Abstract

In this paper, we report a generation of a spin-wave excitation (SWE) with a near-unity (0.996±0.003) probability in a given time (~730 μs). Such deterministic generation relies on a feedback scheme with a millisecond quantum memory. The millisecond memory is achieved by maximizing the wavelength of the spin wave and storing the SWE as the magnetic-field-insensitive transition. We then demonstrate partial retrievals of the spin wave by applying a first read pulse whose area is smaller than the value of π. The remained SWE is fully retrieved by a second pulse. Anti-correlation function between the detections in the first and second readouts has been measured, which shows that the partial-retrieval operation on the SWE is in the quantum regime. The presented experiment represents an important step towards the realization of the improved DLCZ quantum repeater protocol proposed in Phys. Rev. A 77, 062301 (2008).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient retrieval of a single excitation stored in an atomic ensemble

Julien Laurat, Hugues de Riedmatten, Daniel Felinto, Chin-Wen Chou, Erik W. Schomburg, and H. Jeff Kimble
Opt. Express 14(15) 6912-6918 (2006)

Quantum telecommunication with atomic ensembles

S. D. Jenkins, D. N. Matsukevich, T. Chanelière, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich
J. Opt. Soc. Am. B 24(2) 316-323 (2007)

Storage and retrieval of collective excitations on a long-lived spin transition in a rare-earth ion-doped crystal

E. A. Goldschmidt, S. E. Beavan, S. V. Polyakov, A. L. Migdall, and M. J. Sellars
Opt. Express 21(8) 10087-10094 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
    [Crossref]
  2. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref] [PubMed]
  3. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
    [Crossref]
  4. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
    [Crossref] [PubMed]
  5. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438(7069), 828–832 (2005).
    [Crossref] [PubMed]
  6. J. Simon, H. Tanji, J. K. Thompson, and V. Vuletić, “Interfacing collective atomic excitations and single photons,” Phys. Rev. Lett. 98(18), 183601 (2007).
    [Crossref] [PubMed]
  7. B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
    [Crossref]
  8. R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5(2), 100–104 (2009).
    [Crossref]
  9. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6(11), 894–899 (2010).
    [Crossref]
  10. X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
    [Crossref]
  11. S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10(6), 381–384 (2016).
    [Crossref]
  12. C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. 92(21), 213601 (2004).
    [Crossref] [PubMed]
  13. D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
    [Crossref] [PubMed]
  14. S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
    [Crossref] [PubMed]
  15. N. Sangouard, C. Simon, B. Zhao, Y.-A. Chen, H. de Riedmatten, J.-W. Pan, and N. Gisin, “Robust and efficient quantum repeaters with atomic ensembles and linear optics,” Phys. Rev. A 77(6), 062301 (2008).
    [Crossref]
  16. N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
    [Crossref]
  17. Z.-B. Chen, B. Zhao, Y.-A. Chen, J. Schmiedmayer, and J.-W. Pan, “Fault-tolerant quantum repeater with atomic ensembles and linear optics,” Phys. Rev. A 76(2), 022329 (2007).
    [Crossref]
  18. L. Jiang, J. M. Taylor, and M. D. Lukin, “Fast and robust approach to long-distance quantum communication with atomic ensembles,” Phys. Rev. A 76(1), 012301 (2007).
    [Crossref]
  19. J. Minář, H. de Riedmatten, and N. Sangouard, “Quantum repeaters based on heralded qubit amplifiers,” Phys. Rev. A 85(3), 032313 (2012).
    [Crossref]
  20. J. Li, M.-T. Zhou, B. Jing, X.-J. Wang, S.-J. Yang, X. Jiang, K. Mølmer, X.-H. Bao, and J.-W. Pan, “Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble,” Phys. Rev. Lett. 117(18), 180501 (2016).
    [Crossref] [PubMed]
  21. L. Li, Y. O. Dudin, and A. Kuzmich, “Entanglement between light and an optical atomic excitation,” Nature 498(7455), 466–469 (2013).
    [Crossref] [PubMed]
  22. P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7(1), 13556 (2016).
    [Crossref] [PubMed]
  23. Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
    [Crossref] [PubMed]

