Abstract

A dichroic dye-doped liquid crystal Fresnel lens was fabricated and investigated to observe the combination of phase and amplitude modulation based focusing. An anthraquinone dichroic dye was doped into a liquid crystal host, which when in the Fresnel lens configuration, generates a Fresnel zone plate with alternating “transparent” and “opaque” zones. The zones were induced by using photo-alignment of a light-sensitive alignment layer to generate the alternating pattern. The voltage dependency of efficiency for the dye-doped and pure liquid crystal Fresnel devices were investigated. Incorporation of dyes into the device yielded a significant 4% improvement in relative efficiency in the lens, giving a maximum of 37% achieved in the device, much closer to the theoretical 41% limit when compared with the non-dye-doped device. The input polarization dependence of efficiency was also investigated, showing very small fluctuations (±1.5%), allowing further insight into the effect of fabrication method on these liquid crystal Fresnel devices.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Polarization controllable Fresnel lens using dye-doped liquid crystals

Tsung-Hsien Lin, Yuhua Huang, Andy Y. G. Fuh, and Shin-Tson Wu
Opt. Express 14(6) 2359-2364 (2006)

Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal

Liang-Chen Lin, Hung-Chang Jau, Tsung-Hsien Lin, and Andy Y.-G. Fuh
Opt. Express 15(6) 2900-2906 (2007)

Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film

Shie-Chang Jeng, Shug-June Hwang, Jing-Shyang Horng, and Kuo-Ren Lin
Opt. Express 18(25) 26325-26331 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodby, P. J. Collings, K. Takashi, C. Tschierske, H. F. Gleeson, and P. Raynes, Handbook of Liquid Crystals Volume 2: Physical Properties and Phase Behaviour of Liquid Crystals (Wiley, 2014).
  2. G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006)..
    [Crossref]
  3. G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U. S. A. 103(16), 6100–6104 (2006).
    [Crossref]
  4. W. Hung, Y. Chen, C. Lin, I. Jiang, and T. Hsu, “Sensitive voltage-dependent diffraction of a liquid crystal Fresnel lens,” Appl. Opt. 48(11), 2094–2098 (2009).
    [Crossref]
  5. Y. huang, C. Chen, and Y. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
    [Crossref]
  6. S. Lin, B. Huang, C. Li, K. Yu, J. Chen, and C. Kuo, “Electrically and optically tunable Fresnel lens in a liquid crystal cell with a rewritable photoconductive layer,” Opt. Mater. Express 6(7), 2229–2235 (2016).
    [Crossref]
  7. H. Dou, F. Chu, Y. Song, G. Li, and Q. Wang, “A multifunctional blue phase liquid crystal lens based on multi-electrode structure,” Liq. Cryst. 45(4), 491–497 (2018).
    [Crossref]
  8. A. Jamali, D. Bryant, Y. Zhang, A. Grunnet-Jepsen, A. Bhowmik, and P. Bos, “Design of a large aperture tunable refractive Fresnel liquid crystal lens,” Appl. Opt. 57(7), B10–B19 (2018).
    [Crossref]
  9. N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” SID 47(1), 1636–1638 (2016).
    [Crossref]
  10. H. Yeh, M. Ke, and Y. Liu, “Electrically switchable Fresnel lenses in polymer-stabilized ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 56(1), 012601 (2017)..
    [Crossref]
  11. H. Jashnsaz, E. Mohajerani, H. Nemati, S. H. Razavi, and I. A. Alidokht, “Electrically switchable holographic liquid crystal/polymer Fresnel lens using a Michelson interferometer,” Appl. Opt. 50(17), 2701–2707 (2011).
    [Crossref]
  12. Y. Fan, H. Ren, and S. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11(23), 3080–3086 (2003).
    [Crossref]
  13. N. Avci, Y. Lee, and S. Hwang, “Switchable polarization-independent blue phase liquid crystal Fresnel lens based on phase-separated composite films,” Liq. Cryst. 44(7), 1078–1085 (2017).
    [Crossref]
  14. J. Tan, Y. Song, J. Zhu, S. Ni, Y. Wang, Z. Sun, J. Lu, B. Yang, and H. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
    [Crossref]
  15. M. Wahle, B. Snow, J. Sargent, and J. C. Jones, “Embossing reactive mesogens: A facile approach to polarization-independent liquid crystal devices,” Adv. Opt. Mater. 7(2), 1801261 (2019).
    [Crossref]
  16. C. Lee, K. Lo, and T. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007)..
    [Crossref]
  17. Y. Fan, H. Ren, and S. Wu, “Electrically switchable Fresnel lens using a polymer-separated composite film,” Opt. Express 13(11), 4141–4147 (2005).
    [Crossref]
  18. H. Jashnsaz, N. H. Nataj, E. Mohajerani, and A. Khabbazi, “All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals,” Appl. Opt. 50(22), 4295–4301 (2011).
    [Crossref]
  19. H. Ren, Y. Fan, and S. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
    [Crossref]
  20. Y. Kuo and H. Yeh, “Optically controllable transflective Fresnel lens in Azobenzene-doped cholesteric liquid crystals using a Sagnac interferometer,” Appl. Phys. Express 5(2), 021701 (2012).
    [Crossref]
  21. H. Yeh, Y. Kuo, S. Lin, J. Lin, T. Mo, and S. Huang, “Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36(8), 1311–1313 (2011).
    [Crossref]
  22. M. Honma and T. Nose, “Liquid-crystal Fresnel zone plate fabricated by microrubbing,” Jpn. J. Appl. Phys. 44(1A), 287–290 (2005).
    [Crossref]
  23. S. Hwang, T. Chen, K. Lin, and S. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B: Lasers Opt. 107(1), 151–155 (2012).
    [Crossref]
  24. S. Jeng, S. Hwang, J. Horng, and K. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film,” Opt. Express 18(25), 26325–26331 (2010).
    [Crossref]
  25. A. Y. Fuh, J. Chen, K. Cheng, and S. Huang, “Polarization-independent and electrically tunable liquid-crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
    [Crossref]
  26. L. Lin, H. Jau, T. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
    [Crossref]
  27. T. Lin, Y. Huang, A. Fuh, and S. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14(6), 2359–2364 (2006).
    [Crossref]
  28. X. Wang, W. Yang, Z. Liu, W. Duan, W. Hu, Z. Zheng, D. Shen, V. G. Chigrinov, and H. Kwok, “Switchable Fresnel lens based on hybrid photo-aligned dual frequency nematic liquid crystal,” Opt. Mater. Express 7(1), 8–15 (2017).
    [Crossref]
  29. X. Wang, A. K. Srivastava, V. G. Chigrinov, and H. Kwok, “Switchable Fresnel lens based on micropatterned alignment,” Opt. Lett. 38(11), 1775–1777 (2013).
    [Crossref]
  30. Y. Huang, S. Ko, S. Chu, and A. Y. Fuh, “High-efficiency Fresnel lens fabricated by axially symmetric photoalignment method,” Appl. Opt. 51(32), 7739–7744 (2012).
    [Crossref]
  31. D. Kim, S. Lee, and C. Yu, “Electrically controlled diffraction efficiency of liquid crystal Fresnel lens with polarization-independence,” Mol. Cryst. Liq. Cryst. 476(1), 133/[379]–140/[386] (2007).
    [Crossref]
  32. D. Kim, C. Yu, H. Kim, S. Kim, and S. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
    [Crossref]
  33. J. S. Patel and K. Rastani, “Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays,” Opt. Lett. 16(7), 532–534 (1991).
    [Crossref]
  34. K. Sakamoto, K. Usami, M. Kikegawa, and S. Ushioda, “Alignment of polyamic acid molecules containing azobenzene in the backbone structure: Effects of polarized ultraviolet light irradiation and subsequent thermal imidization,” J. Appl. Phys. 93(2), 1039–1043 (2003).
    [Crossref]
  35. M. T. Sims, L. C. Abbott, S. J. Cowling, J. W. Goodby, and J. N. Moore, “Molecular design parameters of Anthraquinone dyes for guest–host liquid-crystal applications: Experimental and computational studies of spectroscopy, structure, and stability,” J. Phys. Chem. C 120(20), 11151–11162 (2016).
    [Crossref]
  36. M. T. Sims, “Dyes as guests in ordered systems: current understanding and future directions,” Liq. Cryst. 43(13–15), 2363–2374 (2016).
    [Crossref]
  37. K. Usami, K. Sakamoto, J. Yokota, Y. Uehara, and S. Ushioda, “Pretilt angle control of liquid crystal molecules by photoaligned films of azobenzene-containing polyimide with different content of side chain,” J. Appl. Phys. 104(11), 113528 (2008).
    [Crossref]
  38. S. J. Cowling, C. Ellis, and J. W. Goodby, “Anthraquinone Liquid crystal dichroic dyes – a new form of chromonic dye?” Liq. Cryst. 38(11–12), 1683–1698 (2011).
    [Crossref]

