Abstract

A compact and high sensitivity refractive index (RI) sensor has been theoretically and experimentally demonstrated based on dual-mode interferometer (DMI) in an eccentric core few-mode fiber (ECFMF). The DMI is fabricated by fusion splicing a piece of ECFMF etched by hydrofluoric acid (HF) and two single mode fibers (SMFs) with a lateral-offset. The interference is formed by LP01 and LP11 modes in the eccentric core of ECFMF. The etched ECFMF-DMI based on core-core mode interference exhibits a higher RI sensitivity than the DMI based on core-cladding mode interference. The sensitivity reaches up to 2565.2 nm/RIU around the RI of 1.4. Both of the etched and unetched ECFMF-DMIs have low temperature sensitivities of 9.6 pm/°C and 33.1 pm/°C, respectively. The etched ECFMF-DMI based on the core-core mode interference possesses tremendous superiority for RI measurement due to its high RI sensitivity and low temperature cross, therefore the proposed sensor has great potentials in chemical and biological fields.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In-fiber Mach-Zehnder interferometer with piecewise interference spectrum based on hole-assisted dual-core fiber for refractive index sensing

J. Yang, M. Yang, C. Y. Guan, J. H. Shi, Z. Zhu, P. Li, P. F. Wang, J. Yang, and L. B. Yuan
Opt. Express 26(15) 19091-19099 (2018)

Simultaneous measurement of refractive index and temperature with high sensitivity based on a multipath fiber Mach–Zehnder interferometer

Yajun Jiang, Tao Wang, Chi Liu, Dingyi Feng, Biqiang Jiang, Dexing Yang, and Jianlin Zhao
Appl. Opt. 58(15) 4085-4090 (2019)

Ultrasensitive refractive index sensor based on enhanced Vernier effect through cascaded fiber core-offset pairs

Jiewen Li, Meng Zhang, Minggui Wan, Chunli Lin, Shihong Huang, Cuihong Liu, Qingping He, Xiaozhong Qiu, and Xiaohui Fang
Opt. Express 28(3) 4145-4155 (2020)

