Abstract

A novel strategy for colorimetric and surface-enhanced Raman scattering (SERS) dual-mode sensing of the lead ions (Pb2+) was established based on gluconate ion (Gluc) modified and 2-Naphthalenethiol (2-NT) tagged Au-Ag core-shell nanoparticles (NPs). Due to the complex formation between adsorbed Gluc and Pb2+, the addition of Pb2+ can induce the aggregation of Gluc/2-NT@Au@Ag NPs. Correspondingly, the aggregated Gluc/2-NT@Au@Ag NPs caused a significant difference in the color and SERS intensity. As a result, such Gluc/2-NT@Au@Ag NPs can achieve the sensing of Pb2+ using both colorimetric and SERS signals as the indicator, which features with wide response range from 10−11 to 10−5 M, rapid screening and high sensitivity (with a limit of detection (LOD) of 0.185 pM). Furthermore, such dual-mode sensor was demonstrated not to be responsive to other cations, and facilitate the sensing of real samples in practical environment. With rapid screening ability and outstanding sensitivity, we anticipate that this method would holding great potential for the applications in environmental monitoring.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Construction of optimized Au@Ag core-shell nanorods for ultralow SERS detection of antibiotic levofloxacin molecules

Yue Tian, Guanhua Li, Hua Zhang, Linlin Xu, Anxin Jiao, Feng Chen, and Ming Chen
Opt. Express 26(18) 23347-23358 (2018)

Core-shell Au@Ag nanodendrites supported on TiO2 nanowires for blue laser beam-excited SERS-based pH sensing

Anxin Jiao, Hua Zhang, Linlin Xu, Yue Tian, Xiangdong Liu, Ming Chen, and Feng Chen
Opt. Express 27(17) 23981-23995 (2019)

Highly sensitive and selective optical sensor for lead ion detection based on liquid crystal decorated with DNAzyme

