209 (2015).
[Crossref]
G. Konvalina and H. Haick, “Sensors for breath testing: from nanomaterials to comprehensive disease detection,” Acc. Chem. Res. 47(1), 66–76 (2014).
[Crossref]
S. Olyaee, A. Naraghi, and V. Ahmadi, “High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring,” Optik 125(1), 596–600 (2014).
[Crossref]
Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]
P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]
M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]
A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
[Crossref]
X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
[Crossref]
K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]
E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express 19(16), 14852–14859 (2011).
[Crossref]
C. Li, G. W. Krewer, P. Ji, H. Scherm, and S. J. Kays, “Gas sensor array for blueberry fruit disease detection and classification,” Postharvest Biol. Technol. 55(3), 144–149 (2010).
[Crossref]
B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]
Y. Li, D. L. García-González, X. Yu, and F. R. van de Voort, “Determination of free fatty acids in edible oils with the use of a variable filter array IR spectrometer,” J. Am. Oil Chem. Soc. 85(7), 599–604 (2008).
[Crossref]
N. Gayraud, ŁW Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber,” Appl. Opt. 47(9), 1269–1277 (2008).
[Crossref]
O. Frazao, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]
F. G. Nogueira, D. Felps, and R. Gutierrez-Osuna, “Development of an infrared absorption spectroscope based on linear variable filters,” IEEE Sens. J. 7(8), 1183–1190 (2007).
[Crossref]
J. Chen, L. Xu, W. Li, and X. Gou, “α - Fe2O3 nanotubes in gas sensor and lithium-ion battery applications,” Adv. Mater. 17(5), 582–586 (2005).
[Crossref]
J. Guardado, J. Naredo, P. Moreno, and C. Fuerte, “A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis,” IEEE Trans. Power Delivery 16(4), 643–647 (2001).
[Crossref]
A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]
P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]
Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]
P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]
S. Olyaee, A. Naraghi, and V. Ahmadi, “High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring,” Optik 125(1), 596–600 (2014).
[Crossref]
T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]
B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]
H. J. Al-Tameme, M. Y. Hadi, and I. H. Hameed, “Phytochemical analysis of Urtica dioica leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry,” J. Pharmacogn. Phytother. 7(10), 238–252 (2015).
[Crossref]
O. Frazao, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]
A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]
A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]
Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]
M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]
A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]
A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]
Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]
A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]
P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]
J. Chen, L. Xu, W. Li, and X. Gou, “α - Fe2O3 nanotubes in gas sensor and lithium-ion battery applications,” Adv. Mater. 17(5), 582–586 (2005).
[Crossref]
X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
[Crossref]
M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]
H. de Faria Jr, J. G. S. Costa, and J. L. M. Olivas, “A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis,” Renewable Sustainable Energy Rev. 46, 201–209 (2015).
[Crossref]
Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]
H. de Faria Jr, J. G. S. Costa, and J. L. M. Olivas, “A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis,” Renewable Sustainable Energy Rev. 46, 201–209 (2015).
[Crossref]
N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24(3), 2981–3002 (2016).
[Crossref]
M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]
A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
[Crossref]
M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]
A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
[Crossref]
M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]
F. G. Nogueira, D. Felps, and R. Gutierrez-Osuna, “Development of an infrared absorption spectroscope based on linear variable filters,” IEEE Sens. J. 7(8), 1183–1190 (2007).
[Crossref]
O. Frazao, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]
O. Frazao, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]
J. Guardado, J. Naredo, P. Moreno, and C. Fuerte, “A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis,” IEEE Trans. Power Delivery 16(4), 643–647 (2001).
[Crossref]
Y. Li, D. L. García-González, X. Yu, and F. R. van de Voort, “Determination of free fatty acids in edible oils with the use of a variable filter array IR spectrometer,” J. Am. Oil Chem. Soc. 85(7), 599–604 (2008).
[Crossref]
M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]
A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]
J. Chen, L. Xu, W. Li, and X. Gou, “α - Fe2O3 nanotubes in gas sensor and lithium-ion battery applications,” Adv. Mater. 17(5), 582–586 (2005).
[Crossref]
J. Guardado, J. Naredo, P. Moreno, and C. Fuerte, “A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis,” IEEE Trans. Power Delivery 16(4), 643–647 (2001).
[Crossref]
T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]
F. G. Nogueira, D. Felps, and R. Gutierrez-Osuna, “Development of an infrared absorption spectroscope based on linear variable filters,” IEEE Sens. J. 7(8), 1183–1190 (2007).
[Crossref]
H. J. Al-Tameme, M. Y. Hadi, and I. H. Hameed, “Phytochemical analysis of Urtica dioica leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry,” J. Pharmacogn. Phytother. 7(10), 238–252 (2015).
