Abstract

Real-time gas mixture analysis has been demonstrated using various linear variable filter (LVF)-enabled mid-infrared (mid-IR) visualizations. Due to the characteristic absorptions of different gases, the algorithm-enabled sensing method has the ability to detect multi-component gas mixtures noninvasively. The proposed system consisted of a broadband light source, a gas mixing and delivery chamber made by polydimethylsiloxane (PDMS), a LVF, and a real-time monitoring mid-IR camera. The system performance was evaluated by detecting CH4 and C2H2 at their characteristic C-H absorptions from λ = 3.0 to 3.5 µm. A fast and accurate identification of gas samples was achieved. Therefore, our real-time and non-destructive gas analysis system enables a new visualization technology for environmental monitoring and industrial measurement.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser

Weilin Ye, Chunguang Li, Chuantao Zheng, Nancy P. Sanchez, Aleksander K. Gluszek, Arkadiusz J. Hudzikowski, Lei Dong, Robert J. Griffin, and Frank K. Tittel
Opt. Express 24(15) 16973-16985 (2016)

Real-time monitoring of benzene, toluene, and p-xylene in a photoreaction chamber with a tunable mid-infrared laser and ultraviolet differential optical absorption spectroscopy

Matthew T. Parsons, Ihor Sydoryk, Alan Lim, Thomas J. McIntyre, John Tulip, Wolfgang Jäger, and Karen McDonald
Appl. Opt. 50(4) A90-A99 (2011)

Multiwavelength discrimination and measurements of a two-gas mixture by use of a broadly tunable mid-infrared semiconductor laser

Chuan Peng, Han Q. Le, Rui Q. Yang, and Cory J. Hill
Appl. Opt. 45(6) 1275-1287 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J. Chen, L. Xu, W. Li, and X. Gou, “α - Fe2O3 nanotubes in gas sensor and lithium-ion battery applications,” Adv. Mater. 17(5), 582–586 (2005).
    [Crossref]
  2. B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
    [Crossref]
  3. G. Konvalina and H. Haick, “Sensors for breath testing: from nanomaterials to comprehensive disease detection,” Acc. Chem. Res. 47(1), 66–76 (2014).
    [Crossref]
  4. C. Li, G. W. Krewer, P. Ji, H. Scherm, and S. J. Kays, “Gas sensor array for blueberry fruit disease detection and classification,” Postharvest Biol. Technol. 55(3), 144–149 (2010).
    [Crossref]
  5. A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
    [Crossref]
  6. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
    [Crossref]
  7. H. de Faria Jr, J. G. S. Costa, and J. L. M. Olivas, “A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis,” Renewable Sustainable Energy Rev. 46, 201–209 (2015).
    [Crossref]
  8. J. Guardado, J. Naredo, P. Moreno, and C. Fuerte, “A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis,” IEEE Trans. Power Delivery 16(4), 643–647 (2001).
    [Crossref]
  9. A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
    [Crossref]
  10. Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
    [Crossref]
  11. P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
    [Crossref]
  12. T. Jin and P. T. Lin, “Mid-infrared Photonic Chips for Real-time Gas Mixture Analysis,” in CLEO: Applications and Technology (Optical Society of America2018), p. ATh4P. 6.
  13. S. Jacobson, “New developments in ultrasonic gas analysis and flowmetering,” in Ultrasonics Symposium, 2008. IUS 2008. IEEE (IEEE2008), pp. 508–516.
  14. T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
    [Crossref]
  15. X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
    [Crossref]
  16. I. H. Hameed, I. A. Ibraheam, and H. J. Kadhim, “Gas chromatography mass spectrum and fourier-transform infrared spectroscopy analysis of methanolic extract of Rosmarinus oficinalis leaves,” J. Pharmacogn. Phytother. 7(6), 90–106 (2015).
    [Crossref]
  17. H. J. Al-Tameme, M. Y. Hadi, and I. H. Hameed, “Phytochemical analysis of Urtica dioica leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry,” J. Pharmacogn. Phytother. 7(10), 238–252 (2015).
    [Crossref]
  18. E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express 19(16), 14852–14859 (2011).
    [Crossref]
  19. P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
    [Crossref]
  20. O. Frazao, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
    [Crossref]
  21. N. Gayraud, ŁW Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber,” Appl. Opt. 47(9), 1269–1277 (2008).
    [Crossref]
  22. S. Olyaee, A. Naraghi, and V. Ahmadi, “High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring,” Optik 125(1), 596–600 (2014).
    [Crossref]
  23. Y. Li, D. L. García-González, X. Yu, and F. R. van de Voort, “Determination of free fatty acids in edible oils with the use of a variable filter array IR spectrometer,” J. Am. Oil Chem. Soc. 85(7), 599–604 (2008).
    [Crossref]
  24. F. G. Nogueira, D. Felps, and R. Gutierrez-Osuna, “Development of an infrared absorption spectroscope based on linear variable filters,” IEEE Sens. J. 7(8), 1183–1190 (2007).
    [Crossref]
  25. A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
    [Crossref]
  26. N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24(3), 2981–3002 (2016).
    [Crossref]
  27. M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
    [Crossref]