Xiaofang Niu, Yanjun Liu, Fei Wang, and Dan Luo
Opt. Express 27(21) 30421-30428 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. R. Flegal and D. R. Smith, “Current Needs for Increased Accuracy and Precision in Measurements of Low Levels of Lead in Blood,” Environ. Res. 58(1–2), 125–133 (1992).
    [Crossref]
  2. P. A. Meyer, T. Pivetz, T. A. Dignam, D. M. Homa, J. Schoonover, and D. Brody, “Surveillance for Elevated Blood Lead Levels Among Children — United States, 1997—2001,” MMWR Surveill Summ Morbidity and mortality weekly report. Surveillance summaries 52, 1–21 (2003).
  3. A. K. De, Environmental Chemistry, 3rd ed. (Royal Society of Chemistry, 2016)
  4. P. Chooto, P. Wararatananurak, and C. Innuphat, “Determination of trace levels of Pb(II) in tap water by anodic stripping voltammetry with boron-doped diamond electrode,” ScienceAsia 36(2), 150–156 (2010).
    [Crossref]
  5. B. P. Lanphear, K. Dietrich, P. Auinger, and C. Cox, “Cognitive Deficits Associated with Blood Lead Concentrations <10 pg/dL in US Children and Adolescents,” Public Health Reports 115(6), 521–529 (2000).
    [Crossref]
  6. W. H. Organization, Guidelines for Drinking Water Quality, vol. 1, 2nd ed.
  7. F. Kummrow, F. F. Silva, R. Kuno, A. L. Souza, and P. V. Oliveira, “Biomonitoring method for the simultaneous determination of cadmium and lead in whole blood by electrothermal atomic absorption spectrometry for assessment of environmental exposure,” Talanta 75(1), 246–252 (2008).
    [Crossref]
  8. D. Citak and M. Tuzen, “A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry,” Food Chem. Toxicol. 48(5), 1399–1404 (2010).
    [Crossref]
  9. Ş Tokalıoğlu, T. Oymak, and Ş Kartal, “Coprecipitation of lead and cadmium using copper(II) mercaptobenzothiazole prior to flame atomic absorption spectrometric determination,” Microchim. Acta 159(1–2), 133–139 (2007).
    [Crossref]
  10. V. L. Dressler, D. Pozebon, and A. J. Curtius, “Determination of heavy metals by inductively coupled plasma mass spectrometry after on-line separation and preconcentration,” Spectrochim. Acta, Part B 53(11), 1527–1539 (1998).
    [Crossref]
  11. L. Zhang, Z. Li, X. Du, R. Li, and X. Chang, “Simultaneous separation and preconcentration of Cr(III), Cu(II), Cd(II) and Pb(II) from environmental samples prior to inductively coupled plasma optical emission spectrometric determination,” Spectrochim. Acta, Part A 86, 443–448 (2012).
    [Crossref]
  12. H. R. Badiei, C. Liu, and V. Karanassios, “Taking part of the lab to the sample: On-site electrodeposition of Pb followed by measurement in a lab using electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry,” Microchem. J. 108, 131–136 (2013).
    [Crossref]
  13. L. Liang, F. Lan, S. Ge, J. Yu, N. Ren, and M. Yan, “Metal-Enhanced Ratiometric Fluorescence/Naked Eye Bimodal Biosensor for Lead Ions Analysis with Bifunctional Nanocomposite Probes,” Anal. Chem. 89(6), 3597–3605 (2017).
    [Crossref]
  14. Y. Wen, C. Peng, D. Li, L. Zhuo, S. He, L. Wang, Q. Huang, Q. H. Xu, and C. Fan, “Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range,” Chem. Commun. 47(22), 6278–6280 (2011).
    [Crossref]
  15. X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
    [Crossref]
  16. L. Wang, H. X. Cao, Y. S. He, C. G. Pan, T. K. Sun, X. Y. Zhang, C. Y. Wang, and G. X. Liang, “Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+,” Sens. Actuators, B 282, 78–84 (2019).
    [Crossref]
  17. B. Zhang and C. Wei, “Highly sensitive and selective detection of Pb(2+) using a turn-on fluorescent aptamer DNA silver nanoclusters sensor,” Talanta 182, 125–130 (2018).
    [Crossref]
  18. X. X. Song, H. Fu, P. Wang, H. Y. Li, Y. Q. Zhang, and C. C. Wang, “The selectively fluorescent sensing detection and adsorptive removal of Pb(2+) with a stable [delta-Mo8O26]-based hybrid,” J. Colloid Interface Sci. 532, 598–604 (2018).
    [Crossref]
  19. A. G. Memon, X. Zhou, Y. Xing, R. Wang, L. Liu, M. Khan, and M. He, “Label-free colorimetric nanosensor with improved sensitivity for Pb2 + in water by using a truncated 8–17 DNAzyme,” Front. Environ. Sci. Eng. 13(1), 12 (2019).
    [Crossref]
  20. M. Rong, J. Li, J. Hu, A. Chen, W. Wu, and J. Lyu, “A highly sensitive and colorimetric biosensor based on magnetic nano-DNAzyme for detection of lead (II) ion in real water samples,” J. Chem. Technol. Biotechnol. 93(11), 3254–3263 (2018).
    [Crossref]
  21. F. Sang, X. Li, Z. Zhang, J. Liu, and G. Chen, “Recyclable colorimetric sensor of Cr(3+) and Pb(2+) ions simultaneously using a zwitterionic amino acid modified gold nanoparticles,” Spectrochim. Acta, Part A 193, 109–116 (2018).
    [Crossref]
  22. Y. Guo, Z. Wang, W. Qu, H. Shao, and X. Jiang, “Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles,” Biosens. Bioelectron. 26(10), 4064–4069 (2011).
    [Crossref]
  23. O. Guselnikova, P. Postnikov, M. Erzina, Y. Kalachyova, V. Svorcík, and O. Lyutakov, “Pretreatment-free selective and reproducible SERS-based detection of heavy metal ions on DTPA functionalized plasmonic platform,” Sens. Actuators, B 253, 830–838 (2017).
    [Crossref]
  24. O. Guselnikova, P. Postnikov, A. Trelin, V. Švorčík, and O. Lyutakov, “Dual Mode Chip Enantioselective Express Discrimination of Chiral Amines via Wettability-Based Mobile Application and Portable Surface-Enhanced Raman Spectroscopy Measurements,” ACS Sens. 4(4), 1032–1039 (2019).
    [Crossref]
  25. M. S. Frost, M. J. Dempsey, and D. E. Whitehead, “Highly sensitive SERS detection of Pb 2+ ions in aqueous media using citrate functionalised gold nanoparticles,” Sens. Actuators, B 221, 1003–1008 (2015).
    [Crossref]
  26. C. Fu, W. Xu, H. Wang, H. Ding, L. Liang, M. Cong, and S. Xu, “DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced Raman scattering detection of lead ions via a particle-on-a-film hot spot construction,” Anal. Chem. 86(23), 11494–11497 (2014).
    [Crossref]
  27. Y. Shi, H. Wang, X. Jiang, B. Sun, B. Song, Y. Su, and Y. He, “Ultrasensitive, Specific, Recyclable, and Reproducible Detection of Lead Ions in Real Systems through a Polyadenine-Assisted, Surface-Enhanced Raman Scattering Silicon Chip,” Anal. Chem. 88(7), 3723–3729 (2016).
    [Crossref]
  28. Q. Zou, X. Li, T. Xue, J. Zheng, and Q. Su, “SERS detection of mercury (II)/lead (II): A new class of DNA logic gates,” Talanta 195, 497–505 (2019).
    [Crossref]
  29. A. N. Severyukhina, B. V. Parakhonskiy, E. S. Prikhozhdenko, D. A. Gorin, G. B. Sukhorukov, H. Mohwald, and A. M. Yashchenok, “Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules,” ACS Appl. Mater. Interfaces 7(28), 15466–15473 (2015).
    [Crossref]
  30. A. Pallagi, E. G. Bajnoczi, S. E. Canton, T. Bolin, G. Peintler, B. Kutus, Z. Kele, I. Palinko, and P. Sipos, “Multinuclear complex formation between Ca(II) and gluconate ions in hyperalkaline solutions,” Environ. Sci. Technol. 48(12), 6604–6611 (2014).
    [Crossref]
  31. Z. C. Zhang, G. Helms, S. B. Clark, G. Tian, P. L. Zanonato, and L. Rao, “Complexation of Uranium(VI) by Gluconate in Acidic Solutions: a Thermodynamic Study with Structural Analysis,” Inorg. Chem. 48(8), 3814–3824 (2009).
    [Crossref]
  32. D. Sawyer, “Metal-gluconate complexes,” Chem. Rev. 64(6), 633–643 (1964).
    [Crossref]
  33. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature (London), Phys. Sci. 241(105), 20–22 (1973).
    [Crossref]
  34. R. Choudhury and T. K. Misra, “Gluconate stabilized silver nanoparticles as a colorimetric sensor for Pb 2+,” Colloids Surf., A 545, 179–187 (2018).
    [Crossref]
  35. D.-K. Lim, I.-J. Kim, and J.-M. Nam, “DNA-embedded Au/Ag core–shell nanoparticles,” Chem. Commun. 129(42), 5312–5314 (2008).
    [Crossref]
  36. R. A. Alvarez-Puebla, D. S. Dos Santos, and R. F. Aroca, “Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols,” Anal. Chem. 129(12), 1251–1256 (2004).
    [Crossref]

2019 (4)

L. Wang, H. X. Cao, Y. S. He, C. G. Pan, T. K. Sun, X. Y. Zhang, C. Y. Wang, and G. X. Liang, “Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+,” Sens. Actuators, B 282, 78–84 (2019).
[Crossref]

