Abstract

We have designed and implemented a fiber optic shape sensor for high-energy ionizing environments based on multicore optical fibers. We inscribed two fiber Bragg gratings arrays in a seven-core optical fiber. One of the arrays has been inscribed in a hydrogen-loaded fiber and the other one in an unloaded fiber in order to have two samples with very different radiation sensitivity. The two samples were coiled in a metallic circular structure and were exposed to gamma radiation. We have analyzed the permanent radiation effects. The radiation-induced Bragg wavelength shift (RI-BWS) in the hydrogen-loaded fiber is near ten times higher than the one observed for the unloaded fiber, with a maximum wavelength shift of 415 pm. However, the use of the multiple cores permits to make these sensors immune to RI-BWS obtaining a similar curvature error in both samples of approximately 1 cm without modifying the composition of the fiber, pre-irradiation or thermal treatment.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Durable shape sensor based on FBG array inscribed in polyimide-coated multicore optical fiber

Kirill Bronnikov, Alexey Wolf, Sergey Yakushin, Alexandr Dostovalov, Olga Egorova, Sergey Zhuravlev, Sergey Semjonov, Stefan Wabnitz, and Sergey Babin
Opt. Express 27(26) 38421-38434 (2019)

Gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber

Youngwoong Kim, Seongmin Ju, Seongmook Jeong, Seung Ho Lee, and Won-Taek Han
Opt. Express 24(4) 3910-3920 (2016)

High-resolution distributed shape sensing using phase-sensitive optical time-domain reflectometry and multicore fibers

Łukasz Szostkiewicz, Marcelo A. Soto, Zhisheng Yang, Alejandro Dominguez-Lopez, Itxaso Parola, Krzysztof Markiewicz, Anna Pytel, Agnieszka Kołakowska, Marek Napierała, Tomasz Nasiłowski, and Luc Thevenaz
Opt. Express 27(15) 20763-20773 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
    [Crossref]
  2. D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged Optical Sensors Based on Regenerated Fiber Bragg Gratings for High Temperature Applications,” IEEE Sens. J. 12(1), 107–112 (2012).
    [Crossref]
  3. J.-Y. Huang, J. V. Roosbroeck, J. Vlekken, A. B. Martinez, T. Geernaert, F. Berghmans, B. V. Hoe, E. Lindner, and C. Caucheteur, “FBGs written in specialty fiber for high pressure/high temperature measurement,” Opt. Express 25(15), 17936 (2017).
    [Crossref]
  4. A. Gusarov, F. Berghmans, O. Deparis, A. Fernandez, Y. Defosse, P. Megret, M. Decreton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
    [Crossref]
  5. M. Perry, P. Niewczas, and M. Johnston, “Effects of Neutron-Gamma Radiation on Fiber Bragg Grating Sensors: A Review,” IEEE Sens. J. 12(11), 3248–3257 (2012).
    [Crossref]
  6. S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
    [Crossref]
  7. A. Gusarov and S. K. Hoeffgen, “Radiation Effects on Fiber Gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
    [Crossref]
  8. A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
    [Crossref]
  9. A. Morana, S. Girard, E. Marin, M. Lancry, C. Marcandella, P. Paillet, L. Lablonde, T. Robin, R. J. Williams, M. J. Withford, A. Boukenter, and Y. Ouerdane, “Influence of photo-inscription conditions on the radiation-response of fiber Bragg gratings,” Opt. Express 23(7), 8659–8669 (2015).
    [Crossref]
  10. J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
    [Crossref]
  11. A. Gusarov, F. Berghmans, A. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Megret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
    [Crossref]
  12. D. Barrera, J. Hervás, I. Gasulla, and S. Sales, “Enhanced accuracy sensors using multicore optical fibres based on RFBGs for temperatures up to 1000°C,” Proc. SPIE 9916, 99161J (2016).
    [Crossref]
  13. G. M. H. Flockhart, W. N. Macpherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
    [Crossref]
  14. D. Barrera, I. Gasulla, and S. Sales, “Multipoint Two-Dimensional Curvature Optical Fiber Sensor Based on a Nontwisted Homogeneous Four-Core Fiber,” J. Lightwave Technol. 33(12), 2445–2450 (2015).
    [Crossref]
  15. T. Blanchet, A. Morana, G. Laffont, R. Cotillard, E. Marin, A. Boukenter, Y. Ouerdane, and S. Girard, “Radiation Effects on Type I Fiber Bragg Gratings: Influence of Recoating and Irradiation Conditions,” J. Lightwave Technol. 36(4), 998–1004 (2018).
    [Crossref]
  16. D. Tosi, “Review and Analysis of Peak Tracking Techniques for Fiber Bragg Grating Sensors,” Sensors 17(10), 2368 (2017).
    [Crossref]
  17. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20(3), 2967–2973 (2012).
    [Crossref]
  18. I. Floris, S. Sales, P. A. Calderón, and J. M. Adam, “Measurement uncertainty of multicore optical fiber sensors used to sense curvature and bending direction,” Measurement 132, 35–46 (2019).
    [Crossref]

