Y. Zhang, D. Ma, Z. Zhou, and X. Yuan, “Research on partially coherent flat-topped vortex hollow beam propagation in turbulent atmosphere,” Appl. Opt. 56(10), 2922–2926 (2017).

[Crossref]
[PubMed]

J. Zhang, S. Ding, and A. Dang, “Polarization property changes of optical beam transmission in atmospheric turbulent channels,” Appl. Opt. 56(18), 5145–5155 (2017).

[Crossref]
[PubMed]

L. Guo, Y. Chen, X. Liu, L. Liu, and Y. Cai, “Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam,” Opt. Express 24(13), 13714–13728 (2016).

[Crossref]
[PubMed]

H. T. Eyyuboǧlu, “Scintillation behavior of vortex beams in strong turbulence region,” J. Mod. Opt. 63(21), 2374–2381 (2016).

[Crossref]

J. Li, W. Wang, M. Duan, and J. Wei, “Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams,” Opt. Express 24(18), 20413–20423 (2016).

[Crossref]
[PubMed]

S. Avramon-Zamurovic, C. Nelson, S. Guth, and O. Korotkova, “Flatness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air,” Appl. Opt. 55(13), 3442–3446 (2016).

[Crossref]

J. Li, J. Zeng, and M. Duan, “Classification of coherent vortices creation and distance of topological charge conservation in non-Kolmogorov atmospheric turbulence,” Opt. Express 23(9), 11556–11565 (2015).

[Crossref]
[PubMed]

C. Wei, D. Wu, C. Liang, F. Wang, and Y. Cai, “Experimental verification of significant reduction of turbulence-induced scintillation in a full Poincare beam,” Opt. Express 23(19), 24331–24341 (2015).

[Crossref]
[PubMed]

G. Gbur, “Partially coherent beam propagation in atmospheric turbulence,” J. Opt. Soc. Am. A 31(9), 2038–2045 (2014).

[Crossref]

S. Basu, M. W. Hyde, X. Xiao, D. G. Voelz, and O. Korotkova, “Computational approaches for generating electromagnetic Gaussian Schell-model sources,” Opt. Express 22(26), 31691–31707 (2014).

[Crossref]

H. Wang, H. Wang, Y. Xu, and X. Qian, “Intensity and polarization properties of the partially coherent Laguerre-Gaussian vector beams with vortices propagating through turbulent atmosphere,” Opt. Laser Technol. 56, 1–6 (2014).

[Crossref]

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014).

[Crossref]
[PubMed]

R. Cen, Y. Dong, F. Wang, and Y. Cai, “Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere,” Appl. Phys. B 112(2), 247–259 (2013).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

G. Wu, F. Wang, and Y. Cai, “Coherence and polarization properties of a radially polarized beams with variable spatial coherence,” Opt. Express 20(27), 28301–28318 (2012).

[Crossref]
[PubMed]

P. Zhou, X. Wang, Y. Ma, H. Ma, X. Xu, and Z. Liu, “Propagation property of a nonuniformly polarized beam array in turbulent atmosphere,” Appl. Opt. 50(9), 1234–1239 (2011).

[Crossref]
[PubMed]

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. B-At. Mol. Opt. 44(5), 055402 (2011).

[Crossref]

H. Wang, D. Liu, and Z. Zhou, “The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere,” Appl. Phys. B 101(1–2), 361–369 (2010).

[Crossref]

W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17(20), 17829–17836 (2009).

[Crossref]
[PubMed]

Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).

[Crossref]
[PubMed]

J. Li and B. Lü, “Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices,” J. Opt. A-Pure. Appl. Op. 11(4), 045710 (2009).

[Crossref]

H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Commun. 3(8), 1402–1409 (2009).

[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(12), 5448–5456 (2004).

[Crossref]
[PubMed]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).

[Crossref]

S. J. Wang, Y. Baykal, and M. A. Plonus, “Receiver-aperture averaging effects for the intensity fluctuation of a beam wave in the turbulent atmosphere,” J. Opt. Soc. Am. 73(6), 831–837 (1983).

[Crossref]

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Opt. Spectrosc. 55, 423–426 (1983).

V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Opt. Spectrosc. 54, 626–629 (1983).

R. L. Fante, “Intensity fluctuations of an optical wave in a turbulent medium: effect of source coherence,” Opt. Acta: Int. J. Opt. 28(9), 1203–1207 (1981).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).

[Crossref]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).

[Crossref]

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Opt. Spectrosc. 54, 626–629 (1983).

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Opt. Spectrosc. 55, 423–426 (1983).

Y. Cai, Q. Lin, H. T. Eyyuboǧlu, and Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express 16(11), 7665–7673 (2008).

