Abstract

Speckle patterns produced by coherent waves interfering with each other are undesirable in many imaging applications (for example, in laser projection systems) but on the other hand, they contain useful information that can be exploited (for example, for blood flow analysis or reconstruction of the object that generates the speckle). It is therefore important to understand how speckle can be enhanced or reduced by tailoring the coherence of laser light. Using a conventional semiconductor laser and a multimode optical fiber we study experimentally how the speckle pattern depends on the laser pump current and on the image acquisition settings. By varying the pump current from below to above the lasing threshold, and simultaneously tuning the image exposure time to compensate for the change in brightness, we find conditions that allow for recorded images with similar average intensity, but with speckle contrast (the standard deviation of the intensity over the average intensity) as low as 0.16, or as high as 0.99.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of speckle suppression beyond human eye sensitivity by using a passive multimode fiber and a multimode fiber bundle

Anatoly Lapchuk, Zichun Le, Yanyu Guo, Yanxin Dai, Zongshen Liu, Qiyong Xu, Zhiyi Lu, Andriy Kryuchyn, and Ivan Gorbov
Opt. Express 28(5) 6820-6834 (2020)

Speckle reduction in laser projection using a dynamic deformable mirror

Thi-Kim-Trinh Tran, Xuyuan Chen, Øyvind Svensen, and Muhammad Nadeem Akram
Opt. Express 22(9) 11152-11166 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).
  2. T. Stangner, H. Zhang, T. Dahlberg, K. Wiklund, and M. Andersson, “Step-by-step guide to reduce spatial coherence of laser light using a rotating ground glass diffuser,” Appl. Opt. 56(19), 5427–5435 (2017).
    [Crossref]
  3. J. Pauwels and G. Verschaffelt, “Speckle reduction in laser projection using microlens-array screens,” Opt. Express 25(4), 3180–3195 (2017).
    [Crossref]
  4. M. Imai and Y. Ohtsuka, “Speckle-pattern contrast of semiconductor laser propagating in a multimode optical fiber,” Opt. Commun. 33(1), 4–8 (1980).
    [Crossref]
  5. R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3(1), 7–12 (1985).
    [Crossref]
  6. J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20(10), 11288–11315 (2012).
    [Crossref]
  7. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [Crossref]
  8. E. Valent and Y. Silberberg, “Scatterer recognition via analysis of speckle patterns,” Optica 5(2), 204–207 (2018).
    [Crossref]
  9. B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584–6600 (2013).
    [Crossref]
  10. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
    [Crossref]
  11. G. D. Bruce, L. O’Donnell, M. Chen, and K. Dholakia, “Overcoming the speckle correlation limit to achieve a fiber wavemeter with attometer resolution,” Opt. Lett. 44(6), 1367–1370 (2019).
    [Crossref]
  12. P. S. Idell, J. R. Fienup, and R. S. Goodman, “Image synthesis from nonimaged laser-speckle patterns,” Opt. Lett. 12(11), 858–860 (1987).
    [Crossref]
  13. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [Crossref]
  14. E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
    [Crossref]
  15. E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the fourier-domain shower-curtain effect,” Optica 3(1), 71–74 (2016).
    [Crossref]
  16. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
    [Crossref]
  17. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
    [Crossref]
  18. J. Santamaría, P. Artal, and J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical–digital method,” J. Opt. Soc. Am. A 4(6), 1109–1114 (1987).
    [Crossref]
  19. D. Halpaap, C. E. García-Guerra, M. Vilaseca, and C. Masoller, “Speckle reduction in double-pass retinal images,” Sci. Rep. 9(1), 4469 (2019).
    [Crossref]
  20. N. López-Gil and P. Artal, “Comparison of double-pass estimates of the retinal-image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14(5), 961–971 (1997).
    [Crossref]
  21. M. Vilaseca and J. Pujol, “Response to the letter to the editor by dr van den berg,” Aust. J. Optom. 94(4), 393–395 (2011).
    [Crossref]
  22. J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, A. Giner, F. J. Burgos, G. Cardona, and J. Pujol, “Optical quality and intraocular scattering in a healthy young population,” Aust. J. Optom. 94(2), 223–229 (2011).
    [Crossref]
  23. F. Sanabria, M. A. Arévalo, F. Díaz-Doutón, C. E. García-Guerra, and J. P. Ramo, “Technical improvements applied to a double-pass setup for performance and cost optimization,” Opt. Eng. 53(6), 061710 (2014).
    [Crossref]
  24. V. Albanis, E. N. Ribak, and Y. Carmon, “Reduction of speckles in retinal reflection,” Appl. Phys. Lett. 91(5), 054104 (2007).
    [Crossref]
  25. C. García-Guerra, M. Aldaba, M. Arjona, and J. Pujol, “Speckle reduction in double-pass retinal images using variable-focus lenses,” J. Eur. Opt. Soc. Rapid Publ. 10, 15001 (2015).
    [Crossref]
  26. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
    [Crossref]
  27. B. Dingel and S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett. 18(7), 549–551 (1993).
    [Crossref]
  28. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
    [Crossref]
  29. B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U. S. A. 112(5), 1304–1309 (2015).
    [Crossref]
  30. K. Kim, S. Bittner, Y. Zeng, S. Fatt Liew, Q. Wang, and H. Cao, “Electrically pumped semiconductor laser with low spatial coherence and directional emission,” arXiv e-prints arXiv:1905.03671 (2019).
  31. H. Cao, R. Chriki, S. Bittner, A. A. Friesem, and N. Davidson, “Complex lasers with controllable coherence,” Nat. Rev. Phys. 1(2), 156–168 (2019).
    [Crossref]
  32. D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
    [Crossref]
  33. M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
    [Crossref]