2019 (1)

I. Floris, S. Sales, P. A. Calderón, and J. M. Adam, “Measurement uncertainty of multicore optical fiber sensors used to sense curvature and bending direction,” Measurement 132, 35–46 (2019).
[Crossref]

2018 (2)

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

T. Blanchet, A. Morana, G. Laffont, R. Cotillard, E. Marin, A. Boukenter, Y. Ouerdane, and S. Girard, “Radiation Effects on Type I Fiber Bragg Gratings: Influence of Recoating and Irradiation Conditions,” J. Lightwave Technol. 36(4), 998–1004 (2018).
[Crossref]

2017 (3)

D. Tosi, “Review and Analysis of Peak Tracking Techniques for Fiber Bragg Grating Sensors,” Sensors 17(10), 2368 (2017).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

J.-Y. Huang, J. V. Roosbroeck, J. Vlekken, A. B. Martinez, T. Geernaert, F. Berghmans, B. V. Hoe, E. Lindner, and C. Caucheteur, “FBGs written in specialty fiber for high pressure/high temperature measurement,” Opt. Express 25(15), 17936 (2017).
[Crossref]

2016 (1)

D. Barrera, J. Hervás, I. Gasulla, and S. Sales, “Enhanced accuracy sensors using multicore optical fibres based on RFBGs for temperatures up to 1000°C,” Proc. SPIE 9916, 99161J (2016).
[Crossref]

2015 (2)

2014 (1)

2013 (1)

A. Gusarov and S. K. Hoeffgen, “Radiation Effects on Fiber Gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
[Crossref]

2012 (3)

M. Perry, P. Niewczas, and M. Johnston, “Effects of Neutron-Gamma Radiation on Fiber Bragg Grating Sensors: A Review,” IEEE Sens. J. 12(11), 3248–3257 (2012).
[Crossref]

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged Optical Sensors Based on Regenerated Fiber Bragg Gratings for High Temperature Applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20(3), 2967–2973 (2012).
[Crossref]

2008 (1)

2003 (1)

2000 (1)

A. Gusarov, F. Berghmans, A. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Megret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

1999 (1)

A. Gusarov, F. Berghmans, O. Deparis, A. Fernandez, Y. Defosse, P. Megret, M. Decreton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Adam, J. M.

I. Floris, S. Sales, P. A. Calderón, and J. M. Adam, “Measurement uncertainty of multicore optical fiber sensors used to sense curvature and bending direction,” Measurement 132, 35–46 (2019).
[Crossref]

Bandyopadhyay, S.

Barrera, D.

D. Barrera, J. Hervás, I. Gasulla, and S. Sales, “Enhanced accuracy sensors using multicore optical fibres based on RFBGs for temperatures up to 1000°C,” Proc. SPIE 9916, 99161J (2016).
[Crossref]

D. Barrera, I. Gasulla, and S. Sales, “Multipoint Two-Dimensional Curvature Optical Fiber Sensor Based on a Nontwisted Homogeneous Four-Core Fiber,” J. Lightwave Technol. 33(12), 2445–2450 (2015).
[Crossref]

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged Optical Sensors Based on Regenerated Fiber Bragg Gratings for High Temperature Applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Barton, J. S.

Bennion, I.

Berghmans, F.

J.-Y. Huang, J. V. Roosbroeck, J. Vlekken, A. B. Martinez, T. Geernaert, F. Berghmans, B. V. Hoe, E. Lindner, and C. Caucheteur, “FBGs written in specialty fiber for high pressure/high temperature measurement,” Opt. Express 25(15), 17936 (2017).
[Crossref]

A. Gusarov, F. Berghmans, A. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Megret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

A. Gusarov, F. Berghmans, O. Deparis, A. Fernandez, Y. Defosse, P. Megret, M. Decreton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Blanchet, T.

Blondel, M.

A. Gusarov, F. Berghmans, O. Deparis, A. Fernandez, Y. Defosse, P. Megret, M. Decreton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Bondel, M.