[Crossref]
[PubMed]

S. J. Wang, Y. Baykal, and M. A. Plonus, “Receiver-aperture averaging effects for the intensity fluctuation of a beam wave in the turbulent atmosphere,” J. Opt. Soc. Am. 73(6), 831–837 (1983).

[Crossref]

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. B-At. Mol. Opt. 44(5), 055402 (2011).

[Crossref]

V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Opt. Spectrosc. 54, 626–629 (1983).

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Opt. Spectrosc. 55, 423–426 (1983).

J. Yu, F. Wang, L. Liu, Y. Cai, and G. Gbur, “Propagation properties of Hermite non-uniformly correlated beams in turbulence,” Opt. Express 26(13), 16333–16343 (2018).

[Crossref]
[PubMed]

L. Guo, Y. Chen, X. Liu, L. Liu, and Y. Cai, “Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam,” Opt. Express 24(13), 13714–13728 (2016).

[Crossref]
[PubMed]

C. Wei, D. Wu, C. Liang, F. Wang, and Y. Cai, “Experimental verification of significant reduction of turbulence-induced scintillation in a full Poincare beam,” Opt. Express 23(19), 24331–24341 (2015).

[Crossref]
[PubMed]

C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014).

[Crossref]
[PubMed]

R. Cen, Y. Dong, F. Wang, and Y. Cai, “Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere,” Appl. Phys. B 112(2), 247–259 (2013).

[Crossref]

G. Wu, F. Wang, and Y. Cai, “Coherence and polarization properties of a radially polarized beams with variable spatial coherence,” Opt. Express 20(27), 28301–28318 (2012).

[Crossref]
[PubMed]

Y. Cai, Q. Lin, H. T. Eyyuboǧlu, and Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express 16(11), 7665–7673 (2008).

[Crossref]
[PubMed]

R. Cen, Y. Dong, F. Wang, and Y. Cai, “Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere,” Appl. Phys. B 112(2), 247–259 (2013).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

R. Cen, Y. Dong, F. Wang, and Y. Cai, “Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere,” Appl. Phys. B 112(2), 247–259 (2013).

[Crossref]

J. Li, W. Wang, M. Duan, and J. Wei, “Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams,” Opt. Express 24(18), 20413–20423 (2016).

[Crossref]
[PubMed]

J. Li, J. Zeng, and M. Duan, “Classification of coherent vortices creation and distance of topological charge conservation in non-Kolmogorov atmospheric turbulence,” Opt. Express 23(9), 11556–11565 (2015).

[Crossref]
[PubMed]

R. L. Fante, “Intensity fluctuations of an optical wave in a turbulent medium: effect of source coherence,” Opt. Acta: Int. J. Opt. 28(9), 1203–1207 (1981).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

J. Yu, F. Wang, L. Liu, Y. Cai, and G. Gbur, “Propagation properties of Hermite non-uniformly correlated beams in turbulence,” Opt. Express 26(13), 16333–16343 (2018).

[Crossref]
[PubMed]

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

G. Gbur, “Partially coherent beam propagation in atmospheric turbulence,” J. Opt. Soc. Am. A 31(9), 2038–2045 (2014).

[Crossref]

Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).

[Crossref]
[PubMed]

G. Gbur and R. K. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A 25(1), 225–230 (2008).

[Crossref]

G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A 19(8), 1592–1598 (2002).

[Crossref]

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. B-At. Mol. Opt. 44(5), 055402 (2011).

[Crossref]

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).

[Crossref]
[PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

S. Avramon-Zamurovic, C. Nelson, S. Guth, and O. Korotkova, “Flatness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air,” Appl. Opt. 55(13), 3442–3446 (2016).

[Crossref]

C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014).

[Crossref]
[PubMed]

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

S. Basu, M. W. Hyde, X. Xiao, D. G. Voelz, and O. Korotkova, “Computational approaches for generating electromagnetic Gaussian Schell-model sources,” Opt. Express 22(26), 31691–31707 (2014).

[Crossref]

Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).

[Crossref]
[PubMed]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).

[Crossref]

J. Li, W. Wang, M. Duan, and J. Wei, “Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams,” Opt. Express 24(18), 20413–20423 (2016).

[Crossref]
[PubMed]

J. Li, J. Zeng, and M. Duan, “Classification of coherent vortices creation and distance of topological charge conservation in non-Kolmogorov atmospheric turbulence,” Opt. Express 23(9), 11556–11565 (2015).

[Crossref]
[PubMed]

J. Li and B. Lü, “Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices,” J. Opt. A-Pure. Appl. Op. 11(4), 045710 (2009).

[Crossref]

C. Wei, D. Wu, C. Liang, F. Wang, and Y. Cai, “Experimental verification of significant reduction of turbulence-induced scintillation in a full Poincare beam,” Opt. Express 23(19), 24331–24341 (2015).