2019 (3)

G. D. Bruce, L. O’Donnell, M. Chen, and K. Dholakia, “Overcoming the speckle correlation limit to achieve a fiber wavemeter with attometer resolution,” Opt. Lett. 44(6), 1367–1370 (2019).
[Crossref]

D. Halpaap, C. E. García-Guerra, M. Vilaseca, and C. Masoller, “Speckle reduction in double-pass retinal images,” Sci. Rep. 9(1), 4469 (2019).
[Crossref]

H. Cao, R. Chriki, S. Bittner, A. A. Friesem, and N. Davidson, “Complex lasers with controllable coherence,” Nat. Rev. Phys. 1(2), 156–168 (2019).
[Crossref]

2018 (1)

2017 (2)

2016 (2)

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref]

E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the fourier-domain shower-curtain effect,” Optica 3(1), 71–74 (2016).
[Crossref]

2015 (3)

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

C. García-Guerra, M. Aldaba, M. Arjona, and J. Pujol, “Speckle reduction in double-pass retinal images using variable-focus lenses,” J. Eur. Opt. Soc. Rapid Publ. 10, 15001 (2015).
[Crossref]

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U. S. A. 112(5), 1304–1309 (2015).
[Crossref]

2014 (2)

F. Sanabria, M. A. Arévalo, F. Díaz-Doutón, C. E. García-Guerra, and J. P. Ramo, “Technical improvements applied to a double-pass setup for performance and cost optimization,” Opt. Eng. 53(6), 061710 (2014).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

2013 (2)

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584–6600 (2013).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

2012 (4)

J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20(10), 11288–11315 (2012).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref]

2011 (2)

M. Vilaseca and J. Pujol, “Response to the letter to the editor by dr van den berg,” Aust. J. Optom. 94(4), 393–395 (2011).
[Crossref]

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, A. Giner, F. J. Burgos, G. Cardona, and J. Pujol, “Optical quality and intraocular scattering in a healthy young population,” Aust. J. Optom. 94(2), 223–229 (2011).
[Crossref]

2010 (1)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref]

2007 (1)

V. Albanis, E. N. Ribak, and Y. Carmon, “Reduction of speckles in retinal reflection,” Appl. Phys. Lett. 91(5), 054104 (2007).
[Crossref]

2001 (1)

1997 (1)

1993 (1)

1987 (2)

1985 (2)

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3(1), 7–12 (1985).
[Crossref]

D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
[Crossref]

1980 (1)

M. Imai and Y. Ohtsuka, “Speckle-pattern contrast of semiconductor laser propagating in a multimode optical fiber,” Opt. Commun. 33(1), 4–8 (1980).
[Crossref]

Albanis, V.