2018 (1)

T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]

2016 (2)

P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24(3), 2981–3002 (2016).
[Crossref]

2015 (4)

I. H. Hameed, I. A. Ibraheam, and H. J. Kadhim, “Gas chromatography mass spectrum and fourier-transform infrared spectroscopy analysis of methanolic extract of Rosmarinus oficinalis leaves,” J. Pharmacogn. Phytother. 7(6), 90–106 (2015).
[Crossref]

H. J. Al-Tameme, M. Y. Hadi, and I. H. Hameed, “Phytochemical analysis of Urtica dioica leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry,” J. Pharmacogn. Phytother. 7(10), 238–252 (2015).
[Crossref]

A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]

H. de Faria Jr, J. G. S. Costa, and J. L. M. Olivas, “A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis,” Renewable Sustainable Energy Rev. 46, 201–209 (2015).
[Crossref]

2014 (5)

G. Konvalina and H. Haick, “Sensors for breath testing: from nanomaterials to comprehensive disease detection,” Acc. Chem. Res. 47(1), 66–76 (2014).
[Crossref]

S. Olyaee, A. Naraghi, and V. Ahmadi, “High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring,” Optik 125(1), 596–600 (2014).
[Crossref]

Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

2012 (2)

2011 (2)

K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]

E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express 19(16), 14852–14859 (2011).
[Crossref]

2010 (2)

C. Li, G. W. Krewer, P. Ji, H. Scherm, and S. J. Kays, “Gas sensor array for blueberry fruit disease detection and classification,” Postharvest Biol. Technol. 55(3), 144–149 (2010).
[Crossref]

B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]

2008 (3)

Y. Li, D. L. García-González, X. Yu, and F. R. van de Voort, “Determination of free fatty acids in edible oils with the use of a variable filter array IR spectrometer,” J. Am. Oil Chem. Soc. 85(7), 599–604 (2008).
[Crossref]

N. Gayraud, ŁW Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber,” Appl. Opt. 47(9), 1269–1277 (2008).
[Crossref]

O. Frazao, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

2007 (1)

F. G. Nogueira, D. Felps, and R. Gutierrez-Osuna, “Development of an infrared absorption spectroscope based on linear variable filters,” IEEE Sens. J. 7(8), 1183–1190 (2007).
[Crossref]

2005 (1)

J. Chen, L. Xu, W. Li, and X. Gou, “α - Fe2O3 nanotubes in gas sensor and lithium-ion battery applications,” Adv. Mater. 17(5), 582–586 (2005).
[Crossref]

2001 (1)

J. Guardado, J. Naredo, P. Moreno, and C. Fuerte, “A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis,” IEEE Trans. Power Delivery 16(4), 643–647 (2001).
[Crossref]

2000 (1)

A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]

Abdolvand, A.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Adcock, P.

Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]

Agarwal, A.