2016 (3)

S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10(6), 381–384 (2016).
[Crossref]

J. Li, M.-T. Zhou, B. Jing, X.-J. Wang, S.-J. Yang, X. Jiang, K. Mølmer, X.-H. Bao, and J.-W. Pan, “Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble,” Phys. Rev. Lett. 117(18), 180501 (2016).
[Crossref] [PubMed]

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7(1), 13556 (2016).
[Crossref] [PubMed]

2013 (2)

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

L. Li, Y. O. Dudin, and A. Kuzmich, “Entanglement between light and an optical atomic excitation,” Nature 498(7455), 466–469 (2013).
[Crossref] [PubMed]

2012 (2)

J. Minář, H. de Riedmatten, and N. Sangouard, “Quantum repeaters based on heralded qubit amplifiers,” Phys. Rev. A 85(3), 032313 (2012).
[Crossref]

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

2011 (1)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

2010 (1)

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6(11), 894–899 (2010).
[Crossref]

2009 (2)

B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5(2), 100–104 (2009).
[Crossref]

2008 (2)

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

N. Sangouard, C. Simon, B. Zhao, Y.-A. Chen, H. de Riedmatten, J.-W. Pan, and N. Gisin, “Robust and efficient quantum repeaters with atomic ensembles and linear optics,” Phys. Rev. A 77(6), 062301 (2008).
[Crossref]

2007 (4)

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Z.-B. Chen, B. Zhao, Y.-A. Chen, J. Schmiedmayer, and J.-W. Pan, “Fault-tolerant quantum repeater with atomic ensembles and linear optics,” Phys. Rev. A 76(2), 022329 (2007).
[Crossref]

L. Jiang, J. M. Taylor, and M. D. Lukin, “Fast and robust approach to long-distance quantum communication with atomic ensembles,” Phys. Rev. A 76(1), 012301 (2007).
[Crossref]

J. Simon, H. Tanji, J. K. Thompson, and V. Vuletić, “Interfacing collective atomic excitations and single photons,” Phys. Rev. Lett. 98(18), 183601 (2007).
[Crossref] [PubMed]

2006 (2)

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

2005 (1)

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438(7069), 828–832 (2005).
[Crossref] [PubMed]

2004 (1)

C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. 92(21), 213601 (2004).
[Crossref] [PubMed]

2001 (1)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

1998 (1)

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

Albrecht, B.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7(1), 13556 (2016).
[Crossref] [PubMed]

Bao, X.-H.

J. Li, M.-T. Zhou, B. Jing, X.-J. Wang, S.-J. Yang, X. Jiang, K. Mølmer, X.-H. Bao, and J.-W. Pan, “Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble,” Phys. Rev. Lett. 117(18), 180501 (2016).
[Crossref] [PubMed]

S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10(6), 381–384 (2016).
[Crossref]

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

Briegel, H.-J.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

Campbell, C. J.

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5(2), 100–104 (2009).
[Crossref]

Chanelière, T.

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

Chávez, M.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7(1), 13556 (2016).
[Crossref] [PubMed]

Chen, L.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Chen, S.

B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

Chen, Y.-A.

B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

N. Sangouard, C. Simon, B. Zhao, Y.-A. Chen, H. de Riedmatten, J.-W. Pan, and N. Gisin, “Robust and efficient quantum repeaters with atomic ensembles and linear optics,” Phys. Rev. A 77(6), 062301 (2008).
[Crossref]

Z.-B. Chen, B. Zhao, Y.-A. Chen, J. Schmiedmayer, and J.-W. Pan, “Fault-tolerant quantum repeater with atomic ensembles and linear optics,” Phys. Rev. A 76(2), 022329 (2007).
[Crossref]

S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

Chen, Z.-B.

Z.-B. Chen, B. Zhao, Y.-A. Chen, J. Schmiedmayer, and J.-W. Pan, “Fault-tolerant quantum repeater with atomic ensembles and linear optics,” Phys. Rev. A 76(2), 022329 (2007).
[Crossref]

Chou, C. W.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438(7069), 828–832 (2005).
[Crossref] [PubMed]

C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. 92(21), 213601 (2004).
[Crossref] [PubMed]

Chuu, C.-S.