V. Albanis, E. N. Ribak, and Y. Carmon, “Reduction of speckles in retinal reflection,” Appl. Phys. Lett. 91(5), 054104 (2007).
[Crossref]

Aldaba, M.

C. García-Guerra, M. Aldaba, M. Arjona, and J. Pujol, “Speckle reduction in double-pass retinal images using variable-focus lenses,” J. Eur. Opt. Soc. Rapid Publ. 10, 15001 (2015).
[Crossref]

Andersson, M.

Aragón, J. L.

Arévalo, M. A.

F. Sanabria, M. A. Arévalo, F. Díaz-Doutón, C. E. García-Guerra, and J. P. Ramo, “Technical improvements applied to a double-pass setup for performance and cost optimization,” Opt. Eng. 53(6), 061710 (2014).
[Crossref]

Arjona, M.

C. García-Guerra, M. Aldaba, M. Arjona, and J. Pujol, “Speckle reduction in double-pass retinal images using variable-focus lenses,” J. Eur. Opt. Soc. Rapid Publ. 10, 15001 (2015).
[Crossref]

Artal, P.

Bertholds, A.

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3(1), 7–12 (1985).
[Crossref]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Bescós, J.

Bittner, S.

H. Cao, R. Chriki, S. Bittner, A. A. Friesem, and N. Davidson, “Complex lasers with controllable coherence,” Nat. Rev. Phys. 1(2), 156–168 (2019).
[Crossref]

K. Kim, S. Bittner, Y. Zeng, S. Fatt Liew, Q. Wang, and H. Cao, “Electrically pumped semiconductor laser with low spatial coherence and directional emission,” arXiv e-prints arXiv:1905.03671 (2019).

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref]

Bruce, G. D.

Burgos, F. J.

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, A. Giner, F. J. Burgos, G. Cardona, and J. Pujol, “Optical quality and intraocular scattering in a healthy young population,” Aust. J. Optom. 94(2), 223–229 (2011).
[Crossref]

Cao, H.

H. Cao, R. Chriki, S. Bittner, A. A. Friesem, and N. Davidson, “Complex lasers with controllable coherence,” Nat. Rev. Phys. 1(2), 156–168 (2019).
[Crossref]

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U. S. A. 112(5), 1304–1309 (2015).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584–6600 (2013).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref]

K. Kim, S. Bittner, Y. Zeng, S. Fatt Liew, Q. Wang, and H. Cao, “Electrically pumped semiconductor laser with low spatial coherence and directional emission,” arXiv e-prints arXiv:1905.03671 (2019).

Cardona, G.

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, A. Giner, F. J. Burgos, G. Cardona, and J. Pujol, “Optical quality and intraocular scattering in a healthy young population,” Aust. J. Optom. 94(2), 223–229 (2011).
[Crossref]

Carmon, Y.

V. Albanis, E. N. Ribak, and Y. Carmon, “Reduction of speckles in retinal reflection,” Appl. Phys. Lett. 91(5), 054104 (2007).
[Crossref]

Cerjan, A.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U. S. A. 112(5), 1304–1309 (2015).
[Crossref]

Chen, M.

Choma, M. A.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U. S. A. 112(5), 1304–1309 (2015).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref]

Chriki, R.

H. Cao, R. Chriki, S. Bittner, A. A. Friesem, and N. Davidson, “Complex lasers with controllable coherence,” Nat. Rev. Phys. 1(2), 156–168 (2019).
[Crossref]

Dahlberg, T.

Dandliker, R.

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3(1), 7–12 (1985).
[Crossref]

Davidson, N.

H. Cao, R. Chriki, S. Bittner, A. A. Friesem, and N. Davidson, “Complex lasers with controllable coherence,” Nat. Rev. Phys. 1(2), 156–168 (2019).
[Crossref]

Den Boef, A.

D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
[Crossref]

Dholakia, K.

Díaz-Doutón, F.