A. G. Memon, X. Zhou, Y. Xing, R. Wang, L. Liu, M. Khan, and M. He, “Label-free colorimetric nanosensor with improved sensitivity for Pb2 + in water by using a truncated 8–17 DNAzyme,” Front. Environ. Sci. Eng. 13(1), 12 (2019).
[Crossref]

O. Guselnikova, P. Postnikov, A. Trelin, V. Švorčík, and O. Lyutakov, “Dual Mode Chip Enantioselective Express Discrimination of Chiral Amines via Wettability-Based Mobile Application and Portable Surface-Enhanced Raman Spectroscopy Measurements,” ACS Sens. 4(4), 1032–1039 (2019).
[Crossref]

Q. Zou, X. Li, T. Xue, J. Zheng, and Q. Su, “SERS detection of mercury (II)/lead (II): A new class of DNA logic gates,” Talanta 195, 497–505 (2019).
[Crossref]

2018 (5)

R. Choudhury and T. K. Misra, “Gluconate stabilized silver nanoparticles as a colorimetric sensor for Pb 2+,” Colloids Surf., A 545, 179–187 (2018).
[Crossref]

M. Rong, J. Li, J. Hu, A. Chen, W. Wu, and J. Lyu, “A highly sensitive and colorimetric biosensor based on magnetic nano-DNAzyme for detection of lead (II) ion in real water samples,” J. Chem. Technol. Biotechnol. 93(11), 3254–3263 (2018).
[Crossref]

F. Sang, X. Li, Z. Zhang, J. Liu, and G. Chen, “Recyclable colorimetric sensor of Cr(3+) and Pb(2+) ions simultaneously using a zwitterionic amino acid modified gold nanoparticles,” Spectrochim. Acta, Part A 193, 109–116 (2018).
[Crossref]

B. Zhang and C. Wei, “Highly sensitive and selective detection of Pb(2+) using a turn-on fluorescent aptamer DNA silver nanoclusters sensor,” Talanta 182, 125–130 (2018).
[Crossref]

X. X. Song, H. Fu, P. Wang, H. Y. Li, Y. Q. Zhang, and C. C. Wang, “The selectively fluorescent sensing detection and adsorptive removal of Pb(2+) with a stable [delta-Mo8O26]-based hybrid,” J. Colloid Interface Sci. 532, 598–604 (2018).
[Crossref]

2017 (2)

L. Liang, F. Lan, S. Ge, J. Yu, N. Ren, and M. Yan, “Metal-Enhanced Ratiometric Fluorescence/Naked Eye Bimodal Biosensor for Lead Ions Analysis with Bifunctional Nanocomposite Probes,” Anal. Chem. 89(6), 3597–3605 (2017).
[Crossref]

O. Guselnikova, P. Postnikov, M. Erzina, Y. Kalachyova, V. Svorcík, and O. Lyutakov, “Pretreatment-free selective and reproducible SERS-based detection of heavy metal ions on DTPA functionalized plasmonic platform,” Sens. Actuators, B 253, 830–838 (2017).
[Crossref]

2016 (1)

Y. Shi, H. Wang, X. Jiang, B. Sun, B. Song, Y. Su, and Y. He, “Ultrasensitive, Specific, Recyclable, and Reproducible Detection of Lead Ions in Real Systems through a Polyadenine-Assisted, Surface-Enhanced Raman Scattering Silicon Chip,” Anal. Chem. 88(7), 3723–3729 (2016).
[Crossref]

2015 (2)

M. S. Frost, M. J. Dempsey, and D. E. Whitehead, “Highly sensitive SERS detection of Pb 2+ ions in aqueous media using citrate functionalised gold nanoparticles,” Sens. Actuators, B 221, 1003–1008 (2015).
[Crossref]

A. N. Severyukhina, B. V. Parakhonskiy, E. S. Prikhozhdenko, D. A. Gorin, G. B. Sukhorukov, H. Mohwald, and A. M. Yashchenok, “Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules,” ACS Appl. Mater. Interfaces 7(28), 15466–15473 (2015).
[Crossref]

2014 (2)

A. Pallagi, E. G. Bajnoczi, S. E. Canton, T. Bolin, G. Peintler, B. Kutus, Z. Kele, I. Palinko, and P. Sipos, “Multinuclear complex formation between Ca(II) and gluconate ions in hyperalkaline solutions,” Environ. Sci. Technol. 48(12), 6604–6611 (2014).
[Crossref]

C. Fu, W. Xu, H. Wang, H. Ding, L. Liang, M. Cong, and S. Xu, “DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced Raman scattering detection of lead ions via a particle-on-a-film hot spot construction,” Anal. Chem. 86(23), 11494–11497 (2014).
[Crossref]

2013 (1)

H. R. Badiei, C. Liu, and V. Karanassios, “Taking part of the lab to the sample: On-site electrodeposition of Pb followed by measurement in a lab using electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry,” Microchem. J. 108, 131–136 (2013).
[Crossref]

2012 (1)

L. Zhang, Z. Li, X. Du, R. Li, and X. Chang, “Simultaneous separation and preconcentration of Cr(III), Cu(II), Cd(II) and Pb(II) from environmental samples prior to inductively coupled plasma optical emission spectrometric determination,” Spectrochim. Acta, Part A 86, 443–448 (2012).
[Crossref]

2011 (3)

Y. Wen, C. Peng, D. Li, L. Zhuo, S. He, L. Wang, Q. Huang, Q. H. Xu, and C. Fan, “Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range,” Chem. Commun. 47(22), 6278–6280 (2011).
[Crossref]

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Y. Guo, Z. Wang, W. Qu, H. Shao, and X. Jiang, “Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles,” Biosens. Bioelectron. 26(10), 4064–4069 (2011).
[Crossref]

2010 (2)

D. Citak and M. Tuzen, “A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry,” Food Chem. Toxicol. 48(5), 1399–1404 (2010).
[Crossref]

P. Chooto, P. Wararatananurak, and C. Innuphat, “Determination of trace levels of Pb(II) in tap water by anodic stripping voltammetry with boron-doped diamond electrode,” ScienceAsia 36(2), 150–156 (2010).
[Crossref]