P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

Ahmadi, V.

S. Olyaee, A. Naraghi, and V. Ahmadi, “High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring,” Optik 125(1), 596–600 (2014).
[Crossref]

Ahn, C.

T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]

Ahn, J.

B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]

Al-Tameme, H. J.

H. J. Al-Tameme, M. Y. Hadi, and I. H. Hameed, “Phytochemical analysis of Urtica dioica leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry,” J. Pharmacogn. Phytother. 7(10), 238–252 (2015).
[Crossref]

Araújo, F. M.

O. Frazao, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

Arbiol, J.

A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]

Arya, S. K.

A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]

Ashton, S.

Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]

Ayerden, N.

M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

Ayerden, N. P.

Barsan, N.

A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]

Bhansali, S.

A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]

Brett, D. J.

Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]

Cabot, A.

A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]

Chang, W.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Chen, J.

J. Chen, L. Xu, W. Li, and X. Gou, “α - Fe2O3 nanotubes in gas sensor and lithium-ion battery applications,” Adv. Mater. 17(5), 582–586 (2005).
[Crossref]

Cheng, S.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
[Crossref]

Correia, J.

M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

Costa, J. G. S.

H. de Faria Jr, J. G. S. Costa, and J. L. M. Olivas, “A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis,” Renewable Sustainable Energy Rev. 46, 201–209 (2015).
[Crossref]

Curnick, O.

Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]

de Faria Jr, H.

H. de Faria Jr, J. G. S. Costa, and J. L. M. Olivas, “A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis,” Renewable Sustainable Energy Rev. 46, 201–209 (2015).
[Crossref]

de Graaf, G.

Emadi, A.

M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
[Crossref]

Enoksson, P.

M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

Felps, D.

F. G. Nogueira, D. Felps, and R. Gutierrez-Osuna, “Development of an infrared absorption spectroscope based on linear variable filters,” IEEE Sens. J. 7(8), 1183–1190 (2007).
[Crossref]

Ferreira, L. A.

O. Frazao, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

Frazao, O.

O. Frazao, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

Fuerte, C.

J. Guardado, J. Naredo, P. Moreno, and C. Fuerte, “A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis,” IEEE Trans. Power Delivery 16(4), 643–647 (2001).
[Crossref]

García-González, D. L.

Y. Li, D. L. García-González, X. Yu, and F. R. van de Voort, “Determination of free fatty acids in edible oils with the use of a variable filter array IR spectrometer,” J. Am. Oil Chem. Soc. 85(7), 599–604 (2008).
[Crossref]

Gayraud, N.

Ghaderi, M.

M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

Göpel, W.

A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]

Gou, X.

J. Chen, L. Xu, W. Li, and X. Gou, “α - Fe2O3 nanotubes in gas sensor and lithium-ion battery applications,” Adv. Mater. 17(5), 582–586 (2005).
[Crossref]

Guardado, J.

J. Guardado, J. Naredo, P. Moreno, and C. Fuerte, “A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis,” IEEE Trans. Power Delivery 16(4), 643–647 (2001).
[Crossref]

Gutierrez-Osuna, R.

T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]

F. G. Nogueira, D. Felps, and R. Gutierrez-Osuna, “Development of an infrared absorption spectroscope based on linear variable filters,” IEEE Sens. J. 7(8), 1183–1190 (2007).
[Crossref]

Hadi, M. Y.

H. J. Al-Tameme, M. Y. Hadi, and I. H. Hameed, “Phytochemical analysis of Urtica dioica leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry,” J. Pharmacogn. Phytother. 7(10), 238–252 (2015).
[Crossref]

Haick, H.

G. Konvalina and H. Haick, “Sensors for breath testing: from nanomaterials to comprehensive disease detection,” Acc. Chem. Res. 47(1), 66–76 (2014).
[Crossref]

Hameed, I. H.