2019 (1)

M. Wahle, B. Snow, J. Sargent, and J. C. Jones, “Embossing reactive mesogens: A facile approach to polarization-independent liquid crystal devices,” Adv. Opt. Mater. 7(2), 1801261 (2019).
[Crossref]

2018 (2)

H. Dou, F. Chu, Y. Song, G. Li, and Q. Wang, “A multifunctional blue phase liquid crystal lens based on multi-electrode structure,” Liq. Cryst. 45(4), 491–497 (2018).
[Crossref]

A. Jamali, D. Bryant, Y. Zhang, A. Grunnet-Jepsen, A. Bhowmik, and P. Bos, “Design of a large aperture tunable refractive Fresnel liquid crystal lens,” Appl. Opt. 57(7), B10–B19 (2018).
[Crossref]

2017 (3)

X. Wang, W. Yang, Z. Liu, W. Duan, W. Hu, Z. Zheng, D. Shen, V. G. Chigrinov, and H. Kwok, “Switchable Fresnel lens based on hybrid photo-aligned dual frequency nematic liquid crystal,” Opt. Mater. Express 7(1), 8–15 (2017).
[Crossref]

H. Yeh, M. Ke, and Y. Liu, “Electrically switchable Fresnel lenses in polymer-stabilized ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 56(1), 012601 (2017)..
[Crossref]