References

  • View by:
  • |
  • |
  • |

  1. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  2. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
    [Crossref]
  3. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).
    [Crossref]
  4. M. N. Ng, Z. H. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photonics Technol. Lett. 14(3), 361–362 (2002).
    [Crossref]
  5. J. Zhao, S. Q. Cao, C. R. Liao, Y. Wang, G. J. Wang, X. Z. Xu, C. L. Fu, G. W. Xu, J. R. Lian, and Y. P. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators, B 230, 206–211 (2016).
    [Crossref]
  6. A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
    [Crossref]
  7. P. Bhatia and B. D. Gupta, “Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Opt. 50(14), 2032–2036 (2011).
    [Crossref]
  8. T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [Crossref]
  9. J. T. Zhou, Y. P. Wang, C. R. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Y. Li, G. J. Wang, X. Y. Zhong, and J. Zhao, “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. Actuators, B 208, 315–319 (2015).
    [Crossref]
  10. P. F. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
    [Crossref]
  11. D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50(11), 1548–1553 (2011).
    [Crossref]
  12. C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, “Fiber in-line Mach-Zehnder interferometer embedded in fbg for simultaneous refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
    [Crossref]
  13. Y. F. Lu, C. Y. Shen, C. Zhong, D. B. Chen, X. Y. Dong, and J. H. Cai, “Refractive index and temperature sensor based on double-pass M-Z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).
    [Crossref]
  14. R. Yang, Y. S. Yu, C. Chen, Y. Xue, X. L. Zhang, J. C. Guo, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain,” J. Lightwave Technol. 30(19), 3126–3132 (2012).
    [Crossref]
  15. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50(28), 5503–5507 (2011).
    [Crossref]
  16. L. Jiang, L. J. Zhao, S. M. Wang, J. P. Yang, and H. Xiao, “Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment,” Opt. Express 19(18), 17591–17598 (2011).
    [Crossref]
  17. Z. Y. Li, C. R. Liao, Y. P. Wang, X. P. Dong, S. Liu, K. M. Yang, Q. Wang, and J. T. Zhou, “Ultrasensitive refractive index sensor based on a Mach-Zehnder interferometer created in twin-core fiber,” Opt. Lett. 39(17), 4982–4985 (2014).
    [Crossref]
  18. C. B. Zhang, T. G. Ning, J. Li, J. J. Zheng, X. K. Gao, and L. Pei, “Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper,” Opt. Laser Technol. 102, 12–16 (2018).
    [Crossref]
  19. Y. Li, Z. B. Liu, and S. S. Jian, “Multimode interference refractive index sensor based on coreless fiber,” Photonic Sens. 4(1), 21–27 (2014).
    [Crossref]
  20. X. X. Liu, X. P. Zhang, Y. Liu, Z. G. Liu, and W. Peng, “Multi-point fiber-optic refractive index sensor by using coreless fibers,” Opt. Commun. 365, 168–172 (2016).
    [Crossref]
  21. K. M. Yang, J. He, C. R. Liao, Y. Wang, S. Liu, K. K. Guo, J. T. Zhou, Z. Y. Li, Z. Tan, and Y. P. Wang, “Femtosecond laser inscription of fiber Bragg grating in twin-core few-mode fiber for directional bend sensing,” J. Lightwave Technol. 35(21), 4670–4676 (2017).
    [Crossref]
  22. A. Li, Y. F. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Opt. Express 23(2), 1139–1150 (2015).
    [Crossref]
  23. A. Kumar, N. K. Goel, and R. K. Varshney, “Studies on a few-mode fiber-optic strain sensor based on LP01-LP02 mode interference,” J. Lightwave Technol. 19(3), 358–362 (2001).
    [Crossref]
  24. J. Yang, M. Yang, C. Y. Guan, J. H. Shi, Z. Zhu, P. Li, P. F. Wang, J. Yang, and L. B. Yuan, “In-fiber Mach-Zehnder interferometer with piecewise interference spectrum based on hole-assisted dual-core fiber for refractive index sensing,” Opt. Express 26(15), 19091–19099 (2018).
    [Crossref]

2018 (2)

C. B. Zhang, T. G. Ning, J. Li, J. J. Zheng, X. K. Gao, and L. Pei, “Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper,” Opt. Laser Technol. 102, 12–16 (2018).
[Crossref]

J. Yang, M. Yang, C. Y. Guan, J. H. Shi, Z. Zhu, P. Li, P. F. Wang, J. Yang, and L. B. Yuan, “In-fiber Mach-Zehnder interferometer with piecewise interference spectrum based on hole-assisted dual-core fiber for refractive index sensing,” Opt. Express 26(15), 19091–19099 (2018).
[Crossref]

2017 (1)

2016 (2)

X. X. Liu, X. P. Zhang, Y. Liu, Z. G. Liu, and W. Peng, “Multi-point fiber-optic refractive index sensor by using coreless fibers,” Opt. Commun. 365, 168–172 (2016).
[Crossref]

J. Zhao, S. Q. Cao, C. R. Liao, Y. Wang, G. J. Wang, X. Z. Xu, C. L. Fu, G. W. Xu, J. R. Lian, and Y. P. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators, B 230, 206–211 (2016).
[Crossref]

2015 (3)

A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
[Crossref]

J. T. Zhou, Y. P. Wang, C. R. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Y. Li, G. J. Wang, X. Y. Zhong, and J. Zhao, “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. Actuators, B 208, 315–319 (2015).
[Crossref]

A. Li, Y. F. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Opt. Express 23(2), 1139–1150 (2015).
[Crossref]

2014 (3)

Y. Li, Z. B. Liu, and S. S. Jian, “Multimode interference refractive index sensor based on coreless fiber,” Photonic Sens. 4(1), 21–27 (2014).
[Crossref]