F. Sanabria, M. A. Arévalo, F. Díaz-Doutón, C. E. García-Guerra, and J. P. Ramo, “Technical improvements applied to a double-pass setup for performance and cost optimization,” Opt. Eng. 53(6), 061710 (2014).
[Crossref]

Dingel, B.

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref]

Edrei, E.

E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the fourier-domain shower-curtain effect,” Optica 3(1), 71–74 (2016).
[Crossref]

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref]

Fatt Liew, S.

K. Kim, S. Bittner, Y. Zeng, S. Fatt Liew, Q. Wang, and H. Cao, “Electrically pumped semiconductor laser with low spatial coherence and directional emission,” arXiv e-prints arXiv:1905.03671 (2019).

Fienup, J. R.

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Friesem, A. A.

H. Cao, R. Chriki, S. Bittner, A. A. Friesem, and N. Davidson, “Complex lasers with controllable coherence,” Nat. Rev. Phys. 1(2), 156–168 (2019).
[Crossref]

García-Guerra, C.

C. García-Guerra, M. Aldaba, M. Arjona, and J. Pujol, “Speckle reduction in double-pass retinal images using variable-focus lenses,” J. Eur. Opt. Soc. Rapid Publ. 10, 15001 (2015).
[Crossref]

García-Guerra, C. E.

D. Halpaap, C. E. García-Guerra, M. Vilaseca, and C. Masoller, “Speckle reduction in double-pass retinal images,” Sci. Rep. 9(1), 4469 (2019).
[Crossref]

F. Sanabria, M. A. Arévalo, F. Díaz-Doutón, C. E. García-Guerra, and J. P. Ramo, “Technical improvements applied to a double-pass setup for performance and cost optimization,” Opt. Eng. 53(6), 061710 (2014).
[Crossref]

Gigan, S.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Giner, A.

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, A. Giner, F. J. Burgos, G. Cardona, and J. Pujol, “Optical quality and intraocular scattering in a healthy young population,” Aust. J. Optom. 94(2), 223–229 (2011).
[Crossref]

Goodman, J. W.

Goodman, R. S.

Halpaap, D.

D. Halpaap, C. E. García-Guerra, M. Vilaseca, and C. Masoller, “Speckle reduction in double-pass retinal images,” Sci. Rep. 9(1), 4469 (2019).
[Crossref]

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Hofer, H.

Huang, X.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U. S. A. 112(5), 1304–1309 (2015).
[Crossref]

Idell, P. S.

Imai, M.

M. Imai and Y. Ohtsuka, “Speckle-pattern contrast of semiconductor laser propagating in a multimode optical fiber,” Opt. Commun. 33(1), 4–8 (1980).
[Crossref]

Katz, O.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Kawata, S.

Kim, K.

K. Kim, S. Bittner, Y. Zeng, S. Fatt Liew, Q. Wang, and H. Cao, “Electrically pumped semiconductor laser with low spatial coherence and directional emission,” arXiv e-prints arXiv:1905.03671 (2019).

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Lee, M. L.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U. S. A. 112(5), 1304–1309 (2015).
[Crossref]

Lenstra, D.

D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
[Crossref]

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

López-Gil, N.

Manni, J. G.

Martínez-Roda, J. A.

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, A. Giner, F. J. Burgos, G. Cardona, and J. Pujol, “Optical quality and intraocular scattering in a healthy young population,” Aust. J. Optom. 94(2), 223–229 (2011).
[Crossref]

Masoller, C.

D. Halpaap, C. E. García-Guerra, M. Vilaseca, and C. Masoller, “Speckle reduction in double-pass retinal images,” Sci. Rep. 9(1), 4469 (2019).
[Crossref]

Maystre, F.

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3(1), 7–12 (1985).
[Crossref]

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

O’Donnell, L.

Ohtsuka, Y.

M. Imai and Y. Ohtsuka, “Speckle-pattern contrast of semiconductor laser propagating in a multimode optical fiber,” Opt. Commun. 33(1), 4–8 (1980).
[Crossref]

Ondategui, J. C.