N. Avci, Y. Lee, and S. Hwang, “Switchable polarization-independent blue phase liquid crystal Fresnel lens based on phase-separated composite films,” Liq. Cryst. 44(7), 1078–1085 (2017).
[Crossref]

2016 (4)

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” SID 47(1), 1636–1638 (2016).
[Crossref]

M. T. Sims, L. C. Abbott, S. J. Cowling, J. W. Goodby, and J. N. Moore, “Molecular design parameters of Anthraquinone dyes for guest–host liquid-crystal applications: Experimental and computational studies of spectroscopy, structure, and stability,” J. Phys. Chem. C 120(20), 11151–11162 (2016).
[Crossref]

M. T. Sims, “Dyes as guests in ordered systems: current understanding and future directions,” Liq. Cryst. 43(13–15), 2363–2374 (2016).
[Crossref]

S. Lin, B. Huang, C. Li, K. Yu, J. Chen, and C. Kuo, “Electrically and optically tunable Fresnel lens in a liquid crystal cell with a rewritable photoconductive layer,” Opt. Mater. Express 6(7), 2229–2235 (2016).
[Crossref]

2014 (1)

J. Tan, Y. Song, J. Zhu, S. Ni, Y. Wang, Z. Sun, J. Lu, B. Yang, and H. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

2013 (1)

2012 (4)

Y. Huang, S. Ko, S. Chu, and A. Y. Fuh, “High-efficiency Fresnel lens fabricated by axially symmetric photoalignment method,” Appl. Opt. 51(32), 7739–7744 (2012).
[Crossref]

Y. huang, C. Chen, and Y. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

Y. Kuo and H. Yeh, “Optically controllable transflective Fresnel lens in Azobenzene-doped cholesteric liquid crystals using a Sagnac interferometer,” Appl. Phys. Express 5(2), 021701 (2012).
[Crossref]

S. Hwang, T. Chen, K. Lin, and S. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B: Lasers Opt. 107(1), 151–155 (2012).
[Crossref]

2011 (4)

2010 (2)

S. Jeng, S. Hwang, J. Horng, and K. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film,” Opt. Express 18(25), 26325–26331 (2010).
[Crossref]

A. Y. Fuh, J. Chen, K. Cheng, and S. Huang, “Polarization-independent and electrically tunable liquid-crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[Crossref]

2009 (1)

2008 (1)

K. Usami, K. Sakamoto, J. Yokota, Y. Uehara, and S. Ushioda, “Pretilt angle control of liquid crystal molecules by photoaligned films of azobenzene-containing polyimide with different content of side chain,” J. Appl. Phys. 104(11), 113528 (2008).
[Crossref]

2007 (3)

D. Kim, S. Lee, and C. Yu, “Electrically controlled diffraction efficiency of liquid crystal Fresnel lens with polarization-independence,” Mol. Cryst. Liq. Cryst. 476(1), 133/[379]–140/[386] (2007).
[Crossref]

C. Lee, K. Lo, and T. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007)..
[Crossref]

L. Lin, H. Jau, T. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[Crossref]

2006 (4)

T. Lin, Y. Huang, A. Fuh, and S. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14(6), 2359–2364 (2006).
[Crossref]

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006)..
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U. S. A. 103(16), 6100–6104 (2006).
[Crossref]

D. Kim, C. Yu, H. Kim, S. Kim, and S. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[Crossref]

2005 (2)

M. Honma and T. Nose, “Liquid-crystal Fresnel zone plate fabricated by microrubbing,” Jpn. J. Appl. Phys. 44(1A), 287–290 (2005).
[Crossref]

Y. Fan, H. Ren, and S. Wu, “Electrically switchable Fresnel lens using a polymer-separated composite film,” Opt. Express 13(11), 4141–4147 (2005).
[Crossref]

2003 (3)

Y. Fan, H. Ren, and S. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11(23), 3080–3086 (2003).
[Crossref]

K. Sakamoto, K. Usami, M. Kikegawa, and S. Ushioda, “Alignment of polyamic acid molecules containing azobenzene in the backbone structure: Effects of polarized ultraviolet light irradiation and subsequent thermal imidization,” J. Appl. Phys. 93(2), 1039–1043 (2003).
[Crossref]

H. Ren, Y. Fan, and S. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

1991 (1)

Abbott, L. C.

M. T. Sims, L. C. Abbott, S. J. Cowling, J. W. Goodby, and J. N. Moore, “Molecular design parameters of Anthraquinone dyes for guest–host liquid-crystal applications: Experimental and computational studies of spectroscopy, structure, and stability,” J. Phys. Chem. C 120(20), 11151–11162 (2016).
[Crossref]

Alidokht, I. A.

Avci, N.

N. Avci, Y. Lee, and S. Hwang, “Switchable polarization-independent blue phase liquid crystal Fresnel lens based on phase-separated composite films,” Liq. Cryst. 44(7), 1078–1085 (2017).
[Crossref]

Ayras, P.

G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U. S. A. 103(16), 6100–6104 (2006).
[Crossref]

Bhowmik, A.

Bos, P.

Bryant, D.

Chen, C.

Y. huang, C. Chen, and Y. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

Chen, J.