Y. F. Lu, C. Y. Shen, C. Zhong, D. B. Chen, X. Y. Dong, and J. H. Cai, “Refractive index and temperature sensor based on double-pass M-Z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).
[Crossref]

Z. Y. Li, C. R. Liao, Y. P. Wang, X. P. Dong, S. Liu, K. M. Yang, Q. Wang, and J. T. Zhou, “Ultrasensitive refractive index sensor based on a Mach-Zehnder interferometer created in twin-core fiber,” Opt. Lett. 39(17), 4982–4985 (2014).
[Crossref]

2012 (1)

2011 (5)

2010 (2)

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, “Fiber in-line Mach-Zehnder interferometer embedded in fbg for simultaneous refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
[Crossref]

2008 (1)

2005 (2)

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).
[Crossref]

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

2002 (1)

M. N. Ng, Z. H. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photonics Technol. Lett. 14(3), 361–362 (2002).
[Crossref]

2001 (1)

Bhatia, P.

Brambilla, G.

Cai, J. H.

Y. F. Lu, C. Y. Shen, C. Zhong, D. B. Chen, X. Y. Dong, and J. H. Cai, “Refractive index and temperature sensor based on double-pass M-Z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).
[Crossref]

Cao, S. Q.

J. Zhao, S. Q. Cao, C. R. Liao, Y. Wang, G. J. Wang, X. Z. Xu, C. L. Fu, G. W. Xu, J. R. Lian, and Y. P. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators, B 230, 206–211 (2016).
[Crossref]

Chen, C.

Chen, D. B.

Y. F. Lu, C. Y. Shen, C. Zhong, D. B. Chen, X. Y. Dong, and J. H. Cai, “Refractive index and temperature sensor based on double-pass M-Z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).
[Crossref]

Chen, Q. D.

Chen, Z. H.

M. N. Ng, Z. H. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photonics Technol. Lett. 14(3), 361–362 (2002).
[Crossref]

Chiang, K. S.

M. N. Ng, Z. H. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photonics Technol. Lett. 14(3), 361–362 (2002).
[Crossref]

Deng, M.

Ding, J. F.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).
[Crossref]

Ding, M.

Dong, X. P.

Dong, X. Y.

Y. F. Lu, C. Y. Shen, C. Zhong, D. B. Chen, X. Y. Dong, and J. H. Cai, “Refractive index and temperature sensor based on double-pass M-Z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).
[Crossref]

Duan, D. W.

Fang, X.

Farrell, G.

Fu, C. L.

J. Zhao, S. Q. Cao, C. R. Liao, Y. Wang, G. J. Wang, X. Z. Xu, C. L. Fu, G. W. Xu, J. R. Lian, and Y. P. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators, B 230, 206–211 (2016).
[Crossref]

Gao, X. K.

C. B. Zhang, T. G. Ning, J. Li, J. J. Zheng, X. K. Gao, and L. Pei, “Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper,” Opt. Laser Technol. 102, 12–16 (2018).
[Crossref]

Goel, N. K.

Guan, C. Y.

Guo, J. C.

Guo, K. K.

Gupta, B. D.

A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
[Crossref]

P. Bhatia and B. D. Gupta, “Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Opt. 50(14), 2032–2036 (2011).
[Crossref]

Han, Y. K.

He, J.

K. M. Yang, J. He, C. R. Liao, Y. Wang, S. Liu, K. K. Guo, J. T. Zhou, Z. Y. Li, Z. Tan, and Y. P. Wang, “Femtosecond laser inscription of fiber Bragg grating in twin-core few-mode fiber for directional bend sensing,” J. Lightwave Technol. 35(21), 4670–4676 (2017).
[Crossref]

J. T. Zhou, Y. P. Wang, C. R. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Y. Li, G. J. Wang, X. Y. Zhong, and J. Zhao, “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. Actuators, B 208, 315–319 (2015).
[Crossref]

He, S. L.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).
[Crossref]

Hu, Q.