[Crossref]
G. Konvalina and H. Haick, “Sensors for breath testing: from nanomaterials to comprehensive disease detection,” Acc. Chem. Res. 47(1), 66–76 (2014).
[Crossref]
H. J. Al-Tameme, M. Y. Hadi, and I. H. Hameed, “Phytochemical analysis of Urtica dioica leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry,” J. Pharmacogn. Phytother. 7(10), 238–252 (2015).
[Crossref]
I. H. Hameed, I. A. Ibraheam, and H. J. Kadhim, “Gas chromatography mass spectrum and fourier-transform infrared spectroscopy analysis of methanolic extract of Rosmarinus oficinalis leaves,” J. Pharmacogn. Phytother. 7(6), 90–106 (2015).
[Crossref]
P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]
P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]
B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]
X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
[Crossref]
T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]
I. H. Hameed, I. A. Ibraheam, and H. J. Kadhim, “Gas chromatography mass spectrum and fourier-transform infrared spectroscopy analysis of methanolic extract of Rosmarinus oficinalis leaves,” J. Pharmacogn. Phytother. 7(6), 90–106 (2015).
[Crossref]
S. Jacobson, “New developments in ultrasonic gas analysis and flowmetering,” in Ultrasonics Symposium, 2008. IUS 2008. IEEE (IEEE2008), pp. 508–516.
C. Li, G. W. Krewer, P. Ji, H. Scherm, and S. J. Kays, “Gas sensor array for blueberry fruit disease detection and classification,” Postharvest Biol. Technol. 55(3), 144–149 (2010).
[Crossref]
T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]
P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]
T. Jin and P. T. Lin, “Mid-infrared Photonic Chips for Real-time Gas Mixture Analysis,” in CLEO: Applications and Technology (Optical Society of America2018), p. ATh4P. 6.
I. H. Hameed, I. A. Ibraheam, and H. J. Kadhim, “Gas chromatography mass spectrum and fourier-transform infrared spectroscopy analysis of methanolic extract of Rosmarinus oficinalis leaves,” J. Pharmacogn. Phytother. 7(6), 90–106 (2015).
[Crossref]
A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]
C. Li, G. W. Krewer, P. Ji, H. Scherm, and S. J. Kays, “Gas sensor array for blueberry fruit disease detection and classification,” Postharvest Biol. Technol. 55(3), 144–149 (2010).
[Crossref]
B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]
B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]
P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]
G. Konvalina and H. Haick, “Sensors for breath testing: from nanomaterials to comprehensive disease detection,” Acc. Chem. Res. 47(1), 66–76 (2014).
[Crossref]
C. Li, G. W. Krewer, P. Ji, H. Scherm, and S. J. Kays, “Gas sensor array for blueberry fruit disease detection and classification,” Postharvest Biol. Technol. 55(3), 144–149 (2010).
[Crossref]
K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]
A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]
C. Li, G. W. Krewer, P. Ji, H. Scherm, and S. J. Kays, “Gas sensor array for blueberry fruit disease detection and classification,” Postharvest Biol. Technol. 55(3), 144–149 (2010).
[Crossref]
J. Chen, L. Xu, W. Li, and X. Gou, “α - Fe2O3 nanotubes in gas sensor and lithium-ion battery applications,” Adv. Mater. 17(5), 582–586 (2005).
[Crossref]
Y. Li, D. L. García-González, X. Yu, and F. R. van de Voort, “Determination of free fatty acids in edible oils with the use of a variable filter array IR spectrometer,” J. Am. Oil Chem. Soc. 85(7), 599–604 (2008).
[Crossref]
K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]
P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]
T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]
P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]
T. Jin and P. T. Lin, “Mid-infrared Photonic Chips for Real-time Gas Mixture Analysis,” in CLEO: Applications and Technology (Optical Society of America2018), p. ATh4P. 6.
X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
[Crossref]
X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
[Crossref]
A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]
Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]
P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]
A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]
J. Guardado, J. Naredo, P. Moreno, and C. Fuerte, “A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis,” IEEE Trans. Power Delivery 16(4), 643–647 (2001).
[Crossref]
A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]
S. Olyaee, A. Naraghi, and V. Ahmadi, “High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring,” Optik 125(1), 596–600 (2014).
[Crossref]
J. Guardado, J. Naredo, P. Moreno, and C. Fuerte, “A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis,” IEEE Trans. Power Delivery 16(4), 643–647 (2001).