S. Lin, B. Huang, C. Li, K. Yu, J. Chen, and C. Kuo, “Electrically and optically tunable Fresnel lens in a liquid crystal cell with a rewritable photoconductive layer,” Opt. Mater. Express 6(7), 2229–2235 (2016).
[Crossref]

A. Y. Fuh, J. Chen, K. Cheng, and S. Huang, “Polarization-independent and electrically tunable liquid-crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[Crossref]

Chen, T.

S. Hwang, T. Chen, K. Lin, and S. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B: Lasers Opt. 107(1), 151–155 (2012).
[Crossref]

Chen, Y.

Cheng, K.

A. Y. Fuh, J. Chen, K. Cheng, and S. Huang, “Polarization-independent and electrically tunable liquid-crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[Crossref]

Chigrinov, V. G.

Chu, F.

H. Dou, F. Chu, Y. Song, G. Li, and Q. Wang, “A multifunctional blue phase liquid crystal lens based on multi-electrode structure,” Liq. Cryst. 45(4), 491–497 (2018).
[Crossref]

Chu, S.

Collings, P. J.

J. W. Goodby, P. J. Collings, K. Takashi, C. Tschierske, H. F. Gleeson, and P. Raynes, Handbook of Liquid Crystals Volume 2: Physical Properties and Phase Behaviour of Liquid Crystals (Wiley, 2014).

Cowling, S. J.

M. T. Sims, L. C. Abbott, S. J. Cowling, J. W. Goodby, and J. N. Moore, “Molecular design parameters of Anthraquinone dyes for guest–host liquid-crystal applications: Experimental and computational studies of spectroscopy, structure, and stability,” J. Phys. Chem. C 120(20), 11151–11162 (2016).
[Crossref]

S. J. Cowling, C. Ellis, and J. W. Goodby, “Anthraquinone Liquid crystal dichroic dyes – a new form of chromonic dye?” Liq. Cryst. 38(11–12), 1683–1698 (2011).
[Crossref]

Dou, H.

H. Dou, F. Chu, Y. Song, G. Li, and Q. Wang, “A multifunctional blue phase liquid crystal lens based on multi-electrode structure,” Liq. Cryst. 45(4), 491–497 (2018).
[Crossref]

Duan, W.

Ellis, C.

S. J. Cowling, C. Ellis, and J. W. Goodby, “Anthraquinone Liquid crystal dichroic dyes – a new form of chromonic dye?” Liq. Cryst. 38(11–12), 1683–1698 (2011).
[Crossref]

Fan, Y.

Fuh, A.

Fuh, A. Y.

Giridhar, M. S.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006)..
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U. S. A. 103(16), 6100–6104 (2006).
[Crossref]

Gleeson, H. F.

J. W. Goodby, P. J. Collings, K. Takashi, C. Tschierske, H. F. Gleeson, and P. Raynes, Handbook of Liquid Crystals Volume 2: Physical Properties and Phase Behaviour of Liquid Crystals (Wiley, 2014).

Goodby, J. W.

M. T. Sims, L. C. Abbott, S. J. Cowling, J. W. Goodby, and J. N. Moore, “Molecular design parameters of Anthraquinone dyes for guest–host liquid-crystal applications: Experimental and computational studies of spectroscopy, structure, and stability,” J. Phys. Chem. C 120(20), 11151–11162 (2016).
[Crossref]

S. J. Cowling, C. Ellis, and J. W. Goodby, “Anthraquinone Liquid crystal dichroic dyes – a new form of chromonic dye?” Liq. Cryst. 38(11–12), 1683–1698 (2011).
[Crossref]

J. W. Goodby, P. J. Collings, K. Takashi, C. Tschierske, H. F. Gleeson, and P. Raynes, Handbook of Liquid Crystals Volume 2: Physical Properties and Phase Behaviour of Liquid Crystals (Wiley, 2014).

Grunnet-Jepsen, A.

Haddock, J. N.

G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U. S. A. 103(16), 6100–6104 (2006).
[Crossref]

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006)..
[Crossref]

Honkanen, S.

G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U. S. A. 103(16), 6100–6104 (2006).
[Crossref]

Honma, M.

M. Honma and T. Nose, “Liquid-crystal Fresnel zone plate fabricated by microrubbing,” Jpn. J. Appl. Phys. 44(1A), 287–290 (2005).
[Crossref]

Horng, J.

Hsu, T.

Hu, W.

Huang, B.

Huang, S.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” SID 47(1), 1636–1638 (2016).
[Crossref]

H. Yeh, Y. Kuo, S. Lin, J. Lin, T. Mo, and S. Huang, “Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36(8), 1311–1313 (2011).
[Crossref]

A. Y. Fuh, J. Chen, K. Cheng, and S. Huang, “Polarization-independent and electrically tunable liquid-crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[Crossref]

Huang, Y.

Y. huang, C. Chen, and Y. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

Y. huang, C. Chen, and Y. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

Y. Huang, S. Ko, S. Chu, and A. Y. Fuh, “High-efficiency Fresnel lens fabricated by axially symmetric photoalignment method,” Appl. Opt. 51(32), 7739–7744 (2012).
[Crossref]

T. Lin, Y. Huang, A. Fuh, and S. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14(6), 2359–2364 (2006).
[Crossref]

Hung, W.