Huang, Y. Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Jian, S. S.

Y. Li, Z. B. Liu, and S. S. Jian, “Multimode interference refractive index sensor based on coreless fiber,” Photonic Sens. 4(1), 21–27 (2014).
[Crossref]

Jiang, L.

Kumar, A.

Lee, R. K.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Li, A.

Li, B.

Li, J.

C. B. Zhang, T. G. Ning, J. Li, J. J. Zheng, X. K. Gao, and L. Pei, “Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper,” Opt. Laser Technol. 102, 12–16 (2018).
[Crossref]

Li, P.

Li, Y.

Y. Li, Z. B. Liu, and S. S. Jian, “Multimode interference refractive index sensor based on coreless fiber,” Photonic Sens. 4(1), 21–27 (2014).
[Crossref]

Li, Y. J.

Li, Z. Y.

Lian, J. R.

J. Zhao, S. Q. Cao, C. R. Liao, Y. Wang, G. J. Wang, X. Z. Xu, C. L. Fu, G. W. Xu, J. R. Lian, and Y. P. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators, B 230, 206–211 (2016).
[Crossref]

Liang, W.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Liao, C. R.

K. M. Yang, J. He, C. R. Liao, Y. Wang, S. Liu, K. K. Guo, J. T. Zhou, Z. Y. Li, Z. Tan, and Y. P. Wang, “Femtosecond laser inscription of fiber Bragg grating in twin-core few-mode fiber for directional bend sensing,” J. Lightwave Technol. 35(21), 4670–4676 (2017).
[Crossref]

J. Zhao, S. Q. Cao, C. R. Liao, Y. Wang, G. J. Wang, X. Z. Xu, C. L. Fu, G. W. Xu, J. R. Lian, and Y. P. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators, B 230, 206–211 (2016).
[Crossref]

J. T. Zhou, Y. P. Wang, C. R. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Y. Li, G. J. Wang, X. Y. Zhong, and J. Zhao, “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. Actuators, B 208, 315–319 (2015).
[Crossref]

Z. Y. Li, C. R. Liao, Y. P. Wang, X. P. Dong, S. Liu, K. M. Yang, Q. Wang, and J. T. Zhou, “Ultrasensitive refractive index sensor based on a Mach-Zehnder interferometer created in twin-core fiber,” Opt. Lett. 39(17), 4982–4985 (2014).
[Crossref]

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, “Fiber in-line Mach-Zehnder interferometer embedded in fbg for simultaneous refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
[Crossref]

Liu, S.

Liu, X. X.

X. X. Liu, X. P. Zhang, Y. Liu, Z. G. Liu, and W. Peng, “Multi-point fiber-optic refractive index sensor by using coreless fibers,” Opt. Commun. 365, 168–172 (2016).
[Crossref]

Liu, Y.

X. X. Liu, X. P. Zhang, Y. Liu, Z. G. Liu, and W. Peng, “Multi-point fiber-optic refractive index sensor by using coreless fibers,” Opt. Commun. 365, 168–172 (2016).
[Crossref]

Liu, Z. B.

Y. Li, Z. B. Liu, and S. S. Jian, “Multimode interference refractive index sensor based on coreless fiber,” Photonic Sens. 4(1), 21–27 (2014).
[Crossref]

Liu, Z. G.

X. X. Liu, X. P. Zhang, Y. Liu, Z. G. Liu, and W. Peng, “Multi-point fiber-optic refractive index sensor by using coreless fibers,” Opt. Commun. 365, 168–172 (2016).
[Crossref]

Lu, Y.

Lu, Y. F.

Y. F. Lu, C. Y. Shen, C. Zhong, D. B. Chen, X. Y. Dong, and J. H. Cai, “Refractive index and temperature sensor based on double-pass M-Z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).
[Crossref]

Mishra, A. K.

A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
[Crossref]

Mishra, S. K.

A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
[Crossref]

Ng, M. N.