H. J. Al-Tameme, M. Y. Hadi, and I. H. Hameed, “Phytochemical analysis of Urtica dioica leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry,” J. Pharmacogn. Phytother. 7(10), 238–252 (2015).
[Crossref]

I. H. Hameed, I. A. Ibraheam, and H. J. Kadhim, “Gas chromatography mass spectrum and fourier-transform infrared spectroscopy analysis of methanolic extract of Rosmarinus oficinalis leaves,” J. Pharmacogn. Phytother. 7(6), 90–106 (2015).
[Crossref]

Han, Z.

P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

Hand, D. P.

Hölzer, P.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Horvat, J.

B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]

Hu, S.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
[Crossref]

Hwang, W.

T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]

Ibraheam, I. A.

I. H. Hameed, I. A. Ibraheam, and H. J. Kadhim, “Gas chromatography mass spectrum and fourier-transform infrared spectroscopy analysis of methanolic extract of Rosmarinus oficinalis leaves,” J. Pharmacogn. Phytother. 7(6), 90–106 (2015).
[Crossref]

Jacobson, S.

S. Jacobson, “New developments in ultrasonic gas analysis and flowmetering,” in Ultrasonics Symposium, 2008. IUS 2008. IEEE (IEEE2008), pp. 508–516.

Jeon, T.-I.

Ji, P.

C. Li, G. W. Krewer, P. Ji, H. Scherm, and S. J. Kays, “Gas sensor array for blueberry fruit disease detection and classification,” Postharvest Biol. Technol. 55(3), 144–149 (2010).
[Crossref]

Jin, T.

T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]

P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

T. Jin and P. T. Lin, “Mid-infrared Photonic Chips for Real-time Gas Mixture Analysis,” in CLEO: Applications and Technology (Optical Society of America2018), p. ATh4P. 6.

Kadhim, H. J.

I. H. Hameed, I. A. Ibraheam, and H. J. Kadhim, “Gas chromatography mass spectrum and fourier-transform infrared spectroscopy analysis of methanolic extract of Rosmarinus oficinalis leaves,” J. Pharmacogn. Phytother. 7(6), 90–106 (2015).
[Crossref]

Kaushik, A.

A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]

Kays, S. J.

C. Li, G. W. Krewer, P. Ji, H. Scherm, and S. J. Kays, “Gas sensor array for blueberry fruit disease detection and classification,” Postharvest Biol. Technol. 55(3), 144–149 (2010).
[Crossref]

Kee, C.-S.

Kim, H. S.

B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]

Kim, W.-S.

B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]

Kimerling, L. C.

P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

Knight, J. C.

Konvalina, G.

G. Konvalina and H. Haick, “Sensors for breath testing: from nanomaterials to comprehensive disease detection,” Acc. Chem. Res. 47(1), 66–76 (2014).
[Crossref]

Kornaszewski, LW

Krewer, G. W.

C. Li, G. W. Krewer, P. Ji, H. Scherm, and S. J. Kays, “Gas sensor array for blueberry fruit disease detection and classification,” Postharvest Biol. Technol. 55(3), 144–149 (2010).
[Crossref]

Kruefu, V.

K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]

Kumar, R.

A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]

Lee, E. S.

Lee, S.-G.

Li, C.

C. Li, G. W. Krewer, P. Ji, H. Scherm, and S. J. Kays, “Gas sensor array for blueberry fruit disease detection and classification,” Postharvest Biol. Technol. 55(3), 144–149 (2010).
[Crossref]

Li, W.

J. Chen, L. Xu, W. Li, and X. Gou, “α - Fe2O3 nanotubes in gas sensor and lithium-ion battery applications,” Adv. Mater. 17(5), 582–586 (2005).
[Crossref]

Li, Y.

Y. Li, D. L. García-González, X. Yu, and F. R. van de Voort, “Determination of free fatty acids in edible oils with the use of a variable filter array IR spectrometer,” J. Am. Oil Chem. Soc. 85(7), 599–604 (2008).
[Crossref]

Liewhiran, C.

K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]

Lin, H. Y. G.

P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

Lin, P. T.