A. Gusarov, F. Berghmans, A. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Megret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

Bonnefois, J.-J.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

Boukenter, A.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

T. Blanchet, A. Morana, G. Laffont, R. Cotillard, E. Marin, A. Boukenter, Y. Ouerdane, and S. Girard, “Radiation Effects on Type I Fiber Bragg Gratings: Influence of Recoating and Irradiation Conditions,” J. Lightwave Technol. 36(4), 998–1004 (2018).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

A. Morana, S. Girard, E. Marin, M. Lancry, C. Marcandella, P. Paillet, L. Lablonde, T. Robin, R. J. Williams, M. J. Withford, A. Boukenter, and Y. Ouerdane, “Influence of photo-inscription conditions on the radiation-response of fiber Bragg gratings,” Opt. Express 23(7), 8659–8669 (2015).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

Boutillier, M.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

Cadier, B.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

Calderón, P. A.

I. Floris, S. Sales, P. A. Calderón, and J. M. Adam, “Measurement uncertainty of multicore optical fiber sensors used to sense curvature and bending direction,” Measurement 132, 35–46 (2019).
[Crossref]

Cannas, M.

Canning, J.

Caucheteur, C.

Cook, K.

Cotillard, R.

Decreton, M.

A. Gusarov, F. Berghmans, A. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Megret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

A. Gusarov, F. Berghmans, O. Deparis, A. Fernandez, Y. Defosse, P. Megret, M. Decreton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Defosse, Y.

A. Gusarov, F. Berghmans, A. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Megret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

A. Gusarov, F. Berghmans, O. Deparis, A. Fernandez, Y. Defosse, P. Megret, M. Decreton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Deparis, O.

A. Gusarov, F. Berghmans, A. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Megret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

A. Gusarov, F. Berghmans, O. Deparis, A. Fernandez, Y. Defosse, P. Megret, M. Decreton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Fernandez, A.

A. Gusarov, F. Berghmans, A. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Megret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

A. Gusarov, F. Berghmans, O. Deparis, A. Fernandez, Y. Defosse, P. Megret, M. Decreton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Finazzi, V.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged Optical Sensors Based on Regenerated Fiber Bragg Gratings for High Temperature Applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Flockhart, G. M. H.

Floris, I.

I. Floris, S. Sales, P. A. Calderón, and J. M. Adam, “Measurement uncertainty of multicore optical fiber sensors used to sense curvature and bending direction,” Measurement 132, 35–46 (2019).
[Crossref]

Gasulla, I.

D. Barrera, J. Hervás, I. Gasulla, and S. Sales, “Enhanced accuracy sensors using multicore optical fibres based on RFBGs for temperatures up to 1000°C,” Proc. SPIE 9916, 99161J (2016).
[Crossref]

D. Barrera, I. Gasulla, and S. Sales, “Multipoint Two-Dimensional Curvature Optical Fiber Sensor Based on a Nontwisted Homogeneous Four-Core Fiber,” J. Lightwave Technol. 33(12), 2445–2450 (2015).
[Crossref]

Geernaert, T.

Genot, J.

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

Girard, S.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

T. Blanchet, A. Morana, G. Laffont, R. Cotillard, E. Marin, A. Boukenter, Y. Ouerdane, and S. Girard, “Radiation Effects on Type I Fiber Bragg Gratings: Influence of Recoating and Irradiation Conditions,” J. Lightwave Technol. 36(4), 998–1004 (2018).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

A. Morana, S. Girard, E. Marin, M. Lancry, C. Marcandella, P. Paillet, L. Lablonde, T. Robin, R. J. Williams, M. J. Withford, A. Boukenter, and Y. Ouerdane, “Influence of photo-inscription conditions on the radiation-response of fiber Bragg gratings,” Opt. Express 23(7), 8659–8669 (2015).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

Grelin, J.

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

Gusarov, A.

A. Gusarov and S. K. Hoeffgen, “Radiation Effects on Fiber Gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
[Crossref]

A. Gusarov, F. Berghmans, A. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Megret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

A. Gusarov, F. Berghmans, O. Deparis, A. Fernandez, Y. Defosse, P. Megret, M. Decreton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Hervás, J.

D. Barrera, J. Hervás, I. Gasulla, and S. Sales, “Enhanced accuracy sensors using multicore optical fibres based on RFBGs for temperatures up to 1000°C,” Proc. SPIE 9916, 99161J (2016).
[Crossref]

Hoe, B. V.

Hoeffgen, S. K.