M. N. Ng, Z. H. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photonics Technol. Lett. 14(3), 361–362 (2002).
[Crossref]

Ning, T. G.

C. B. Zhang, T. G. Ning, J. Li, J. J. Zheng, X. K. Gao, and L. Pei, “Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper,” Opt. Laser Technol. 102, 12–16 (2018).
[Crossref]

Pei, L.

C. B. Zhang, T. G. Ning, J. Li, J. J. Zheng, X. K. Gao, and L. Pei, “Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper,” Opt. Laser Technol. 102, 12–16 (2018).
[Crossref]

Peng, W.

X. X. Liu, X. P. Zhang, Y. Liu, Z. G. Liu, and W. Peng, “Multi-point fiber-optic refractive index sensor by using coreless fibers,” Opt. Commun. 365, 168–172 (2016).
[Crossref]

Rao, Y. J.

Semenova, Y.

Shao, L. Y.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).
[Crossref]

Shen, C. Y.

Y. F. Lu, C. Y. Shen, C. Zhong, D. B. Chen, X. Y. Dong, and J. H. Cai, “Refractive index and temperature sensor based on double-pass M-Z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).
[Crossref]

Shi, J. H.

Shi, L. L.

Shieh, W.

Sun, B.

J. T. Zhou, Y. P. Wang, C. R. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Y. Li, G. J. Wang, X. Y. Zhong, and J. Zhao, “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. Actuators, B 208, 315–319 (2015).
[Crossref]

Sun, H. B.

Tan, Z.

Tsai, H.

Tsai, H. L.

Varshney, R. K.

Wang, C.

Wang, D. N.

X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
[Crossref]

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, “Fiber in-line Mach-Zehnder interferometer embedded in fbg for simultaneous refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

Wang, G. J.

J. Zhao, S. Q. Cao, C. R. Liao, Y. Wang, G. J. Wang, X. Z. Xu, C. L. Fu, G. W. Xu, J. R. Lian, and Y. P. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators, B 230, 206–211 (2016).
[Crossref]

J. T. Zhou, Y. P. Wang, C. R. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Y. Li, G. J. Wang, X. Y. Zhong, and J. Zhao, “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. Actuators, B 208, 315–319 (2015).
[Crossref]

Wang, M.

Wang, P. F.

Wang, Q.

Wang, S.

Wang, S. M.

Wang, Y.

K. M. Yang, J. He, C. R. Liao, Y. Wang, S. Liu, K. K. Guo, J. T. Zhou, Z. Y. Li, Z. Tan, and Y. P. Wang, “Femtosecond laser inscription of fiber Bragg grating in twin-core few-mode fiber for directional bend sensing,” J. Lightwave Technol. 35(21), 4670–4676 (2017).
[Crossref]

J. Zhao, S. Q. Cao, C. R. Liao, Y. Wang, G. J. Wang, X. Z. Xu, C. L. Fu, G. W. Xu, J. R. Lian, and Y. P. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators, B 230, 206–211 (2016).
[Crossref]

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, “Fiber in-line Mach-Zehnder interferometer embedded in fbg for simultaneous refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

Wang, Y. F.

Wang, Y. P.

K. M. Yang, J. He, C. R. Liao, Y. Wang, S. Liu, K. K. Guo, J. T. Zhou, Z. Y. Li, Z. Tan, and Y. P. Wang, “Femtosecond laser inscription of fiber Bragg grating in twin-core few-mode fiber for directional bend sensing,” J. Lightwave Technol. 35(21), 4670–4676 (2017).
[Crossref]

J. Zhao, S. Q. Cao, C. R. Liao, Y. Wang, G. J. Wang, X. Z. Xu, C. L. Fu, G. W. Xu, J. R. Lian, and Y. P. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators, B 230, 206–211 (2016).
[Crossref]

J. T. Zhou, Y. P. Wang, C. R. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Y. Li, G. J. Wang, X. Y. Zhong, and J. Zhao, “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. Actuators, B 208, 315–319 (2015).
[Crossref]

Z. Y. Li, C. R. Liao, Y. P. Wang, X. P. Dong, S. Liu, K. M. Yang, Q. Wang, and J. T. Zhou, “Ultrasensitive refractive index sensor based on a Mach-Zehnder interferometer created in twin-core fiber,” Opt. Lett. 39(17), 4982–4985 (2014).
[Crossref]

Wei, T.