T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]

P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

T. Jin and P. T. Lin, “Mid-infrared Photonic Chips for Real-time Gas Mixture Analysis,” in CLEO: Applications and Technology (Optical Society of America2018), p. ATh4P. 6.

Liu, H.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
[Crossref]

Liu, X.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
[Crossref]

MacPherson, W. N.

Malhotra, B.

A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]

Meyer, Q.

Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]

Millender, R.

P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

Morante, J. R.

A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]

Moreno, P.

J. Guardado, J. Naredo, P. Moreno, and C. Fuerte, “A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis,” IEEE Trans. Power Delivery 16(4), 643–647 (2001).
[Crossref]

Nair, M.

A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]

Naraghi, A.

S. Olyaee, A. Naraghi, and V. Ahmadi, “High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring,” Optik 125(1), 596–600 (2014).
[Crossref]

Naredo, J.

J. Guardado, J. Naredo, P. Moreno, and C. Fuerte, “A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis,” IEEE Trans. Power Delivery 16(4), 643–647 (2001).
[Crossref]

Ning, H.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
[Crossref]

Nogueira, F. G.

F. G. Nogueira, D. Felps, and R. Gutierrez-Osuna, “Development of an infrared absorption spectroscope based on linear variable filters,” IEEE Sens. J. 7(8), 1183–1190 (2007).
[Crossref]

Olivas, J. L. M.

H. de Faria Jr, J. G. S. Costa, and J. L. M. Olivas, “A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis,” Renewable Sustainable Energy Rev. 46, 201–209 (2015).
[Crossref]

Olyaee, S.

S. Olyaee, A. Naraghi, and V. Ahmadi, “High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring,” Optik 125(1), 596–600 (2014).
[Crossref]

Park, K.

T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]

Phanichphant, S.

K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]

Reid, D. T.

Reisch, T.

Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]

Robinson, J. B.

Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]

Ronaszegi, K.

Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]

Russell, P. S. J.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Samerjai, T.

K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]

Santos, J. L.

O. Frazao, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

Scherm, H.

C. Li, G. W. Krewer, P. Ji, H. Scherm, and S. J. Kays, “Gas sensor array for blueberry fruit disease detection and classification,” Postharvest Biol. Technol. 55(3), 144–149 (2010).
[Crossref]

Siriwong, C.

K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]

Stone, J. M.

Sun, B.

B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]

Tamaekong, N.

K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]

Travers, J.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Tuantranont, A.

K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]

van de Voort, F. R.

Y. Li, D. L. García-González, X. Yu, and F. R. van de Voort, “Determination of free fatty acids in edible oils with the use of a variable filter array IR spectrometer,” J. Am. Oil Chem. Soc. 85(7), 599–604 (2008).
[Crossref]

Wang, G.

B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]

Wang, Z.

T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]

Weimar, U.

A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]

Wetchakun, K.

K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]

Wisitsoraat, A.

K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]

Wolffenbuttel, R.

M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
[Crossref]

Wolffenbuttel, R. F.

Wu, H.

Xu, L.

J. Chen, L. Xu, W. Li, and X. Gou, “α - Fe2O3 nanotubes in gas sensor and lithium-ion battery applications,” Adv. Mater. 17(5), 582–586 (2005).
[Crossref]

Yu, X.

Y. Li, D. L. García-González, X. Yu, and F. R. van de Voort, “Determination of free fatty acids in edible oils with the use of a variable filter array IR spectrometer,” J. Am. Oil Chem. Soc. 85(7), 599–604 (2008).
[Crossref]

Zhang, D.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
[Crossref]

Zhou, J.