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, A. Giner, F. J. Burgos, G. Cardona, and J. Pujol, “Optical quality and intraocular scattering in a healthy young population,” Aust. J. Optom. 94(2), 223–229 (2011).
[Crossref]

Pauwels, J.

Popoff, S. M.

Pujol, J.

C. García-Guerra, M. Aldaba, M. Arjona, and J. Pujol, “Speckle reduction in double-pass retinal images using variable-focus lenses,” J. Eur. Opt. Soc. Rapid Publ. 10, 15001 (2015).
[Crossref]

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, A. Giner, F. J. Burgos, G. Cardona, and J. Pujol, “Optical quality and intraocular scattering in a healthy young population,” Aust. J. Optom. 94(2), 223–229 (2011).
[Crossref]

M. Vilaseca and J. Pujol, “Response to the letter to the editor by dr van den berg,” Aust. J. Optom. 94(4), 393–395 (2011).
[Crossref]

Ramo, J. P.

F. Sanabria, M. A. Arévalo, F. Díaz-Doutón, C. E. García-Guerra, and J. P. Ramo, “Technical improvements applied to a double-pass setup for performance and cost optimization,” Opt. Eng. 53(6), 061710 (2014).
[Crossref]

Redding, B.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U. S. A. 112(5), 1304–1309 (2015).
[Crossref]

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584–6600 (2013).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref]

Ribak, E. N.

V. Albanis, E. N. Ribak, and Y. Carmon, “Reduction of speckles in retinal reflection,” Appl. Phys. Lett. 91(5), 054104 (2007).
[Crossref]

Sanabria, F.

F. Sanabria, M. A. Arévalo, F. Díaz-Doutón, C. E. García-Guerra, and J. P. Ramo, “Technical improvements applied to a double-pass setup for performance and cost optimization,” Opt. Eng. 53(6), 061710 (2014).
[Crossref]

Santamaría, J.

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Scarcelli, G.

E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the fourier-domain shower-curtain effect,” Optica 3(1), 71–74 (2016).
[Crossref]

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref]

Sciamanna, M.

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

Shore, K. A.

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

Silberberg, Y.

E. Valent and Y. Silberberg, “Scatterer recognition via analysis of speckle patterns,” Optica 5(2), 204–207 (2018).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Singer, B.

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Stangner, T.

Stone, A. D.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U. S. A. 112(5), 1304–1309 (2015).
[Crossref]

Valent, E.

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Verbeek, B.

D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
[Crossref]

Verschaffelt, G.

Vilaseca, M.

D. Halpaap, C. E. García-Guerra, M. Vilaseca, and C. Masoller, “Speckle reduction in double-pass retinal images,” Sci. Rep. 9(1), 4469 (2019).
[Crossref]

M. Vilaseca and J. Pujol, “Response to the letter to the editor by dr van den berg,” Aust. J. Optom. 94(4), 393–395 (2011).
[Crossref]

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, A. Giner, F. J. Burgos, G. Cardona, and J. Pujol, “Optical quality and intraocular scattering in a healthy young population,” Aust. J. Optom. 94(2), 223–229 (2011).
[Crossref]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Wang, Q.

K. Kim, S. Bittner, Y. Zeng, S. Fatt Liew, Q. Wang, and H. Cao, “Electrically pumped semiconductor laser with low spatial coherence and directional emission,” arXiv e-prints arXiv:1905.03671 (2019).

Wiklund, K.

Williams, D. R.

Zeng, Y.

K. Kim, S. Bittner, Y. Zeng, S. Fatt Liew, Q. Wang, and H. Cao, “Electrically pumped semiconductor laser with low spatial coherence and directional emission,” arXiv e-prints arXiv:1905.03671 (2019).