2009 (1)

Z. C. Zhang, G. Helms, S. B. Clark, G. Tian, P. L. Zanonato, and L. Rao, “Complexation of Uranium(VI) by Gluconate in Acidic Solutions: a Thermodynamic Study with Structural Analysis,” Inorg. Chem. 48(8), 3814–3824 (2009).
[Crossref]

2008 (2)

D.-K. Lim, I.-J. Kim, and J.-M. Nam, “DNA-embedded Au/Ag core–shell nanoparticles,” Chem. Commun. 129(42), 5312–5314 (2008).
[Crossref]

F. Kummrow, F. F. Silva, R. Kuno, A. L. Souza, and P. V. Oliveira, “Biomonitoring method for the simultaneous determination of cadmium and lead in whole blood by electrothermal atomic absorption spectrometry for assessment of environmental exposure,” Talanta 75(1), 246–252 (2008).
[Crossref]

2007 (1)

Ş Tokalıoğlu, T. Oymak, and Ş Kartal, “Coprecipitation of lead and cadmium using copper(II) mercaptobenzothiazole prior to flame atomic absorption spectrometric determination,” Microchim. Acta 159(1–2), 133–139 (2007).
[Crossref]

2004 (1)

R. A. Alvarez-Puebla, D. S. Dos Santos, and R. F. Aroca, “Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols,” Anal. Chem. 129(12), 1251–1256 (2004).
[Crossref]

2003 (1)

P. A. Meyer, T. Pivetz, T. A. Dignam, D. M. Homa, J. Schoonover, and D. Brody, “Surveillance for Elevated Blood Lead Levels Among Children — United States, 1997—2001,” MMWR Surveill Summ Morbidity and mortality weekly report. Surveillance summaries 52, 1–21 (2003).

2000 (1)

B. P. Lanphear, K. Dietrich, P. Auinger, and C. Cox, “Cognitive Deficits Associated with Blood Lead Concentrations <10 pg/dL in US Children and Adolescents,” Public Health Reports 115(6), 521–529 (2000).
[Crossref]

1998 (1)

V. L. Dressler, D. Pozebon, and A. J. Curtius, “Determination of heavy metals by inductively coupled plasma mass spectrometry after on-line separation and preconcentration,” Spectrochim. Acta, Part B 53(11), 1527–1539 (1998).
[Crossref]

1992 (1)

A. R. Flegal and D. R. Smith, “Current Needs for Increased Accuracy and Precision in Measurements of Low Levels of Lead in Blood,” Environ. Res. 58(1–2), 125–133 (1992).
[Crossref]

1973 (1)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature (London), Phys. Sci. 241(105), 20–22 (1973).
[Crossref]

1964 (1)

D. Sawyer, “Metal-gluconate complexes,” Chem. Rev. 64(6), 633–643 (1964).
[Crossref]

Alvarez-Puebla, R. A.

R. A. Alvarez-Puebla, D. S. Dos Santos, and R. F. Aroca, “Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols,” Anal. Chem. 129(12), 1251–1256 (2004).
[Crossref]

Aroca, R. F.

R. A. Alvarez-Puebla, D. S. Dos Santos, and R. F. Aroca, “Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols,” Anal. Chem. 129(12), 1251–1256 (2004).
[Crossref]

Auinger, P.

B. P. Lanphear, K. Dietrich, P. Auinger, and C. Cox, “Cognitive Deficits Associated with Blood Lead Concentrations <10 pg/dL in US Children and Adolescents,” Public Health Reports 115(6), 521–529 (2000).
[Crossref]

Badiei, H. R.

H. R. Badiei, C. Liu, and V. Karanassios, “Taking part of the lab to the sample: On-site electrodeposition of Pb followed by measurement in a lab using electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry,” Microchem. J. 108, 131–136 (2013).
[Crossref]

Bajnoczi, E. G.

A. Pallagi, E. G. Bajnoczi, S. E. Canton, T. Bolin, G. Peintler, B. Kutus, Z. Kele, I. Palinko, and P. Sipos, “Multinuclear complex formation between Ca(II) and gluconate ions in hyperalkaline solutions,” Environ. Sci. Technol. 48(12), 6604–6611 (2014).
[Crossref]

Bolin, T.

A. Pallagi, E. G. Bajnoczi, S. E. Canton, T. Bolin, G. Peintler, B. Kutus, Z. Kele, I. Palinko, and P. Sipos, “Multinuclear complex formation between Ca(II) and gluconate ions in hyperalkaline solutions,” Environ. Sci. Technol. 48(12), 6604–6611 (2014).
[Crossref]

Brody, D.

P. A. Meyer, T. Pivetz, T. A. Dignam, D. M. Homa, J. Schoonover, and D. Brody, “Surveillance for Elevated Blood Lead Levels Among Children — United States, 1997—2001,” MMWR Surveill Summ Morbidity and mortality weekly report. Surveillance summaries 52, 1–21 (2003).

Canton, S. E.

A. Pallagi, E. G. Bajnoczi, S. E. Canton, T. Bolin, G. Peintler, B. Kutus, Z. Kele, I. Palinko, and P. Sipos, “Multinuclear complex formation between Ca(II) and gluconate ions in hyperalkaline solutions,” Environ. Sci. Technol. 48(12), 6604–6611 (2014).
[Crossref]

Cao, H. X.

L. Wang, H. X. Cao, Y. S. He, C. G. Pan, T. K. Sun, X. Y. Zhang, C. Y. Wang, and G. X. Liang, “Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+,” Sens. Actuators, B 282, 78–84 (2019).
[Crossref]

Chang, X.

L. Zhang, Z. Li, X. Du, R. Li, and X. Chang, “Simultaneous separation and preconcentration of Cr(III), Cu(II), Cd(II) and Pb(II) from environmental samples prior to inductively coupled plasma optical emission spectrometric determination,” Spectrochim. Acta, Part A 86, 443–448 (2012).
[Crossref]

Chen, A.