A. Gusarov and S. K. Hoeffgen, “Radiation Effects on Fiber Gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
[Crossref]

Huang, J.-Y.

Johnston, M.

M. Perry, P. Niewczas, and M. Johnston, “Effects of Neutron-Gamma Radiation on Fiber Bragg Grating Sensors: A Review,” IEEE Sens. J. 12(11), 3248–3257 (2012).
[Crossref]

Jones, J. D. C.

Kuhnhenn, J.

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

Lablonde, L.

Ladaci, A.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

Laffont, G.

Lancry, M.

Lindner, E.

Mace, J.-R.

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

Macé, J.-R.

Macpherson, W. N.

Marcandella, C.

Marin, E.

T. Blanchet, A. Morana, G. Laffont, R. Cotillard, E. Marin, A. Boukenter, Y. Ouerdane, and S. Girard, “Radiation Effects on Type I Fiber Bragg Gratings: Influence of Recoating and Irradiation Conditions,” J. Lightwave Technol. 36(4), 998–1004 (2018).
[Crossref]

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

A. Morana, S. Girard, E. Marin, M. Lancry, C. Marcandella, P. Paillet, L. Lablonde, T. Robin, R. J. Williams, M. J. Withford, A. Boukenter, and Y. Ouerdane, “Influence of photo-inscription conditions on the radiation-response of fiber Bragg gratings,” Opt. Express 23(7), 8659–8669 (2015).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

Martinez, A. B.

Megret, P.

A. Gusarov, F. Berghmans, A. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Megret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

A. Gusarov, F. Berghmans, O. Deparis, A. Fernandez, Y. Defosse, P. Megret, M. Decreton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Mekki, J.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

Melin, G.

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

Mescia, L.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

Moore, J. P.

Morana, A.

T. Blanchet, A. Morana, G. Laffont, R. Cotillard, E. Marin, A. Boukenter, Y. Ouerdane, and S. Girard, “Radiation Effects on Type I Fiber Bragg Gratings: Influence of Recoating and Irradiation Conditions,” J. Lightwave Technol. 36(4), 998–1004 (2018).
[Crossref]

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

A. Morana, S. Girard, E. Marin, M. Lancry, C. Marcandella, P. Paillet, L. Lablonde, T. Robin, R. J. Williams, M. J. Withford, A. Boukenter, and Y. Ouerdane, “Influence of photo-inscription conditions on the radiation-response of fiber Bragg gratings,” Opt. Express 23(7), 8659–8669 (2015).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

Niewczas, P.

M. Perry, P. Niewczas, and M. Johnston, “Effects of Neutron-Gamma Radiation on Fiber Bragg Grating Sensors: A Review,” IEEE Sens. J. 12(11), 3248–3257 (2012).
[Crossref]

Ouerdane, Y.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

T. Blanchet, A. Morana, G. Laffont, R. Cotillard, E. Marin, A. Boukenter, Y. Ouerdane, and S. Girard, “Radiation Effects on Type I Fiber Bragg Gratings: Influence of Recoating and Irradiation Conditions,” J. Lightwave Technol. 36(4), 998–1004 (2018).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

A. Morana, S. Girard, E. Marin, M. Lancry, C. Marcandella, P. Paillet, L. Lablonde, T. Robin, R. J. Williams, M. J. Withford, A. Boukenter, and Y. Ouerdane, “Influence of photo-inscription conditions on the radiation-response of fiber Bragg gratings,” Opt. Express 23(7), 8659–8669 (2015).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

Paillet, P.

Paveau, A.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

Perisse, J.

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

Périsse, J.

Perry, M.

M. Perry, P. Niewczas, and M. Johnston, “Effects of Neutron-Gamma Radiation on Fiber Bragg Grating Sensors: A Review,” IEEE Sens. J. 12(11), 3248–3257 (2012).
[Crossref]

Pruneri, V.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged Optical Sensors Based on Regenerated Fiber Bragg Gratings for High Temperature Applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Robin, T.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

A. Morana, S. Girard, E. Marin, M. Lancry, C. Marcandella, P. Paillet, L. Lablonde, T. Robin, R. J. Williams, M. J. Withford, A. Boukenter, and Y. Ouerdane, “Influence of photo-inscription conditions on the radiation-response of fiber Bragg gratings,” Opt. Express 23(7), 8659–8669 (2015).
[Crossref]

Rogge, M. D.

Roosbroeck, J. V.

Sales, S.