Zhang, H.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

V. Albanis, E. N. Ribak, and Y. Carmon, “Reduction of speckles in retinal reflection,” Appl. Phys. Lett. 91(5), 054104 (2007).
[Crossref]

Aust. J. Optom. (2)

M. Vilaseca and J. Pujol, “Response to the letter to the editor by dr van den berg,” Aust. J. Optom. 94(4), 393–395 (2011).
[Crossref]

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, A. Giner, F. J. Burgos, G. Cardona, and J. Pujol, “Optical quality and intraocular scattering in a healthy young population,” Aust. J. Optom. 94(2), 223–229 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
[Crossref]

J. Biomed. Opt. (1)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref]

J. Eur. Opt. Soc. Rapid Publ. (1)

C. García-Guerra, M. Aldaba, M. Arjona, and J. Pujol, “Speckle reduction in double-pass retinal images using variable-focus lenses,” J. Eur. Opt. Soc. Rapid Publ. 10, 15001 (2015).
[Crossref]

J. Lightwave Technol. (1)

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3(1), 7–12 (1985).
[Crossref]

J. Opt. Soc. Am. A (3)

Nat. Photonics (5)

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Nat. Rev. Phys. (1)

H. Cao, R. Chriki, S. Bittner, A. A. Friesem, and N. Davidson, “Complex lasers with controllable coherence,” Nat. Rev. Phys. 1(2), 156–168 (2019).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Opt. Commun. (1)

M. Imai and Y. Ohtsuka, “Speckle-pattern contrast of semiconductor laser propagating in a multimode optical fiber,” Opt. Commun. 33(1), 4–8 (1980).
[Crossref]

Opt. Eng. (1)

F. Sanabria, M. A. Arévalo, F. Díaz-Doutón, C. E. García-Guerra, and J. P. Ramo, “Technical improvements applied to a double-pass setup for performance and cost optimization,” Opt. Eng. 53(6), 061710 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optica (2)

Proc. Natl. Acad. Sci. U. S. A. (1)

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U. S. A. 112(5), 1304–1309 (2015).
[Crossref]

Sci. Rep. (2)

D. Halpaap, C. E. García-Guerra, M. Vilaseca, and C. Masoller, “Speckle reduction in double-pass retinal images,” Sci. Rep. 9(1), 4469 (2019).
[Crossref]

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref]

Other (2)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

K. Kim, S. Bittner, Y. Zeng, S. Fatt Liew, Q. Wang, and H. Cao, “Electrically pumped semiconductor laser with low spatial coherence and directional emission,” arXiv e-prints arXiv:1905.03671 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Experimental setup. NDF: neutral density filter of optical density 1.7. (b) Example speckle image with the area where the speckle contrast is computed indicated with a white circle.
Fig. 2.
Fig. 2. (a) Optical spectra recorded at various pump currents ($J_{\mathrm {p}} = 15~\textrm {mA}$, $25~\textrm {mA}$, $35~\textrm {mA}$, $45~\textrm {mA}$), normalized to the maximum value. The spectra of $15~\textrm {mA}$ and $25~\textrm {mA}$ are almost indistinguishable. The inset shows the relationship between pump current and linewidth (full width half maximum). (b) Optical spectrum in color code vs. the pump current. The white dots represent the speckle contrast, averaged over measurements performed with different exposure times. The error bars indicate one standard deviation.
Fig. 3.
Fig. 3. Speckle contrast as a function of the mean intensity (in digital levels) for the same data as shown in Fig. 2(b). In (a), the color represents the corresponding pump current; in (b), it shows the exposure time.
Fig. 4.
Fig. 4. Example images and histograms depicting the intensity distribution inside the areas indicated by white circles. In the first two lines from top to bottom, we present images of similar average intensities, within $\langle I \rangle \in [40, 50])$, and $\langle I \rangle \in [50, 60]$, respectively, from low (left column) and high pump current (right column), taken with different exposure times. In the third line, the cases of highest mean intensity ($\langle I \rangle \approx 106$, left column) and highest speckle contrast ($C = 0.99$ and $\langle I \rangle \approx 24$, right column) are shown.
Fig. 5.
Fig. 5. Scatter plot of the exposure time and the pump current for all measurements. The color code indicates (a) the mean intensity, (b) the speckle contrast.
Fig. 6.
Fig. 6. Exposure time vs pump current for images that have mean intensity in the range (a) $\langle I \rangle \in [40, 50]$ and (b) $\langle I \rangle \in [50, 60]$. The color code indicates the speckle contrast.

Metrics