M. Rong, J. Li, J. Hu, A. Chen, W. Wu, and J. Lyu, “A highly sensitive and colorimetric biosensor based on magnetic nano-DNAzyme for detection of lead (II) ion in real water samples,” J. Chem. Technol. Biotechnol. 93(11), 3254–3263 (2018).
[Crossref]

Chen, G.

F. Sang, X. Li, Z. Zhang, J. Liu, and G. Chen, “Recyclable colorimetric sensor of Cr(3+) and Pb(2+) ions simultaneously using a zwitterionic amino acid modified gold nanoparticles,” Spectrochim. Acta, Part A 193, 109–116 (2018).
[Crossref]

Chooto, P.

P. Chooto, P. Wararatananurak, and C. Innuphat, “Determination of trace levels of Pb(II) in tap water by anodic stripping voltammetry with boron-doped diamond electrode,” ScienceAsia 36(2), 150–156 (2010).
[Crossref]

Choudhury, R.

R. Choudhury and T. K. Misra, “Gluconate stabilized silver nanoparticles as a colorimetric sensor for Pb 2+,” Colloids Surf., A 545, 179–187 (2018).
[Crossref]

Citak, D.

D. Citak and M. Tuzen, “A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry,” Food Chem. Toxicol. 48(5), 1399–1404 (2010).
[Crossref]

Clark, S. B.

Z. C. Zhang, G. Helms, S. B. Clark, G. Tian, P. L. Zanonato, and L. Rao, “Complexation of Uranium(VI) by Gluconate in Acidic Solutions: a Thermodynamic Study with Structural Analysis,” Inorg. Chem. 48(8), 3814–3824 (2009).
[Crossref]

Cong, M.

C. Fu, W. Xu, H. Wang, H. Ding, L. Liang, M. Cong, and S. Xu, “DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced Raman scattering detection of lead ions via a particle-on-a-film hot spot construction,” Anal. Chem. 86(23), 11494–11497 (2014).
[Crossref]

Cox, C.

B. P. Lanphear, K. Dietrich, P. Auinger, and C. Cox, “Cognitive Deficits Associated with Blood Lead Concentrations <10 pg/dL in US Children and Adolescents,” Public Health Reports 115(6), 521–529 (2000).
[Crossref]

Curtius, A. J.

V. L. Dressler, D. Pozebon, and A. J. Curtius, “Determination of heavy metals by inductively coupled plasma mass spectrometry after on-line separation and preconcentration,” Spectrochim. Acta, Part B 53(11), 1527–1539 (1998).
[Crossref]

De, A. K.

A. K. De, Environmental Chemistry, 3rd ed. (Royal Society of Chemistry, 2016)

Dempsey, M. J.

M. S. Frost, M. J. Dempsey, and D. E. Whitehead, “Highly sensitive SERS detection of Pb 2+ ions in aqueous media using citrate functionalised gold nanoparticles,” Sens. Actuators, B 221, 1003–1008 (2015).
[Crossref]

Dietrich, K.

B. P. Lanphear, K. Dietrich, P. Auinger, and C. Cox, “Cognitive Deficits Associated with Blood Lead Concentrations <10 pg/dL in US Children and Adolescents,” Public Health Reports 115(6), 521–529 (2000).
[Crossref]

Dignam, T. A.

P. A. Meyer, T. Pivetz, T. A. Dignam, D. M. Homa, J. Schoonover, and D. Brody, “Surveillance for Elevated Blood Lead Levels Among Children — United States, 1997—2001,” MMWR Surveill Summ Morbidity and mortality weekly report. Surveillance summaries 52, 1–21 (2003).

Ding, H.

C. Fu, W. Xu, H. Wang, H. Ding, L. Liang, M. Cong, and S. Xu, “DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced Raman scattering detection of lead ions via a particle-on-a-film hot spot construction,” Anal. Chem. 86(23), 11494–11497 (2014).
[Crossref]

Dos Santos, D. S.

R. A. Alvarez-Puebla, D. S. Dos Santos, and R. F. Aroca, “Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols,” Anal. Chem. 129(12), 1251–1256 (2004).
[Crossref]

Dressler, V. L.

V. L. Dressler, D. Pozebon, and A. J. Curtius, “Determination of heavy metals by inductively coupled plasma mass spectrometry after on-line separation and preconcentration,” Spectrochim. Acta, Part B 53(11), 1527–1539 (1998).
[Crossref]

Du, X.

L. Zhang, Z. Li, X. Du, R. Li, and X. Chang, “Simultaneous separation and preconcentration of Cr(III), Cu(II), Cd(II) and Pb(II) from environmental samples prior to inductively coupled plasma optical emission spectrometric determination,” Spectrochim. Acta, Part A 86, 443–448 (2012).
[Crossref]

Erzina, M.

O. Guselnikova, P. Postnikov, M. Erzina, Y. Kalachyova, V. Svorcík, and O. Lyutakov, “Pretreatment-free selective and reproducible SERS-based detection of heavy metal ions on DTPA functionalized plasmonic platform,” Sens. Actuators, B 253, 830–838 (2017).
[Crossref]

Fan, C.

Y. Wen, C. Peng, D. Li, L. Zhuo, S. He, L. Wang, Q. Huang, Q. H. Xu, and C. Fan, “Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range,” Chem. Commun. 47(22), 6278–6280 (2011).
[Crossref]

Flegal, A. R.

A. R. Flegal and D. R. Smith, “Current Needs for Increased Accuracy and Precision in Measurements of Low Levels of Lead in Blood,” Environ. Res. 58(1–2), 125–133 (1992).
[Crossref]

Frens, G.

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature (London), Phys. Sci. 241(105), 20–22 (1973).
[Crossref]

Frost, M. S.