T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]

Acc. Chem. Res. (1)

G. Konvalina and H. Haick, “Sensors for breath testing: from nanomaterials to comprehensive disease detection,” Acc. Chem. Res. 47(1), 66–76 (2014).
[Crossref]

Adv. Mater. (1)

J. Chen, L. Xu, W. Li, and X. Gou, “α - Fe2O3 nanotubes in gas sensor and lithium-ion battery applications,” Adv. Mater. 17(5), 582–586 (2005).
[Crossref]

Adv. Opt. Mater. (1)

P. T. Lin, H. Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics,” Adv. Opt. Mater. 4(11), 1755–1759 (2016).
[Crossref]

Anal. Chem. (1)

T. Jin, J. Zhou, Z. Wang, R. Gutierrez-Osuna, C. Ahn, W. Hwang, K. Park, and P. T. Lin, “Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities,” Anal. Chem. 90(7), 4348–4353 (2018).
[Crossref]

Appl. Opt. (1)

Chem. Rev. (1)

A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, “Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring,” Chem. Rev. 115(11), 4571–4606 (2015).
[Crossref]

IEEE Sens. J. (1)

F. G. Nogueira, D. Felps, and R. Gutierrez-Osuna, “Development of an infrared absorption spectroscope based on linear variable filters,” IEEE Sens. J. 7(8), 1183–1190 (2007).
[Crossref]

IEEE Trans. Power Delivery (1)

J. Guardado, J. Naredo, P. Moreno, and C. Fuerte, “A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis,” IEEE Trans. Power Delivery 16(4), 643–647 (2001).
[Crossref]

J. Am. Oil Chem. Soc. (1)

Y. Li, D. L. García-González, X. Yu, and F. R. van de Voort, “Determination of free fatty acids in edible oils with the use of a variable filter array IR spectrometer,” J. Am. Oil Chem. Soc. 85(7), 599–604 (2008).
[Crossref]

J. Micromech. Microeng. (1)

M. Ghaderi, N. Ayerden, A. Emadi, P. Enoksson, J. Correia, G. De Graaf, and R. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

J. Pharmacogn. Phytother. (2)

I. H. Hameed, I. A. Ibraheam, and H. J. Kadhim, “Gas chromatography mass spectrum and fourier-transform infrared spectroscopy analysis of methanolic extract of Rosmarinus oficinalis leaves,” J. Pharmacogn. Phytother. 7(6), 90–106 (2015).
[Crossref]

H. J. Al-Tameme, M. Y. Hadi, and I. H. Hameed, “Phytochemical analysis of Urtica dioica leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry,” J. Pharmacogn. Phytother. 7(10), 238–252 (2015).
[Crossref]

J. Phys. Chem. C (1)

B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, and G. Wang, “Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries,” J. Phys. Chem. C 114(44), 18753–18761 (2010).
[Crossref]

J. Power Sources (1)

Q. Meyer, S. Ashton, O. Curnick, T. Reisch, P. Adcock, K. Ronaszegi, J. B. Robinson, and D. J. Brett, “Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging,” J. Power Sources 254, 1–9 (2014).
[Crossref]

Laser Photonics Rev. (1)

O. Frazao, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

Nat. Photonics (1)

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Opt. Express (3)

Optik (1)

S. Olyaee, A. Naraghi, and V. Ahmadi, “High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring,” Optik 125(1), 596–600 (2014).
[Crossref]

Postharvest Biol. Technol. (1)

C. Li, G. W. Krewer, P. Ji, H. Scherm, and S. J. Kays, “Gas sensor array for blueberry fruit disease detection and classification,” Postharvest Biol. Technol. 55(3), 144–149 (2010).
[Crossref]

Renewable Sustainable Energy Rev. (1)

H. de Faria Jr, J. G. S. Costa, and J. L. M. Olivas, “A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis,” Renewable Sustainable Energy Rev. 46, 201–209 (2015).
[Crossref]

Sens. Actuators, B (2)

A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors,” Sens. Actuators, B 70(1-3), 87–100 (2000).
[Crossref]

K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sens. Actuators, B 160(1), 580–591 (2011).
[Crossref]

Sensors (1)

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors 12(7), 9635–9665 (2012).
[Crossref]

Other (2)

T. Jin and P. T. Lin, “Mid-infrared Photonic Chips for Real-time Gas Mixture Analysis,” in CLEO: Applications and Technology (Optical Society of America2018), p. ATh4P. 6.