I. Floris, S. Sales, P. A. Calderón, and J. M. Adam, “Measurement uncertainty of multicore optical fiber sensors used to sense curvature and bending direction,” Measurement 132, 35–46 (2019).
[Crossref]

D. Barrera, J. Hervás, I. Gasulla, and S. Sales, “Enhanced accuracy sensors using multicore optical fibres based on RFBGs for temperatures up to 1000°C,” Proc. SPIE 9916, 99161J (2016).
[Crossref]

D. Barrera, I. Gasulla, and S. Sales, “Multipoint Two-Dimensional Curvature Optical Fiber Sensor Based on a Nontwisted Homogeneous Four-Core Fiber,” J. Lightwave Technol. 33(12), 2445–2450 (2015).
[Crossref]

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged Optical Sensors Based on Regenerated Fiber Bragg Gratings for High Temperature Applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Starodubov, D.

A. Gusarov, F. Berghmans, A. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Megret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

Stevenson, M.

Tosi, D.

D. Tosi, “Review and Analysis of Peak Tracking Techniques for Fiber Bragg Grating Sensors,” Sensors 17(10), 2368 (2017).
[Crossref]

Villatoro, J.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged Optical Sensors Based on Regenerated Fiber Bragg Gratings for High Temperature Applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Vlekken, J.

Weinand, U.

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

Williams, R. J.

Withford, M. J.

Zhang, L.

IEEE Photonics Technol. Lett. (1)

A. Gusarov, F. Berghmans, O. Deparis, A. Fernandez, Y. Defosse, P. Megret, M. Decreton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

IEEE Sens. J. (2)

M. Perry, P. Niewczas, and M. Johnston, “Effects of Neutron-Gamma Radiation on Fiber Bragg Grating Sensors: A Review,” IEEE Sens. J. 12(11), 3248–3257 (2012).
[Crossref]

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged Optical Sensors Based on Regenerated Fiber Bragg Gratings for High Temperature Applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

IEEE Trans. Nucl. Sci. (3)

A. Gusarov and S. K. Hoeffgen, “Radiation Effects on Fiber Gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64(8), 2307–2311 (2017).
[Crossref]

A. Gusarov, F. Berghmans, A. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Megret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

Measurement (1)

I. Floris, S. Sales, P. A. Calderón, and J. M. Adam, “Measurement uncertainty of multicore optical fiber sensors used to sense curvature and bending direction,” Measurement 132, 35–46 (2019).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (1)

D. Barrera, J. Hervás, I. Gasulla, and S. Sales, “Enhanced accuracy sensors using multicore optical fibres based on RFBGs for temperatures up to 1000°C,” Proc. SPIE 9916, 99161J (2016).
[Crossref]

Sensors (1)

D. Tosi, “Review and Analysis of Peak Tracking Techniques for Fiber Bragg Grating Sensors,” Sensors 17(10), 2368 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Description of the FBG array. (b) Core number scheme. (c) Drawing of the metallic support with the two FBG arrays coiled.
Fig. 2.
Fig. 2. FBG array spectrum in the central core. (a) Unloaded fiber. (b) Hydrogen-loaded fiber
Fig. 3.
Fig. 3. Description of the sensor location inside the irradiation chamber.
Fig. 4.
Fig. 4. FBG spectra at straight position, after coiling and after γ-irradiation in the unloaded sample. Core #3 is in the inner side of curvature whereas core #5 is in the external side.
Fig. 5.
Fig. 5. FBG spectra at straight position, after coiling and after γ-irradiation in the hydrogen-loaded sample. Core #5 is in the inner side of curvature whereas core #2 is in the external side.
Fig. 6.
Fig. 6. Curvature radius and direction before and after the irradiation. Unloaded fiber (a) and (b) and hydrogen-loaded fiber (c) and (d).

Tables (2)

Tables Icon

Table 1. Unloaded sample. Initial FBG wavelength (straight) and wavelength shifts (in pm) after bending (B) and after irradiation (I)

Tables Icon

Table 2. Hydrogen-loaded sample. Initial FBG wavelength (straight) and wavelength shifts (in pm) after bending (B) and after irradiation (I)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

κ a p p = i = 2 7 ε i d cos ( π 3 ( i 1 ) ) j ^ i = 2 7 ε i d sin ( π 3 ( i 1 ) ) k ^ ,
ε i = Δ λ i k i ,
κ = | κ a p p | 3 ,
r = 1 κ ,
θ = tan 1 ( κ a p p , k ^ κ a p p , j ^ ) + ϕ  where  ϕ = { 0 κ a p p , j ^ 0 π κ a p p , j ^ > 0 ,

Metrics