B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

de Riedmatten, H.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7(1), 13556 (2016).
[Crossref] [PubMed]

J. Minář, H. de Riedmatten, and N. Sangouard, “Quantum repeaters based on heralded qubit amplifiers,” Phys. Rev. A 85(3), 032313 (2012).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

N. Sangouard, C. Simon, B. Zhao, Y.-A. Chen, H. de Riedmatten, J.-W. Pan, and N. Gisin, “Robust and efficient quantum repeaters with atomic ensembles and linear optics,” Phys. Rev. A 77(6), 062301 (2008).
[Crossref]

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438(7069), 828–832 (2005).
[Crossref] [PubMed]

Dietrich, P.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Duan, L.-M.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Dück, A.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Dudin, Y. O.

L. Li, Y. O. Dudin, and A. Kuzmich, “Entanglement between light and an optical atomic excitation,” Nature 498(7455), 466–469 (2013).
[Crossref] [PubMed]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6(11), 894–899 (2010).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5(2), 100–104 (2009).
[Crossref]

Dür, W.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

Farrera, P.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7(1), 13556 (2016).
[Crossref] [PubMed]

Felinto, D.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438(7069), 828–832 (2005).
[Crossref] [PubMed]

Gisin, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

N. Sangouard, C. Simon, B. Zhao, Y.-A. Chen, H. de Riedmatten, J.-W. Pan, and N. Gisin, “Robust and efficient quantum repeaters with atomic ensembles and linear optics,” Phys. Rev. A 77(6), 062301 (2008).
[Crossref]

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Heinze, G.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7(1), 13556 (2016).
[Crossref] [PubMed]

Ho, M.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7(1), 13556 (2016).
[Crossref] [PubMed]

Jen, H. H.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6(11), 894–899 (2010).
[Crossref]

Jenkins, S. D.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6(11), 894–899 (2010).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5(2), 100–104 (2009).
[Crossref]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

Jiang, L.

L. Jiang, J. M. Taylor, and M. D. Lukin, “Fast and robust approach to long-distance quantum communication with atomic ensembles,” Phys. Rev. A 76(1), 012301 (2007).
[Crossref]

Jiang, X.

J. Li, M.-T. Zhou, B. Jing, X.-J. Wang, S.-J. Yang, X. Jiang, K. Mølmer, X.-H. Bao, and J.-W. Pan, “Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble,” Phys. Rev. Lett. 117(18), 180501 (2016).
[Crossref] [PubMed]

Jin, X.-M.

B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

Jing, B.

J. Li, M.-T. Zhou, B. Jing, X.-J. Wang, S.-J. Yang, X. Jiang, K. Mølmer, X.-H. Bao, and J.-W. Pan, “Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble,” Phys. Rev. Lett. 117(18), 180501 (2016).
[Crossref] [PubMed]

Kennedy, T. A.

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

Kennedy, T. A. B.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6(11), 894–899 (2010).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5(2), 100–104 (2009).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438(7069), 828–832 (2005).
[Crossref] [PubMed]

C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. 92(21), 213601 (2004).
[Crossref] [PubMed]

Kuzmich, A.

L. Li, Y. O. Dudin, and A. Kuzmich, “Entanglement between light and an optical atomic excitation,” Nature 498(7455), 466–469 (2013).
[Crossref] [PubMed]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6(11), 894–899 (2010).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5(2), 100–104 (2009).
[Crossref]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. 92(21), 213601 (2004).
[Crossref] [PubMed]

Lan, S.-Y.

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

Li, J.

J. Li, M.-T. Zhou, B. Jing, X.-J. Wang, S.-J. Yang, X. Jiang, K. Mølmer, X.-H. Bao, and J.-W. Pan, “Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble,” Phys. Rev. Lett. 117(18), 180501 (2016).
[Crossref] [PubMed]

Li, L.