M. S. Frost, M. J. Dempsey, and D. E. Whitehead, “Highly sensitive SERS detection of Pb 2+ ions in aqueous media using citrate functionalised gold nanoparticles,” Sens. Actuators, B 221, 1003–1008 (2015).
[Crossref]

Fu, C.

C. Fu, W. Xu, H. Wang, H. Ding, L. Liang, M. Cong, and S. Xu, “DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced Raman scattering detection of lead ions via a particle-on-a-film hot spot construction,” Anal. Chem. 86(23), 11494–11497 (2014).
[Crossref]

Fu, H.

X. X. Song, H. Fu, P. Wang, H. Y. Li, Y. Q. Zhang, and C. C. Wang, “The selectively fluorescent sensing detection and adsorptive removal of Pb(2+) with a stable [delta-Mo8O26]-based hybrid,” J. Colloid Interface Sci. 532, 598–604 (2018).
[Crossref]

Ge, S.

L. Liang, F. Lan, S. Ge, J. Yu, N. Ren, and M. Yan, “Metal-Enhanced Ratiometric Fluorescence/Naked Eye Bimodal Biosensor for Lead Ions Analysis with Bifunctional Nanocomposite Probes,” Anal. Chem. 89(6), 3597–3605 (2017).
[Crossref]

Gorin, D. A.

A. N. Severyukhina, B. V. Parakhonskiy, E. S. Prikhozhdenko, D. A. Gorin, G. B. Sukhorukov, H. Mohwald, and A. M. Yashchenok, “Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules,” ACS Appl. Mater. Interfaces 7(28), 15466–15473 (2015).
[Crossref]

Guo, Y.

Y. Guo, Z. Wang, W. Qu, H. Shao, and X. Jiang, “Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles,” Biosens. Bioelectron. 26(10), 4064–4069 (2011).
[Crossref]

Guselnikova, O.

O. Guselnikova, P. Postnikov, A. Trelin, V. Švorčík, and O. Lyutakov, “Dual Mode Chip Enantioselective Express Discrimination of Chiral Amines via Wettability-Based Mobile Application and Portable Surface-Enhanced Raman Spectroscopy Measurements,” ACS Sens. 4(4), 1032–1039 (2019).
[Crossref]

O. Guselnikova, P. Postnikov, M. Erzina, Y. Kalachyova, V. Svorcík, and O. Lyutakov, “Pretreatment-free selective and reproducible SERS-based detection of heavy metal ions on DTPA functionalized plasmonic platform,” Sens. Actuators, B 253, 830–838 (2017).
[Crossref]

He, M.

A. G. Memon, X. Zhou, Y. Xing, R. Wang, L. Liu, M. Khan, and M. He, “Label-free colorimetric nanosensor with improved sensitivity for Pb2 + in water by using a truncated 8–17 DNAzyme,” Front. Environ. Sci. Eng. 13(1), 12 (2019).
[Crossref]

He, S.

Y. Wen, C. Peng, D. Li, L. Zhuo, S. He, L. Wang, Q. Huang, Q. H. Xu, and C. Fan, “Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range,” Chem. Commun. 47(22), 6278–6280 (2011).
[Crossref]

He, Y.

Y. Shi, H. Wang, X. Jiang, B. Sun, B. Song, Y. Su, and Y. He, “Ultrasensitive, Specific, Recyclable, and Reproducible Detection of Lead Ions in Real Systems through a Polyadenine-Assisted, Surface-Enhanced Raman Scattering Silicon Chip,” Anal. Chem. 88(7), 3723–3729 (2016).
[Crossref]

He, Y. S.

L. Wang, H. X. Cao, Y. S. He, C. G. Pan, T. K. Sun, X. Y. Zhang, C. Y. Wang, and G. X. Liang, “Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+,” Sens. Actuators, B 282, 78–84 (2019).
[Crossref]

Helms, G.

Z. C. Zhang, G. Helms, S. B. Clark, G. Tian, P. L. Zanonato, and L. Rao, “Complexation of Uranium(VI) by Gluconate in Acidic Solutions: a Thermodynamic Study with Structural Analysis,” Inorg. Chem. 48(8), 3814–3824 (2009).
[Crossref]

Homa, D. M.

P. A. Meyer, T. Pivetz, T. A. Dignam, D. M. Homa, J. Schoonover, and D. Brody, “Surveillance for Elevated Blood Lead Levels Among Children — United States, 1997—2001,” MMWR Surveill Summ Morbidity and mortality weekly report. Surveillance summaries 52, 1–21 (2003).

Hu, J.

M. Rong, J. Li, J. Hu, A. Chen, W. Wu, and J. Lyu, “A highly sensitive and colorimetric biosensor based on magnetic nano-DNAzyme for detection of lead (II) ion in real water samples,” J. Chem. Technol. Biotechnol. 93(11), 3254–3263 (2018).
[Crossref]

Huang, Q.

Y. Wen, C. Peng, D. Li, L. Zhuo, S. He, L. Wang, Q. Huang, Q. H. Xu, and C. Fan, “Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range,” Chem. Commun. 47(22), 6278–6280 (2011).
[Crossref]

Innuphat, C.

P. Chooto, P. Wararatananurak, and C. Innuphat, “Determination of trace levels of Pb(II) in tap water by anodic stripping voltammetry with boron-doped diamond electrode,” ScienceAsia 36(2), 150–156 (2010).
[Crossref]

Jiang, X.

Y. Shi, H. Wang, X. Jiang, B. Sun, B. Song, Y. Su, and Y. He, “Ultrasensitive, Specific, Recyclable, and Reproducible Detection of Lead Ions in Real Systems through a Polyadenine-Assisted, Surface-Enhanced Raman Scattering Silicon Chip,” Anal. Chem. 88(7), 3723–3729 (2016).
[Crossref]

Y. Guo, Z. Wang, W. Qu, H. Shao, and X. Jiang, “Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles,” Biosens. Bioelectron. 26(10), 4064–4069 (2011).
[Crossref]

Kalachyova, Y.