Hwang, S.

N. Avci, Y. Lee, and S. Hwang, “Switchable polarization-independent blue phase liquid crystal Fresnel lens based on phase-separated composite films,” Liq. Cryst. 44(7), 1078–1085 (2017).
[Crossref]

S. Hwang, T. Chen, K. Lin, and S. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B: Lasers Opt. 107(1), 151–155 (2012).
[Crossref]

S. Jeng, S. Hwang, J. Horng, and K. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film,” Opt. Express 18(25), 26325–26331 (2010).
[Crossref]

Jamali, A.

Jashnsaz, H.

Jau, H.

Jeng, S.

S. Hwang, T. Chen, K. Lin, and S. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B: Lasers Opt. 107(1), 151–155 (2012).
[Crossref]

S. Jeng, S. Hwang, J. Horng, and K. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film,” Opt. Express 18(25), 26325–26331 (2010).
[Crossref]

Jiang, I.

Jones, J. C.

M. Wahle, B. Snow, J. Sargent, and J. C. Jones, “Embossing reactive mesogens: A facile approach to polarization-independent liquid crystal devices,” Adv. Opt. Mater. 7(2), 1801261 (2019).
[Crossref]

Ke, M.

H. Yeh, M. Ke, and Y. Liu, “Electrically switchable Fresnel lenses in polymer-stabilized ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 56(1), 012601 (2017)..
[Crossref]

Khabbazi, A.

Kikegawa, M.

K. Sakamoto, K. Usami, M. Kikegawa, and S. Ushioda, “Alignment of polyamic acid molecules containing azobenzene in the backbone structure: Effects of polarized ultraviolet light irradiation and subsequent thermal imidization,” J. Appl. Phys. 93(2), 1039–1043 (2003).
[Crossref]

Kim, D.

D. Kim, S. Lee, and C. Yu, “Electrically controlled diffraction efficiency of liquid crystal Fresnel lens with polarization-independence,” Mol. Cryst. Liq. Cryst. 476(1), 133/[379]–140/[386] (2007).
[Crossref]

D. Kim, C. Yu, H. Kim, S. Kim, and S. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[Crossref]

Kim, H.

D. Kim, C. Yu, H. Kim, S. Kim, and S. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[Crossref]

Kim, S.

D. Kim, C. Yu, H. Kim, S. Kim, and S. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[Crossref]

Kippelen, B.

G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U. S. A. 103(16), 6100–6104 (2006).
[Crossref]

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006)..
[Crossref]

Ko, S.

Kuo, C.

Kuo, Y.

Y. Kuo and H. Yeh, “Optically controllable transflective Fresnel lens in Azobenzene-doped cholesteric liquid crystals using a Sagnac interferometer,” Appl. Phys. Express 5(2), 021701 (2012).
[Crossref]

H. Yeh, Y. Kuo, S. Lin, J. Lin, T. Mo, and S. Huang, “Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36(8), 1311–1313 (2011).
[Crossref]

Kwok, H.

Lee, C.

C. Lee, K. Lo, and T. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007)..
[Crossref]

Lee, S.

D. Kim, S. Lee, and C. Yu, “Electrically controlled diffraction efficiency of liquid crystal Fresnel lens with polarization-independence,” Mol. Cryst. Liq. Cryst. 476(1), 133/[379]–140/[386] (2007).
[Crossref]

D. Kim, C. Yu, H. Kim, S. Kim, and S. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[Crossref]

Lee, Y.

N. Avci, Y. Lee, and S. Hwang, “Switchable polarization-independent blue phase liquid crystal Fresnel lens based on phase-separated composite films,” Liq. Cryst. 44(7), 1078–1085 (2017).
[Crossref]

Li, C.

Li, G.

H. Dou, F. Chu, Y. Song, G. Li, and Q. Wang, “A multifunctional blue phase liquid crystal lens based on multi-electrode structure,” Liq. Cryst. 45(4), 491–497 (2018).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U. S. A. 103(16), 6100–6104 (2006).
[Crossref]

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006)..
[Crossref]

Li, X.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” SID 47(1), 1636–1638 (2016).
[Crossref]

Li, Y.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” SID 47(1), 1636–1638 (2016).
[Crossref]

Lin, C.

Lin, J.

Lin, K.

S. Hwang, T. Chen, K. Lin, and S. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B: Lasers Opt. 107(1), 151–155 (2012).
[Crossref]

S. Jeng, S. Hwang, J. Horng, and K. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film,” Opt. Express 18(25), 26325–26331 (2010).
[Crossref]

Lin, L.

Lin, S.

Lin, T.

Liu, S.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” SID 47(1), 1636–1638 (2016).
[Crossref]

Liu, Y.

H. Yeh, M. Ke, and Y. Liu, “Electrically switchable Fresnel lenses in polymer-stabilized ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 56(1), 012601 (2017)..
[Crossref]

Liu, Z.

Lo, K.

C. Lee, K. Lo, and T. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007)..
[Crossref]

Lu, J.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” SID 47(1), 1636–1638 (2016).
[Crossref]

J. Tan, Y. Song, J. Zhu, S. Ni, Y. Wang, Z. Sun, J. Lu, B. Yang, and H. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Mathine, D. L.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006)..
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U. S. A. 103(16), 6100–6104 (2006).
[Crossref]

Meredith, G.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006)..
[Crossref]

Meredith, G. R.