L. Li, Y. O. Dudin, and A. Kuzmich, “Entanglement between light and an optical atomic excitation,” Nature 498(7455), 466–469 (2013).
[Crossref] [PubMed]

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Li, S.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Liu, N.-L.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Lukin, M. D.

L. Jiang, J. M. Taylor, and M. D. Lukin, “Fast and robust approach to long-distance quantum communication with atomic ensembles,” Phys. Rev. A 76(1), 012301 (2007).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Matsukevich, D. N.

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5(2), 100–104 (2009).
[Crossref]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

Minár, J.

J. Minář, H. de Riedmatten, and N. Sangouard, “Quantum repeaters based on heralded qubit amplifiers,” Phys. Rev. A 85(3), 032313 (2012).
[Crossref]

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Mølmer, K.

J. Li, M.-T. Zhou, B. Jing, X.-J. Wang, S.-J. Yang, X. Jiang, K. Mølmer, X.-H. Bao, and J.-W. Pan, “Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble,” Phys. Rev. Lett. 117(18), 180501 (2016).
[Crossref] [PubMed]

Pan, J.-W.

J. Li, M.-T. Zhou, B. Jing, X.-J. Wang, S.-J. Yang, X. Jiang, K. Mølmer, X.-H. Bao, and J.-W. Pan, “Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble,” Phys. Rev. Lett. 117(18), 180501 (2016).
[Crossref] [PubMed]

S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10(6), 381–384 (2016).
[Crossref]

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

N. Sangouard, C. Simon, B. Zhao, Y.-A. Chen, H. de Riedmatten, J.-W. Pan, and N. Gisin, “Robust and efficient quantum repeaters with atomic ensembles and linear optics,” Phys. Rev. A 77(6), 062301 (2008).
[Crossref]

Z.-B. Chen, B. Zhao, Y.-A. Chen, J. Schmiedmayer, and J.-W. Pan, “Fault-tolerant quantum repeater with atomic ensembles and linear optics,” Phys. Rev. A 76(2), 022329 (2007).
[Crossref]

S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

Peng, K.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Polyakov, S. V.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438(7069), 828–832 (2005).
[Crossref] [PubMed]

C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. 92(21), 213601 (2004).
[Crossref] [PubMed]

Radnaev, A. G.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6(11), 894–899 (2010).
[Crossref]

Reingruber, A.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Rui, J.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Sangouard, N.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7(1), 13556 (2016).
[Crossref] [PubMed]

J. Minář, H. de Riedmatten, and N. Sangouard, “Quantum repeaters based on heralded qubit amplifiers,” Phys. Rev. A 85(3), 032313 (2012).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

N. Sangouard, C. Simon, B. Zhao, Y.-A. Chen, H. de Riedmatten, J.-W. Pan, and N. Gisin, “Robust and efficient quantum repeaters with atomic ensembles and linear optics,” Phys. Rev. A 77(6), 062301 (2008).
[Crossref]

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Schmiedmayer, J.

B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

Z.-B. Chen, B. Zhao, Y.-A. Chen, J. Schmiedmayer, and J.-W. Pan, “Fault-tolerant quantum repeater with atomic ensembles and linear optics,” Phys. Rev. A 76(2), 022329 (2007).
[Crossref]

S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

Simon, C.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

N. Sangouard, C. Simon, B. Zhao, Y.-A. Chen, H. de Riedmatten, J.-W. Pan, and N. Gisin, “Robust and efficient quantum repeaters with atomic ensembles and linear optics,” Phys. Rev. A 77(6), 062301 (2008).
[Crossref]

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Simon, J.

J. Simon, H. Tanji, J. K. Thompson, and V. Vuletić, “Interfacing collective atomic excitations and single photons,” Phys. Rev. Lett. 98(18), 183601 (2007).
[Crossref] [PubMed]

Strassel, T.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

Tanji, H.

J. Simon, H. Tanji, J. K. Thompson, and V. Vuletić, “Interfacing collective atomic excitations and single photons,” Phys. Rev. Lett. 98(18), 183601 (2007).
[Crossref] [PubMed]

Taylor, J. M.