S. Jacobson, “New developments in ultrasonic gas analysis and flowmetering,” in Ultrasonics Symposium, 2008. IUS 2008. IEEE (IEEE2008), pp. 508–516.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. The Structure of an LVF. A LVF contains two DBRs with a wedge between them, and each DBR consists of stacks of high and low reflective index layers.
Fig. 2.
Fig. 2. (a) Schematic of the mid-IR gas analysis system. (b) The experimental setup for measuring the concentrations of gas mixtures. A broadband mid-IR light passed through the gas chamber and the LVF. The intensity profiles after LVF were continuously monitored by a mid-IR camera.
Fig. 3.
Fig. 3. The experimental setup to characterize the LVF. The mid-IR laser was expanded by a lens. The light pattern after LVF was refocused by another lens and recorded by a mid-IR camera.
Fig. 4.
Fig. 4. The image of the laser light after passing through the LVF. Light strips at shorter wavelengths were found at the LVF left. The strip moved to the right as the wavelength increased.
Fig. 5.
Fig. 5. The position of the light strip transmitting through the LVF shifted from left to right as the wavelength of the laser increased from λ = 2.5 to 5 µm.
Fig. 6.
Fig. 6. The intensity profiles of the light strips from λ = 3.0 to 3.1 µm with a wavelength scan step of 10 nm. The pattern moved from the left to the right as the wavelength increased. The FWHM is 10 nm.
Fig. 7.
Fig. 7. (a) The image captured after LVF when the gas chamber was filled N2. The left and the right edges have passing wavelengths at λ = 3 and 3.5 µm, respectively. (b) The 1-D intensity profile along the green dash line indicated in (a).
Fig. 8.
Fig. 8. (a) The image before and after the gas chamber was filled with C2H2. The left and the right edges corresponding to λ = 3.0 um and 3.1 um. (b) The images before and after CH4 filled. The left and right edges at λ = 3.2 um and 3.4 um. (c) The intensity profile of the images with C2H2 and CH4 filled. Distinct absorption bands associated with the characteristic C2H2 and CH4 absorptions were found.
Fig. 9.
Fig. 9. (a) Transient intensity response from the LVF gas sensor when pulses of (a) CH4/N2 and (b) C2H2/N2 were injected into the gas chamber. The repetition rate of the gas pulse was 20 sec.
Fig. 10.
Fig. 10. CH4/N2 concentration measurement using the LVF sensing system. The concentration was adjusted between (a) 0 and 50% and (b) 0 and 5% by adjusting the flow rates of the CH4.
Fig. 11.
Fig. 11. C2H2/N2 concentration measurement using the LVF sensing system. The concentration was adjusted between (a) 0 and 50% and (b) 0 and 5% by adjusting the flow rates of the C2H2.
Fig. 12.
Fig. 12. C2H2/CH4 proportion measurement using the LVF sensing system. The proportion was adjusted by changing the C2H2 flow rate from 25 to 0 sccm while CH4 flow rate was fixed at 25 sccm. (a) The LVF window was selected between λ = 3.0 um and 3.1 um. Plots of mid-IR intensity vs. C2H2/CH4 at proportions between (b) 0 - 50% and (c) 0 - 5%.
Fig. 13.
Fig. 13. Another C2H2/CH4 proportion measurement. The proportion was adjusted by changing the CH4 flow rate instead of C2H2. (a) The LVF window was selected between λ = 3.2 um and 3.4 um. Plots of mid-IR intensity vs. C2H2/CH4 at proportions between (b) 0 - 50% and (c) 0 - 5%.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R e = λ 2 λ 1 m
w i = R e × ( p i 1 ) + λ 1
W = R e P + S
c i = I 2 I 1 I 2
C = [ c 1 c 2 ] = C a b s T C s y m
[ 100 W T ] [ C a b s C s y m ] = [ 100 C a b s 100 C s y m W T C a b s W T C s y m ] = [ C a b s p C s y m p W a b s W s y m ]
GP = | c i | : : | c j |

Metrics