G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U. S. A. 103(16), 6100–6104 (2006).
[Crossref]

Mo, T.

H. Yeh, Y. Kuo, S. Lin, J. Lin, T. Mo, and S. Huang, “Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36(8), 1311–1313 (2011).
[Crossref]

C. Lee, K. Lo, and T. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007)..
[Crossref]

Mohajerani, E.

Moore, J. N.

M. T. Sims, L. C. Abbott, S. J. Cowling, J. W. Goodby, and J. N. Moore, “Molecular design parameters of Anthraquinone dyes for guest–host liquid-crystal applications: Experimental and computational studies of spectroscopy, structure, and stability,” J. Phys. Chem. C 120(20), 11151–11162 (2016).
[Crossref]

Nataj, N. H.

Nemati, H.

Ni, S.

J. Tan, Y. Song, J. Zhu, S. Ni, Y. Wang, Z. Sun, J. Lu, B. Yang, and H. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Nose, T.

M. Honma and T. Nose, “Liquid-crystal Fresnel zone plate fabricated by microrubbing,” Jpn. J. Appl. Phys. 44(1A), 287–290 (2005).
[Crossref]

Patel, J. S.

Peyghambarian, N.

G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U. S. A. 103(16), 6100–6104 (2006).
[Crossref]

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006)..
[Crossref]

Rastani, K.

Raynes, P.

J. W. Goodby, P. J. Collings, K. Takashi, C. Tschierske, H. F. Gleeson, and P. Raynes, Handbook of Liquid Crystals Volume 2: Physical Properties and Phase Behaviour of Liquid Crystals (Wiley, 2014).

Razavi, S. H.

Ren, H.

Rong, N.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” SID 47(1), 1636–1638 (2016).
[Crossref]

Sakamoto, K.

K. Usami, K. Sakamoto, J. Yokota, Y. Uehara, and S. Ushioda, “Pretilt angle control of liquid crystal molecules by photoaligned films of azobenzene-containing polyimide with different content of side chain,” J. Appl. Phys. 104(11), 113528 (2008).
[Crossref]

K. Sakamoto, K. Usami, M. Kikegawa, and S. Ushioda, “Alignment of polyamic acid molecules containing azobenzene in the backbone structure: Effects of polarized ultraviolet light irradiation and subsequent thermal imidization,” J. Appl. Phys. 93(2), 1039–1043 (2003).
[Crossref]

Sargent, J.

M. Wahle, B. Snow, J. Sargent, and J. C. Jones, “Embossing reactive mesogens: A facile approach to polarization-independent liquid crystal devices,” Adv. Opt. Mater. 7(2), 1801261 (2019).
[Crossref]

Schwiegerling, J.

G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U. S. A. 103(16), 6100–6104 (2006).
[Crossref]

Shen, D.

Shieh, H. D.

J. Tan, Y. Song, J. Zhu, S. Ni, Y. Wang, Z. Sun, J. Lu, B. Yang, and H. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Sims, M. T.

M. T. Sims, “Dyes as guests in ordered systems: current understanding and future directions,” Liq. Cryst. 43(13–15), 2363–2374 (2016).
[Crossref]

M. T. Sims, L. C. Abbott, S. J. Cowling, J. W. Goodby, and J. N. Moore, “Molecular design parameters of Anthraquinone dyes for guest–host liquid-crystal applications: Experimental and computational studies of spectroscopy, structure, and stability,” J. Phys. Chem. C 120(20), 11151–11162 (2016).
[Crossref]

Snow, B.

M. Wahle, B. Snow, J. Sargent, and J. C. Jones, “Embossing reactive mesogens: A facile approach to polarization-independent liquid crystal devices,” Adv. Opt. Mater. 7(2), 1801261 (2019).
[Crossref]

Song, Y.

H. Dou, F. Chu, Y. Song, G. Li, and Q. Wang, “A multifunctional blue phase liquid crystal lens based on multi-electrode structure,” Liq. Cryst. 45(4), 491–497 (2018).
[Crossref]

J. Tan, Y. Song, J. Zhu, S. Ni, Y. Wang, Z. Sun, J. Lu, B. Yang, and H. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Srivastava, A. K.

Su, Y.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” SID 47(1), 1636–1638 (2016).
[Crossref]

Sun, Z.

J. Tan, Y. Song, J. Zhu, S. Ni, Y. Wang, Z. Sun, J. Lu, B. Yang, and H. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Takashi, K.

J. W. Goodby, P. J. Collings, K. Takashi, C. Tschierske, H. F. Gleeson, and P. Raynes, Handbook of Liquid Crystals Volume 2: Physical Properties and Phase Behaviour of Liquid Crystals (Wiley, 2014).

Tan, J.

J. Tan, Y. Song, J. Zhu, S. Ni, Y. Wang, Z. Sun, J. Lu, B. Yang, and H. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Tschierske, C.

J. W. Goodby, P. J. Collings, K. Takashi, C. Tschierske, H. F. Gleeson, and P. Raynes, Handbook of Liquid Crystals Volume 2: Physical Properties and Phase Behaviour of Liquid Crystals (Wiley, 2014).