[Crossref]
[PubMed]

C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014).

[Crossref]
[PubMed]

H. Wang, D. Liu, and Z. Zhou, “The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere,” Appl. Phys. B 101(1–2), 361–369 (2010).

[Crossref]

J. Yu, F. Wang, L. Liu, Y. Cai, and G. Gbur, “Propagation properties of Hermite non-uniformly correlated beams in turbulence,” Opt. Express 26(13), 16333–16343 (2018).

[Crossref]
[PubMed]

L. Guo, Y. Chen, X. Liu, L. Liu, and Y. Cai, “Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam,” Opt. Express 24(13), 13714–13728 (2016).

[Crossref]
[PubMed]

L. Guo, Y. Chen, X. Liu, L. Liu, and Y. Cai, “Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam,” Opt. Express 24(13), 13714–13728 (2016).

[Crossref]
[PubMed]

C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014).

[Crossref]
[PubMed]

J. Li and B. Lü, “Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices,” J. Opt. A-Pure. Appl. Op. 11(4), 045710 (2009).

[Crossref]

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Opt. Spectrosc. 54, 626–629 (1983).

S. Avramon-Zamurovic, C. Nelson, S. Guth, and O. Korotkova, “Flatness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air,” Appl. Opt. 55(13), 3442–3446 (2016).

[Crossref]

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Commun. 3(8), 1402–1409 (2009).

[Crossref]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).

[Crossref]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).

[Crossref]

H. Wang, H. Wang, Y. Xu, and X. Qian, “Intensity and polarization properties of the partially coherent Laguerre-Gaussian vector beams with vortices propagating through turbulent atmosphere,” Opt. Laser Technol. 56, 1–6 (2014).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Commun. 3(8), 1402–1409 (2009).

[Crossref]

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. B-At. Mol. Opt. 44(5), 055402 (2011).

[Crossref]

H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Commun. 3(8), 1402–1409 (2009).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

J. Yu, F. Wang, L. Liu, Y. Cai, and G. Gbur, “Propagation properties of Hermite non-uniformly correlated beams in turbulence,” Opt. Express 26(13), 16333–16343 (2018).

[Crossref]
[PubMed]

C. Wei, D. Wu, C. Liang, F. Wang, and Y. Cai, “Experimental verification of significant reduction of turbulence-induced scintillation in a full Poincare beam,” Opt. Express 23(19), 24331–24341 (2015).

[Crossref]
[PubMed]

C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014).

[Crossref]
[PubMed]

R. Cen, Y. Dong, F. Wang, and Y. Cai, “Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere,” Appl. Phys. B 112(2), 247–259 (2013).

[Crossref]

G. Wu, F. Wang, and Y. Cai, “Coherence and polarization properties of a radially polarized beams with variable spatial coherence,” Opt. Express 20(27), 28301–28318 (2012).

[Crossref]
[PubMed]

H. Wang, H. Wang, Y. Xu, and X. Qian, “Intensity and polarization properties of the partially coherent Laguerre-Gaussian vector beams with vortices propagating through turbulent atmosphere,” Opt. Laser Technol. 56, 1–6 (2014).

[Crossref]

H. Wang, H. Wang, Y. Xu, and X. Qian, “Intensity and polarization properties of the partially coherent Laguerre-Gaussian vector beams with vortices propagating through turbulent atmosphere,” Opt. Laser Technol. 56, 1–6 (2014).

[Crossref]

H. Wang, D. Liu, and Z. Zhou, “The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere,” Appl. Phys. B 101(1–2), 361–369 (2010).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

H. Wang, H. Wang, Y. Xu, and X. Qian, “Intensity and polarization properties of the partially coherent Laguerre-Gaussian vector beams with vortices propagating through turbulent atmosphere,” Opt. Laser Technol. 56, 1–6 (2014).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

Y. Zhang, D. Ma, Z. Zhou, and X. Yuan, “Research on partially coherent flat-topped vortex hollow beam propagation in turbulent atmosphere,” Appl. Opt. 56(10), 2922–2926 (2017).

[Crossref]
[PubMed]

H. Wang, D. Liu, and Z. Zhou, “The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere,” Appl. Phys. B 101(1–2), 361–369 (2010).

[Crossref]

Y. Zhang, D. Ma, Z. Zhou, and X. Yuan, “Research on partially coherent flat-topped vortex hollow beam propagation in turbulent atmosphere,” Appl. Opt. 56(10), 2922–2926 (2017).

[Crossref]
[PubMed]

S. Avramon-Zamurovic, C. Nelson, S. Guth, and O. Korotkova, “Flatness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air,” Appl. Opt. 55(13), 3442–3446 (2016).