O. Guselnikova, P. Postnikov, M. Erzina, Y. Kalachyova, V. Svorcík, and O. Lyutakov, “Pretreatment-free selective and reproducible SERS-based detection of heavy metal ions on DTPA functionalized plasmonic platform,” Sens. Actuators, B 253, 830–838 (2017).
[Crossref]

Karanassios, V.

H. R. Badiei, C. Liu, and V. Karanassios, “Taking part of the lab to the sample: On-site electrodeposition of Pb followed by measurement in a lab using electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry,” Microchem. J. 108, 131–136 (2013).
[Crossref]

Kartal, S

Ş Tokalıoğlu, T. Oymak, and Ş Kartal, “Coprecipitation of lead and cadmium using copper(II) mercaptobenzothiazole prior to flame atomic absorption spectrometric determination,” Microchim. Acta 159(1–2), 133–139 (2007).
[Crossref]

Kele, Z.

A. Pallagi, E. G. Bajnoczi, S. E. Canton, T. Bolin, G. Peintler, B. Kutus, Z. Kele, I. Palinko, and P. Sipos, “Multinuclear complex formation between Ca(II) and gluconate ions in hyperalkaline solutions,” Environ. Sci. Technol. 48(12), 6604–6611 (2014).
[Crossref]

Khan, M.

A. G. Memon, X. Zhou, Y. Xing, R. Wang, L. Liu, M. Khan, and M. He, “Label-free colorimetric nanosensor with improved sensitivity for Pb2 + in water by using a truncated 8–17 DNAzyme,” Front. Environ. Sci. Eng. 13(1), 12 (2019).
[Crossref]

Kim, I.-J.

D.-K. Lim, I.-J. Kim, and J.-M. Nam, “DNA-embedded Au/Ag core–shell nanoparticles,” Chem. Commun. 129(42), 5312–5314 (2008).
[Crossref]

Kong, R. M.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Kummrow, F.

F. Kummrow, F. F. Silva, R. Kuno, A. L. Souza, and P. V. Oliveira, “Biomonitoring method for the simultaneous determination of cadmium and lead in whole blood by electrothermal atomic absorption spectrometry for assessment of environmental exposure,” Talanta 75(1), 246–252 (2008).
[Crossref]

Kuno, R.

F. Kummrow, F. F. Silva, R. Kuno, A. L. Souza, and P. V. Oliveira, “Biomonitoring method for the simultaneous determination of cadmium and lead in whole blood by electrothermal atomic absorption spectrometry for assessment of environmental exposure,” Talanta 75(1), 246–252 (2008).
[Crossref]

Kutus, B.

A. Pallagi, E. G. Bajnoczi, S. E. Canton, T. Bolin, G. Peintler, B. Kutus, Z. Kele, I. Palinko, and P. Sipos, “Multinuclear complex formation between Ca(II) and gluconate ions in hyperalkaline solutions,” Environ. Sci. Technol. 48(12), 6604–6611 (2014).
[Crossref]

Lan, F.

L. Liang, F. Lan, S. Ge, J. Yu, N. Ren, and M. Yan, “Metal-Enhanced Ratiometric Fluorescence/Naked Eye Bimodal Biosensor for Lead Ions Analysis with Bifunctional Nanocomposite Probes,” Anal. Chem. 89(6), 3597–3605 (2017).
[Crossref]

Lanphear, B. P.

B. P. Lanphear, K. Dietrich, P. Auinger, and C. Cox, “Cognitive Deficits Associated with Blood Lead Concentrations <10 pg/dL in US Children and Adolescents,” Public Health Reports 115(6), 521–529 (2000).
[Crossref]

Li, D.

Y. Wen, C. Peng, D. Li, L. Zhuo, S. He, L. Wang, Q. Huang, Q. H. Xu, and C. Fan, “Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range,” Chem. Commun. 47(22), 6278–6280 (2011).
[Crossref]

Li, H. Y.

X. X. Song, H. Fu, P. Wang, H. Y. Li, Y. Q. Zhang, and C. C. Wang, “The selectively fluorescent sensing detection and adsorptive removal of Pb(2+) with a stable [delta-Mo8O26]-based hybrid,” J. Colloid Interface Sci. 532, 598–604 (2018).
[Crossref]

Li, J.

M. Rong, J. Li, J. Hu, A. Chen, W. Wu, and J. Lyu, “A highly sensitive and colorimetric biosensor based on magnetic nano-DNAzyme for detection of lead (II) ion in real water samples,” J. Chem. Technol. Biotechnol. 93(11), 3254–3263 (2018).
[Crossref]

Li, R.

L. Zhang, Z. Li, X. Du, R. Li, and X. Chang, “Simultaneous separation and preconcentration of Cr(III), Cu(II), Cd(II) and Pb(II) from environmental samples prior to inductively coupled plasma optical emission spectrometric determination,” Spectrochim. Acta, Part A 86, 443–448 (2012).
[Crossref]

Li, X.

Q. Zou, X. Li, T. Xue, J. Zheng, and Q. Su, “SERS detection of mercury (II)/lead (II): A new class of DNA logic gates,” Talanta 195, 497–505 (2019).
[Crossref]

F. Sang, X. Li, Z. Zhang, J. Liu, and G. Chen, “Recyclable colorimetric sensor of Cr(3+) and Pb(2+) ions simultaneously using a zwitterionic amino acid modified gold nanoparticles,” Spectrochim. Acta, Part A 193, 109–116 (2018).
[Crossref]

Li, Z.

L. Zhang, Z. Li, X. Du, R. Li, and X. Chang, “Simultaneous separation and preconcentration of Cr(III), Cu(II), Cd(II) and Pb(II) from environmental samples prior to inductively coupled plasma optical emission spectrometric determination,” Spectrochim. Acta, Part A 86, 443–448 (2012).
[Crossref]

Liang, G. X.