[Crossref]
X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
[Crossref]
F. G. Nogueira, D. Felps, and R. Gutierrez-Osuna, “Development of an infrared absorption spectroscope based on linear variable filters,” IEEE Sens. J. 7(8), 1183–1190 (2007).
[Crossref]
H. de Faria Jr, J. G. S. Costa, and J. L. M. Olivas, “A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis,” Renewable Sustainable Energy Rev. 46, 201–209 (2015).
[Crossref]
S. Olyaee, A. Naraghi, and V. Ahmadi, “High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring,” Optik 125(1), 596–600 (2014).
[Crossref]
T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]
K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]
Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]
Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]
Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]
P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]
K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]
O. Frazao, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]
C. Li, G. W. Krewer, P. Ji, H. Scherm, and S. J. Kays, “Gas sensor array for blueberry fruit disease detection and classification,” Postharvest Biol. Technol. 55(3), 144–149 (2010).
[Crossref]
K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]
B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]
K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]
P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]
K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]
Y. Li, D. L. García-González, X. Yu, and F. R. van de Voort, “Determination of free fatty acids in edible oils with the use of a variable filter array IR spectrometer,” J. Am. Oil Chem. Soc. 85(7), 599–604 (2008).
[Crossref]
B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]
T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]
A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]
K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]
K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]
M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]
A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
[Crossref]
J. Chen, L. Xu, W. Li, and X. Gou, “α - Fe2O3 nanotubes in gas sensor and lithium-ion battery applications,” Adv. Mater. 17(5), 582–586 (2005).
[Crossref]
Y. Li, D. L. García-González, X. Yu, and F. R. van de Voort, “Determination of free fatty acids in edible oils with the use of a variable filter array IR spectrometer,” J. Am. Oil Chem. Soc. 85(7), 599–604 (2008).
[Crossref]
X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
[Crossref]
T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]
G. Konvalina and H. Haick, “Sensors for breath testing: from nanomaterials to comprehensive disease detection,” Acc. Chem. Res. 47(1), 66–76 (2014).
[Crossref]
J. Chen, L. Xu, W. Li, and X. Gou, “α - Fe2O3 nanotubes in gas sensor and lithium-ion battery applications,” Adv. Mater. 17(5), 582–586 (2005).
[Crossref]
P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]
T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]
A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]
F. G. Nogueira, D. Felps, and R. Gutierrez-Osuna, “Development of an infrared absorption spectroscope based on linear variable filters,” IEEE Sens. J. 7(8), 1183–1190 (2007).
[Crossref]
J. Guardado, J. Naredo, P. Moreno, and C. Fuerte, “A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis,” IEEE Trans. Power Delivery 16(4), 643–647 (2001).
[Crossref]
Y. Li, D. L. García-González, X. Yu, and F. R. van de Voort, “Determination of free fatty acids in edible oils with the use of a variable filter array IR spectrometer,” J. Am. Oil Chem. Soc. 85(7), 599–604 (2008).
[Crossref]
M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]
I. H. Hameed, I. A. Ibraheam, and H. J. Kadhim, “Gas chromatography mass spectrum and fourier-transform infrared spectroscopy analysis of methanolic extract of Rosmarinus oficinalis leaves,” J. Pharmacogn. Phytother. 7(6), 90–106 (2015).
[Crossref]
H. J. Al-Tameme, M. Y. Hadi, and I. H. Hameed, “Phytochemical analysis of Urtica dioica leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry,” J. Pharmacogn. Phytother. 7(10), 238–252 (2015).
[Crossref]
B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]
Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]
O. Frazao, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]
P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]
A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
[Crossref]
N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24(3), 2981–3002 (2016).
[Crossref]
E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express 19(16), 14852–14859 (2011).
[Crossref]
S. Olyaee, A. Naraghi, and V. Ahmadi, “High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring,” Optik 125(1), 596–600 (2014).
[Crossref]
C. Li, G. W. Krewer, P. Ji, H. Scherm, and S. J. Kays, “Gas sensor array for blueberry fruit disease detection and classification,” Postharvest Biol. Technol. 55(3), 144–149 (2010).
[Crossref]
H. de Faria Jr, J. G. S. Costa, and J. L. M. Olivas, “A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis,” Renewable Sustainable Energy Rev. 46, 201–209 (2015).
[Crossref]
A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]
K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]
X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
[Crossref]
T. Jin and P. T. Lin, “Mid-infrared Photonic Chips for Real-time Gas Mixture Analysis,” in CLEO: Applications and Technology (Optical Society of America2018), p. ATh4P. 6.
S. Jacobson, “New developments in ultrasonic gas analysis and flowmetering,” in Ultrasonics Symposium, 2008. IUS 2008. IEEE (IEEE2008), pp. 508–516.