Uehara, Y.

K. Usami, K. Sakamoto, J. Yokota, Y. Uehara, and S. Ushioda, “Pretilt angle control of liquid crystal molecules by photoaligned films of azobenzene-containing polyimide with different content of side chain,” J. Appl. Phys. 104(11), 113528 (2008).
[Crossref]

Usami, K.

K. Usami, K. Sakamoto, J. Yokota, Y. Uehara, and S. Ushioda, “Pretilt angle control of liquid crystal molecules by photoaligned films of azobenzene-containing polyimide with different content of side chain,” J. Appl. Phys. 104(11), 113528 (2008).
[Crossref]

K. Sakamoto, K. Usami, M. Kikegawa, and S. Ushioda, “Alignment of polyamic acid molecules containing azobenzene in the backbone structure: Effects of polarized ultraviolet light irradiation and subsequent thermal imidization,” J. Appl. Phys. 93(2), 1039–1043 (2003).
[Crossref]

Ushioda, S.

K. Usami, K. Sakamoto, J. Yokota, Y. Uehara, and S. Ushioda, “Pretilt angle control of liquid crystal molecules by photoaligned films of azobenzene-containing polyimide with different content of side chain,” J. Appl. Phys. 104(11), 113528 (2008).
[Crossref]

K. Sakamoto, K. Usami, M. Kikegawa, and S. Ushioda, “Alignment of polyamic acid molecules containing azobenzene in the backbone structure: Effects of polarized ultraviolet light irradiation and subsequent thermal imidization,” J. Appl. Phys. 93(2), 1039–1043 (2003).
[Crossref]

Valley, P.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006)..
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U. S. A. 103(16), 6100–6104 (2006).
[Crossref]

Wahle, M.

M. Wahle, B. Snow, J. Sargent, and J. C. Jones, “Embossing reactive mesogens: A facile approach to polarization-independent liquid crystal devices,” Adv. Opt. Mater. 7(2), 1801261 (2019).
[Crossref]

Wang, Q.

H. Dou, F. Chu, Y. Song, G. Li, and Q. Wang, “A multifunctional blue phase liquid crystal lens based on multi-electrode structure,” Liq. Cryst. 45(4), 491–497 (2018).
[Crossref]

Wang, X.

Wang, Y.

J. Tan, Y. Song, J. Zhu, S. Ni, Y. Wang, Z. Sun, J. Lu, B. Yang, and H. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Williby, G.

G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U. S. A. 103(16), 6100–6104 (2006).
[Crossref]

Wu, S.

Yang, B.

J. Tan, Y. Song, J. Zhu, S. Ni, Y. Wang, Z. Sun, J. Lu, B. Yang, and H. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Yang, W.

Yeh, H.

H. Yeh, M. Ke, and Y. Liu, “Electrically switchable Fresnel lenses in polymer-stabilized ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 56(1), 012601 (2017)..
[Crossref]

Y. Kuo and H. Yeh, “Optically controllable transflective Fresnel lens in Azobenzene-doped cholesteric liquid crystals using a Sagnac interferometer,” Appl. Phys. Express 5(2), 021701 (2012).
[Crossref]

H. Yeh, Y. Kuo, S. Lin, J. Lin, T. Mo, and S. Huang, “Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36(8), 1311–1313 (2011).
[Crossref]

Yokota, J.

K. Usami, K. Sakamoto, J. Yokota, Y. Uehara, and S. Ushioda, “Pretilt angle control of liquid crystal molecules by photoaligned films of azobenzene-containing polyimide with different content of side chain,” J. Appl. Phys. 104(11), 113528 (2008).
[Crossref]

Yu, C.

D. Kim, S. Lee, and C. Yu, “Electrically controlled diffraction efficiency of liquid crystal Fresnel lens with polarization-independence,” Mol. Cryst. Liq. Cryst. 476(1), 133/[379]–140/[386] (2007).
[Crossref]

D. Kim, C. Yu, H. Kim, S. Kim, and S. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[Crossref]

Yu, K.

Yuan, Y.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” SID 47(1), 1636–1638 (2016).
[Crossref]

Zhang, Y.

Zheng, Z.

Zhou, P.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” SID 47(1), 1636–1638 (2016).
[Crossref]

Zhu, J.

J. Tan, Y. Song, J. Zhu, S. Ni, Y. Wang, Z. Sun, J. Lu, B. Yang, and H. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Adv. Opt. Mater. (1)

M. Wahle, B. Snow, J. Sargent, and J. C. Jones, “Embossing reactive mesogens: A facile approach to polarization-independent liquid crystal devices,” Adv. Opt. Mater. 7(2), 1801261 (2019).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B: Lasers Opt. (1)

S. Hwang, T. Chen, K. Lin, and S. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B: Lasers Opt. 107(1), 151–155 (2012).
[Crossref]

Appl. Phys. Express (1)

Y. Kuo and H. Yeh, “Optically controllable transflective Fresnel lens in Azobenzene-doped cholesteric liquid crystals using a Sagnac interferometer,” Appl. Phys. Express 5(2), 021701 (2012).
[Crossref]