Wu, D.

Wu, Q.

Xiao, H.

Xu, G. W.

J. Zhao, S. Q. Cao, C. R. Liao, Y. Wang, G. J. Wang, X. Z. Xu, C. L. Fu, G. W. Xu, J. R. Lian, and Y. P. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators, B 230, 206–211 (2016).
[Crossref]

Xu, X. Z.

J. Zhao, S. Q. Cao, C. R. Liao, Y. Wang, G. J. Wang, X. Z. Xu, C. L. Fu, G. W. Xu, J. R. Lian, and Y. P. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators, B 230, 206–211 (2016).
[Crossref]

Xu, Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Xue, Y.

Yan, J. H.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).
[Crossref]

Yang, J.

Yang, J. P.

Yang, K. M.

Yang, M.

Yang, M. W.

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, “Fiber in-line Mach-Zehnder interferometer embedded in fbg for simultaneous refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

Yang, R.

Yao, J.

Yariv, A.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yin, G.

J. T. Zhou, Y. P. Wang, C. R. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Y. Li, G. J. Wang, X. Y. Zhong, and J. Zhao, “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. Actuators, B 208, 315–319 (2015).
[Crossref]

Yu, Y. S.

Yuan, L. B.

Zhang, A. P.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).
[Crossref]

Zhang, B. L.

Zhang, C. B.

C. B. Zhang, T. G. Ning, J. Li, J. J. Zheng, X. K. Gao, and L. Pei, “Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper,” Opt. Laser Technol. 102, 12–16 (2018).
[Crossref]

Zhang, X. L.

Zhang, X. P.

X. X. Liu, X. P. Zhang, Y. Liu, Z. G. Liu, and W. Peng, “Multi-point fiber-optic refractive index sensor by using coreless fibers,” Opt. Commun. 365, 168–172 (2016).
[Crossref]

Zhao, J.

J. Zhao, S. Q. Cao, C. R. Liao, Y. Wang, G. J. Wang, X. Z. Xu, C. L. Fu, G. W. Xu, J. R. Lian, and Y. P. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators, B 230, 206–211 (2016).
[Crossref]

J. T. Zhou, Y. P. Wang, C. R. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Y. Li, G. J. Wang, X. Y. Zhong, and J. Zhao, “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. Actuators, B 208, 315–319 (2015).
[Crossref]

Zhao, L. J.

Zheng, J. J.

C. B. Zhang, T. G. Ning, J. Li, J. J. Zheng, X. K. Gao, and L. Pei, “Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper,” Opt. Laser Technol. 102, 12–16 (2018).
[Crossref]

Zhong, C.

Y. F. Lu, C. Y. Shen, C. Zhong, D. B. Chen, X. Y. Dong, and J. H. Cai, “Refractive index and temperature sensor based on double-pass M-Z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).
[Crossref]

Zhong, X. Y.

J. T. Zhou, Y. P. Wang, C. R. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Y. Li, G. J. Wang, X. Y. Zhong, and J. Zhao, “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. Actuators, B 208, 315–319 (2015).
[Crossref]

Zhou, J. T.

Zhu, F.

Zhu, T.