L. Jiang, J. M. Taylor, and M. D. Lukin, “Fast and robust approach to long-distance quantum communication with atomic ensembles,” Phys. Rev. A 76(1), 012301 (2007).
[Crossref]

Teo, C.

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7(1), 13556 (2016).
[Crossref] [PubMed]

Thompson, J. K.

J. Simon, H. Tanji, J. K. Thompson, and V. Vuletić, “Interfacing collective atomic excitations and single photons,” Phys. Rev. Lett. 98(18), 183601 (2007).
[Crossref] [PubMed]

Tian, L.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

van Enk, S. J.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438(7069), 828–832 (2005).
[Crossref] [PubMed]

Vuletic, V.

J. Simon, H. Tanji, J. K. Thompson, and V. Vuletić, “Interfacing collective atomic excitations and single photons,” Phys. Rev. Lett. 98(18), 183601 (2007).
[Crossref] [PubMed]

Wang, H.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Wang, X.-J.

J. Li, M.-T. Zhou, B. Jing, X.-J. Wang, S.-J. Yang, X. Jiang, K. Mølmer, X.-H. Bao, and J.-W. Pan, “Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble,” Phys. Rev. Lett. 117(18), 180501 (2016).
[Crossref] [PubMed]

S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10(6), 381–384 (2016).
[Crossref]

Wu, Y.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Xie, C.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Xu, Z.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Yan, Z.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Yang, S.-J.

J. Li, M.-T. Zhou, B. Jing, X.-J. Wang, S.-J. Yang, X. Jiang, K. Mølmer, X.-H. Bao, and J.-W. Pan, “Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble,” Phys. Rev. Lett. 117(18), 180501 (2016).
[Crossref] [PubMed]

S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10(6), 381–384 (2016).
[Crossref]

Yuan, Z.-S.

B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

Zbinden, H.

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Zhang, Z.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Zhao, B.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

N. Sangouard, C. Simon, B. Zhao, Y.-A. Chen, H. de Riedmatten, J.-W. Pan, and N. Gisin, “Robust and efficient quantum repeaters with atomic ensembles and linear optics,” Phys. Rev. A 77(6), 062301 (2008).
[Crossref]

Z.-B. Chen, B. Zhao, Y.-A. Chen, J. Schmiedmayer, and J.-W. Pan, “Fault-tolerant quantum repeater with atomic ensembles and linear optics,” Phys. Rev. A 76(2), 022329 (2007).
[Crossref]

S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

Zhao, R.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6(11), 894–899 (2010).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5(2), 100–104 (2009).
[Crossref]

Zhou, M.-T.

J. Li, M.-T. Zhou, B. Jing, X.-J. Wang, S.-J. Yang, X. Jiang, K. Mølmer, X.-H. Bao, and J.-W. Pan, “Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble,” Phys. Rev. Lett. 117(18), 180501 (2016).
[Crossref] [PubMed]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

Nat. Commun. (1)

P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Chávez, C. Teo, N. Sangouard, and H. de Riedmatten, “Generation of single photons with highly tunable wave shape from a cold atomic ensemble,” Nat. Commun. 7(1), 13556 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nat. Photonics 10(6), 381–384 (2016).
[Crossref]

Nat. Phys. (4)

B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, “A millisecond quantum memory for scalable quantum networks,” Nat. Phys. 5(2), 95–99 (2009).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5(2), 100–104 (2009).
[Crossref]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6(11), 894–899 (2010).
[Crossref]

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Nature (4)

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438(7069), 828–832 (2005).
[Crossref] [PubMed]

L. Li, Y. O. Dudin, and A. Kuzmich, “Entanglement between light and an optical atomic excitation,” Nature 498(7455), 466–469 (2013).
[Crossref] [PubMed]

Phys. Rev. A (5)

N. Sangouard, C. Simon, B. Zhao, Y.-A. Chen, H. de Riedmatten, J.-W. Pan, and N. Gisin, “Robust and efficient quantum repeaters with atomic ensembles and linear optics,” Phys. Rev. A 77(6), 062301 (2008).
[Crossref]