Appl. Phys. Lett. (3)

D. Kim, C. Yu, H. Kim, S. Kim, and S. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[Crossref]

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006)..
[Crossref]

H. Ren, Y. Fan, and S. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

J. Appl. Phys. (2)

K. Sakamoto, K. Usami, M. Kikegawa, and S. Ushioda, “Alignment of polyamic acid molecules containing azobenzene in the backbone structure: Effects of polarized ultraviolet light irradiation and subsequent thermal imidization,” J. Appl. Phys. 93(2), 1039–1043 (2003).
[Crossref]

K. Usami, K. Sakamoto, J. Yokota, Y. Uehara, and S. Ushioda, “Pretilt angle control of liquid crystal molecules by photoaligned films of azobenzene-containing polyimide with different content of side chain,” J. Appl. Phys. 104(11), 113528 (2008).
[Crossref]

J. Disp. Technol. (2)

J. Tan, Y. Song, J. Zhu, S. Ni, Y. Wang, Z. Sun, J. Lu, B. Yang, and H. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Y. huang, C. Chen, and Y. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

J. Phys. Chem. C (1)

M. T. Sims, L. C. Abbott, S. J. Cowling, J. W. Goodby, and J. N. Moore, “Molecular design parameters of Anthraquinone dyes for guest–host liquid-crystal applications: Experimental and computational studies of spectroscopy, structure, and stability,” J. Phys. Chem. C 120(20), 11151–11162 (2016).
[Crossref]

J. Soc. Inf. Disp. (1)

A. Y. Fuh, J. Chen, K. Cheng, and S. Huang, “Polarization-independent and electrically tunable liquid-crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[Crossref]

Jpn. J. Appl. Phys. (3)

M. Honma and T. Nose, “Liquid-crystal Fresnel zone plate fabricated by microrubbing,” Jpn. J. Appl. Phys. 44(1A), 287–290 (2005).
[Crossref]

C. Lee, K. Lo, and T. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007)..
[Crossref]

H. Yeh, M. Ke, and Y. Liu, “Electrically switchable Fresnel lenses in polymer-stabilized ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 56(1), 012601 (2017)..
[Crossref]

Liq. Cryst. (4)

N. Avci, Y. Lee, and S. Hwang, “Switchable polarization-independent blue phase liquid crystal Fresnel lens based on phase-separated composite films,” Liq. Cryst. 44(7), 1078–1085 (2017).
[Crossref]

H. Dou, F. Chu, Y. Song, G. Li, and Q. Wang, “A multifunctional blue phase liquid crystal lens based on multi-electrode structure,” Liq. Cryst. 45(4), 491–497 (2018).
[Crossref]

M. T. Sims, “Dyes as guests in ordered systems: current understanding and future directions,” Liq. Cryst. 43(13–15), 2363–2374 (2016).
[Crossref]

S. J. Cowling, C. Ellis, and J. W. Goodby, “Anthraquinone Liquid crystal dichroic dyes – a new form of chromonic dye?” Liq. Cryst. 38(11–12), 1683–1698 (2011).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

D. Kim, S. Lee, and C. Yu, “Electrically controlled diffraction efficiency of liquid crystal Fresnel lens with polarization-independence,” Mol. Cryst. Liq. Cryst. 476(1), 133/[379]–140/[386] (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. Express (2)

Proc. Natl. Acad. Sci. U. S. A. (1)

G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U. S. A. 103(16), 6100–6104 (2006).
[Crossref]

SID (1)

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” SID 47(1), 1636–1638 (2016).
[Crossref]

Other (1)

J. W. Goodby, P. J. Collings, K. Takashi, C. Tschierske, H. F. Gleeson, and P. Raynes, Handbook of Liquid Crystals Volume 2: Physical Properties and Phase Behaviour of Liquid Crystals (Wiley, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) Schematic of the HAN director field inside the photo-patterned LC Fresnel lens. (b) The photo-patterning process used to generate the Fresnel director pattern in the LC device.
Fig. 2.
Fig. 2. (a) The birefringence as a function of voltage is shown for MLC-7023 and 15NB3 doped MLC-7023. (b) The absorption of 15NB3 doped MLC-7023 as a function of voltage for parallel and perpendicular light polarisations. (c) POM image showing the LC Fresnel devices MLC-7023 between crossed polarisers with a λ-plate (director(s) at ± 45 °). Example device in bulk shown between crossed polarisers. (d) POM image showing the central and radial regions of the LC Fresnel device 15NB3 doped MLC-7023 with a single polariser (director(s) at 0/90 °). All data can be found at https://doi.org/10.5518/588.
Fig. 3.
Fig. 3. (a) The relative efficiency as a function of phase shift for MLC-7023 and 15NB3 doped MLC-7023 Fresnel devices. (b) Comparison of absolute and relative efficiency for 15NB3 doped MLC-7023 Fresnel device. (c) The polarization angle dependence of the relative efficiency for each device. 0 ° corresponds to alignment of the polarization with the “pre-tilted” zone director. Fit parameters can be found in the dataset https://doi.org/10.5518/588.

Tables (1)

Tables Icon

Table 1. Comparison of orthogonal HAN LC Fresnel lens efficiencies.

Metrics