[Crossref]

J. Zhang, S. Ding, and A. Dang, “Polarization property changes of optical beam transmission in atmospheric turbulent channels,” Appl. Opt. 56(18), 5145–5155 (2017).

[Crossref]
[PubMed]

J. M. Martin and S. M. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27(11), 2111–2126 (1988).

[Crossref]
[PubMed]

P. Zhou, X. Wang, Y. Ma, H. Ma, X. Xu, and Z. Liu, “Propagation property of a nonuniformly polarized beam array in turbulent atmosphere,” Appl. Opt. 50(9), 1234–1239 (2011).

[Crossref]
[PubMed]

H. Wang, D. Liu, and Z. Zhou, “The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere,” Appl. Phys. B 101(1–2), 361–369 (2010).

[Crossref]

R. Cen, Y. Dong, F. Wang, and Y. Cai, “Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere,” Appl. Phys. B 112(2), 247–259 (2013).

[Crossref]

H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Commun. 3(8), 1402–1409 (2009).

[Crossref]

H. T. Eyyuboǧlu, “Scintillation behavior of vortex beams in strong turbulence region,” J. Mod. Opt. 63(21), 2374–2381 (2016).

[Crossref]

J. Li and B. Lü, “Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices,” J. Opt. A-Pure. Appl. Op. 11(4), 045710 (2009).

[Crossref]

G. Gbur and R. K. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A 25(1), 225–230 (2008).

[Crossref]

G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A 19(8), 1592–1598 (2002).

[Crossref]

G. Gbur, “Partially coherent beam propagation in atmospheric turbulence,” J. Opt. Soc. Am. A 31(9), 2038–2045 (2014).

[Crossref]

J. C. Ricklin and F. M. Davidson, “Atmospheric optical communication with a Gaussian Schell beam,” J. Opt. Soc. Am. A 20(5), 856–866 (2003).

[Crossref]

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. B-At. Mol. Opt. 44(5), 055402 (2011).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

R. L. Fante, “Intensity fluctuations of an optical wave in a turbulent medium: effect of source coherence,” Opt. Acta: Int. J. Opt. 28(9), 1203–1207 (1981).

[Crossref]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).

[Crossref]

C. Wei, D. Wu, C. Liang, F. Wang, and Y. Cai, “Experimental verification of significant reduction of turbulence-induced scintillation in a full Poincare beam,” Opt. Express 23(19), 24331–24341 (2015).

[Crossref]
[PubMed]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(12), 5448–5456 (2004).

[Crossref]
[PubMed]

L. Guo, Y. Chen, X. Liu, L. Liu, and Y. Cai, “Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam,” Opt. Express 24(13), 13714–13728 (2016).

[Crossref]
[PubMed]

J. Li, J. Zeng, and M. Duan, “Classification of coherent vortices creation and distance of topological charge conservation in non-Kolmogorov atmospheric turbulence,” Opt. Express 23(9), 11556–11565 (2015).

[Crossref]
[PubMed]

Y. Cai, Q. Lin, H. T. Eyyuboǧlu, and Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express 16(11), 7665–7673 (2008).

[Crossref]
[PubMed]

W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17(20), 17829–17836 (2009).

[Crossref]
[PubMed]

J. Li, W. Wang, M. Duan, and J. Wei, “Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams,” Opt. Express 24(18), 20413–20423 (2016).

[Crossref]
[PubMed]

G. Wu, F. Wang, and Y. Cai, “Coherence and polarization properties of a radially polarized beams with variable spatial coherence,” Opt. Express 20(27), 28301–28318 (2012).

[Crossref]
[PubMed]

S. Basu, M. W. Hyde, X. Xiao, D. G. Voelz, and O. Korotkova, “Computational approaches for generating electromagnetic Gaussian Schell-model sources,” Opt. Express 22(26), 31691–31707 (2014).

[Crossref]

J. Yu, F. Wang, L. Liu, Y. Cai, and G. Gbur, “Propagation properties of Hermite non-uniformly correlated beams in turbulence,” Opt. Express 26(13), 16333–16343 (2018).

[Crossref]
[PubMed]

H. Wang, H. Wang, Y. Xu, and X. Qian, “Intensity and polarization properties of the partially coherent Laguerre-Gaussian vector beams with vortices propagating through turbulent atmosphere,” Opt. Laser Technol. 56, 1–6 (2014).

[Crossref]

Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).

[Crossref]
[PubMed]

C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014).

[Crossref]
[PubMed]

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Opt. Spectrosc. 55, 423–426 (1983).

V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Opt. Spectrosc. 54, 626–629 (1983).

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).

[Crossref]

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).