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Z.-B. Chen, B. Zhao, Y.-A. Chen, J. Schmiedmayer, and J.-W. Pan, “Fault-tolerant quantum repeater with atomic ensembles and linear optics,” Phys. Rev. A 76(2), 022329 (2007).
[Crossref]

L. Jiang, J. M. Taylor, and M. D. Lukin, “Fast and robust approach to long-distance quantum communication with atomic ensembles,” Phys. Rev. A 76(1), 012301 (2007).
[Crossref]

J. Minář, H. de Riedmatten, and N. Sangouard, “Quantum repeaters based on heralded qubit amplifiers,” Phys. Rev. A 85(3), 032313 (2012).
[Crossref]

Phys. Rev. Lett. (7)

J. Li, M.-T. Zhou, B. Jing, X.-J. Wang, S.-J. Yang, X. Jiang, K. Mølmer, X.-H. Bao, and J.-W. Pan, “Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble,” Phys. Rev. Lett. 117(18), 180501 (2016).
[Crossref] [PubMed]

C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. 92(21), 213601 (2004).
[Crossref] [PubMed]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. 97(1), 013601 (2006).
[Crossref] [PubMed]

S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97(17), 173004 (2006).
[Crossref] [PubMed]

J. Simon, H. Tanji, J. K. Thompson, and V. Vuletić, “Interfacing collective atomic excitations and single photons,” Phys. Rev. Lett. 98(18), 183601 (2007).
[Crossref] [PubMed]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Illustration of the experimental setup. HR: high reflection mirror; PBS: polarization beam splitter; SMF: single-mode fiber; DS (DAS): Stokes (anti-Stokes) single-photon detector; BS: beam splitter; OF: optical filters, (b) Relevant atomic levels, (c) Time sequence for measuring the correlation function and retrieval efficiency, (d) Time sequence for measuring the anti-correlation parameter, (e) Time sequence of the measurement-based feedback protocol. C: cleaning laser, which includes pumping laser beams C1, C2 and C3. W: write laser.
Fig. 2
Fig. 2 Measured revival efficiency γ (a) and cross-correlation function g AS,S (2) (b) as a function of the storage time t for χ=3%, P 0 =300μWand δt=50ns. Error bars represent 1 standard deviation.
Fig. 3
Fig. 3 Measured relative probabilities | ς | 2 = γ p1 / γ 0 and | ξ | 2 = γ p2 / γ 0 in the first and second readouts as the function of the R 1 -pulse power P 1 for δ t R =50ns. Error bars represent 1 standard deviation.
Fig. 4
Fig. 4 The anti-correlation parameter α as a function of the storage time t for t= t 2 t 1 =1μs. Error bars represent 1 standard deviation.
Fig. 5
Fig. 5 Measurements of the feedback-based generation probability P S as a function of the write-sequence number N for χ=3%. The solid red curve is the fitting curve based on the function P S = i=0 N1 p S (1 p S ) i with experimental data p S =χ η S 0.03×0.2=0.006. Error bars represent 1 standard deviation.
Fig. 6
Fig. 6 The anti-correlation parameter α as a function of the time separation t= t 2 t 1 for the case that the SWE is generated via the feed-back protocol with N=185 write sequences. Error bars represent 1 standard deviation.
Fig. 7
Fig. 7 The anti-correlation parameter α between two readouts of a single SWE as a function of the write-sequence number N for χ=3%. Error bars represent 1 standard deviation.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

γ(t)= γ 0 e t/ τ 0 ,
g AS,S (2) (t)=1+ γ(t) (χ+B)γ(t)+D ,
s 0 |0 R 1 ( ς γ 1 b A S 1 +ξ s L )|0,
ξ s L |0 R 2 ξ γ 2 b A S 2 |0= γ p 2 b A S 2 |0,
s 0 |0 R 1 + R 2 γ 0 ( ς b A S 1 +ξ b A S 2 )|0,
| ς | 2 + | ξ | 2 = γ p 1 γ 0 + γ p 2 γ 0 1.
α= p S,A S 1 ,A S 2 p S,A S 1 p S,A S 2 ,

Metrics