Zhu, Z.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (4)

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).
[Crossref]

M. N. Ng, Z. H. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photonics Technol. Lett. 14(3), 361–362 (2002).
[Crossref]

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, “Fiber in-line Mach-Zehnder interferometer embedded in fbg for simultaneous refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

Y. F. Lu, C. Y. Shen, C. Zhong, D. B. Chen, X. Y. Dong, and J. H. Cai, “Refractive index and temperature sensor based on double-pass M-Z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).
[Crossref]

J. Lightwave Technol. (3)

Opt. Commun. (2)

A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
[Crossref]

X. X. Liu, X. P. Zhang, Y. Liu, Z. G. Liu, and W. Peng, “Multi-point fiber-optic refractive index sensor by using coreless fibers,” Opt. Commun. 365, 168–172 (2016).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

C. B. Zhang, T. G. Ning, J. Li, J. J. Zheng, X. K. Gao, and L. Pei, “Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper,” Opt. Laser Technol. 102, 12–16 (2018).
[Crossref]

Opt. Lett. (3)

Photonic Sens. (1)

Y. Li, Z. B. Liu, and S. S. Jian, “Multimode interference refractive index sensor based on coreless fiber,” Photonic Sens. 4(1), 21–27 (2014).
[Crossref]

Sens. Actuators, B (2)

J. Zhao, S. Q. Cao, C. R. Liao, Y. Wang, G. J. Wang, X. Z. Xu, C. L. Fu, G. W. Xu, J. R. Lian, and Y. P. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators, B 230, 206–211 (2016).
[Crossref]

J. T. Zhou, Y. P. Wang, C. R. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Y. Li, G. J. Wang, X. Y. Zhong, and J. Zhao, “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. Actuators, B 208, 315–319 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The cross-section of (a) the ECFMF and (b) etched ECFMF. Schematic configuration of (c) the eathed ECFMF-DMI based on core-core mode interference and (d) the uneathed ECFMF-DMI based on core-cladding mode interference. Inset shows the cross-section view of the position of outward lateral-offset.
Fig. 2.
Fig. 2. The changes of the effective RI difference between LP01 and LP11 modes of etched ECFMF (a) with external medium RI at 1310 nm and (b) with wavelength for different external medium RIs.
Fig. 3.
Fig. 3. The excitation coefficients of the modes of etched ECFMF (a) and unetched ECFMF (b) with different lateral-offsets at the spicing point (at 1310 nm). Inset shows the electric field distribution of the cladding mode with a large excitation coefficient.
Fig. 4.
Fig. 4. (a) The transmission spectrum of the etched ECFMF-DMI based on core-core mode interference. The inset is the micrograph of the splicing point between ECFMF and SMF. (b) The transmission spectrum of the unetched ECFMF-DMI based on core-cladding mode interference. The inserts show the field distributions of interference modes. (c) The effective RI with the wavelength for different modes. (d) The spatial frequency spectra of etched and unetched ECFMF-DMIs.
Fig. 5.
Fig. 5. The schematic of the experimental setup for measuring RI response.
Fig. 6.
Fig. 6. (a) The transmission spectra of the etched ECFMF-DMI based core-core mode interference for different RIs. (b) Zoomed view of transmission spectra in the wavelength range from 1300 to 1400 nm. (c) The calculated and measured interference valley (marked by “A”) wavelength shifts with different RI solutions. (d) The interference valley (marked by “A”) wavelength shifts with different temperatures.
Fig. 7.
Fig. 7. (a) The transmission spectra of unetched ECFMF-DMI based on core-cladding mode interference for different RIs. (b) The interference valley (marked by “B”) wavelength shifts with different RI solutions. (c) The interference valley (marked by “B”) wavelength shifts with different temperatures.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ φ = 2 π Δ n eff ( λ , n ex ) L λ
λ m = 2 Δ n eff ( λ , n ex ) L 2 m + 1
FSR = λ 2 Δ n eff ( λ , n ex ) L
d λ m d n ex = λ m ( Δ n eff ( λ , n ex ) / Δ n eff ( λ , n ex ) n ex n ex ) Δ n g
Δ n g = Δ n eff ( λ , n ex ) λ m ( Δ n eff ( λ , n ex ) / Δ n eff ( λ , n ex ) λ λ )
b = 1 4 ( E m × H n + E n × H m ) z dxdy

Metrics