L. Wang, H. X. Cao, Y. S. He, C. G. Pan, T. K. Sun, X. Y. Zhang, C. Y. Wang, and G. X. Liang, “Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+,” Sens. Actuators, B 282, 78–84 (2019).
[Crossref]

Liang, L.

L. Liang, F. Lan, S. Ge, J. Yu, N. Ren, and M. Yan, “Metal-Enhanced Ratiometric Fluorescence/Naked Eye Bimodal Biosensor for Lead Ions Analysis with Bifunctional Nanocomposite Probes,” Anal. Chem. 89(6), 3597–3605 (2017).
[Crossref]

C. Fu, W. Xu, H. Wang, H. Ding, L. Liang, M. Cong, and S. Xu, “DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced Raman scattering detection of lead ions via a particle-on-a-film hot spot construction,” Anal. Chem. 86(23), 11494–11497 (2014).
[Crossref]

Lim, D.-K.

D.-K. Lim, I.-J. Kim, and J.-M. Nam, “DNA-embedded Au/Ag core–shell nanoparticles,” Chem. Commun. 129(42), 5312–5314 (2008).
[Crossref]

Liu, C.

H. R. Badiei, C. Liu, and V. Karanassios, “Taking part of the lab to the sample: On-site electrodeposition of Pb followed by measurement in a lab using electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry,” Microchem. J. 108, 131–136 (2013).
[Crossref]

Liu, J.

F. Sang, X. Li, Z. Zhang, J. Liu, and G. Chen, “Recyclable colorimetric sensor of Cr(3+) and Pb(2+) ions simultaneously using a zwitterionic amino acid modified gold nanoparticles,” Spectrochim. Acta, Part A 193, 109–116 (2018).
[Crossref]

Liu, L.

A. G. Memon, X. Zhou, Y. Xing, R. Wang, L. Liu, M. Khan, and M. He, “Label-free colorimetric nanosensor with improved sensitivity for Pb2 + in water by using a truncated 8–17 DNAzyme,” Front. Environ. Sci. Eng. 13(1), 12 (2019).
[Crossref]

Liu, W. N.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Lyu, J.

M. Rong, J. Li, J. Hu, A. Chen, W. Wu, and J. Lyu, “A highly sensitive and colorimetric biosensor based on magnetic nano-DNAzyme for detection of lead (II) ion in real water samples,” J. Chem. Technol. Biotechnol. 93(11), 3254–3263 (2018).
[Crossref]

Lyutakov, O.

O. Guselnikova, P. Postnikov, A. Trelin, V. Švorčík, and O. Lyutakov, “Dual Mode Chip Enantioselective Express Discrimination of Chiral Amines via Wettability-Based Mobile Application and Portable Surface-Enhanced Raman Spectroscopy Measurements,” ACS Sens. 4(4), 1032–1039 (2019).
[Crossref]

O. Guselnikova, P. Postnikov, M. Erzina, Y. Kalachyova, V. Svorcík, and O. Lyutakov, “Pretreatment-free selective and reproducible SERS-based detection of heavy metal ions on DTPA functionalized plasmonic platform,” Sens. Actuators, B 253, 830–838 (2017).
[Crossref]

Memon, A. G.

A. G. Memon, X. Zhou, Y. Xing, R. Wang, L. Liu, M. Khan, and M. He, “Label-free colorimetric nanosensor with improved sensitivity for Pb2 + in water by using a truncated 8–17 DNAzyme,” Front. Environ. Sci. Eng. 13(1), 12 (2019).
[Crossref]

Meng, H. M.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Meyer, P. A.

P. A. Meyer, T. Pivetz, T. A. Dignam, D. M. Homa, J. Schoonover, and D. Brody, “Surveillance for Elevated Blood Lead Levels Among Children — United States, 1997—2001,” MMWR Surveill Summ Morbidity and mortality weekly report. Surveillance summaries 52, 1–21 (2003).

Misra, T. K.

R. Choudhury and T. K. Misra, “Gluconate stabilized silver nanoparticles as a colorimetric sensor for Pb 2+,” Colloids Surf., A 545, 179–187 (2018).
[Crossref]

Mohwald, H.

A. N. Severyukhina, B. V. Parakhonskiy, E. S. Prikhozhdenko, D. A. Gorin, G. B. Sukhorukov, H. Mohwald, and A. M. Yashchenok, “Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules,” ACS Appl. Mater. Interfaces 7(28), 15466–15473 (2015).
[Crossref]

Nam, J.-M.

D.-K. Lim, I.-J. Kim, and J.-M. Nam, “DNA-embedded Au/Ag core–shell nanoparticles,” Chem. Commun. 129(42), 5312–5314 (2008).
[Crossref]

Oliveira, P. V.

F. Kummrow, F. F. Silva, R. Kuno, A. L. Souza, and P. V. Oliveira, “Biomonitoring method for the simultaneous determination of cadmium and lead in whole blood by electrothermal atomic absorption spectrometry for assessment of environmental exposure,” Talanta 75(1), 246–252 (2008).
[Crossref]

Oymak, T.

Ş Tokalıoğlu, T. Oymak, and Ş Kartal, “Coprecipitation of lead and cadmium using copper(II) mercaptobenzothiazole prior to flame atomic absorption spectrometric determination,” Microchim. Acta 159(1–2), 133–139 (2007).
[Crossref]

Palinko, I.

A. Pallagi, E. G. Bajnoczi, S. E. Canton, T. Bolin, G. Peintler, B. Kutus, Z. Kele, I. Palinko, and P. Sipos, “Multinuclear complex formation between Ca(II) and gluconate ions in hyperalkaline solutions,” Environ. Sci. Technol. 48(12), 6604–6611 (2014).
[Crossref]

Pallagi, A.

A. Pallagi, E. G. Bajnoczi, S. E. Canton, T. Bolin, G. Peintler, B. Kutus, Z. Kele, I. Palinko, and P. Sipos, “Multinuclear complex formation between Ca(II) and gluconate ions in hyperalkaline solutions,” Environ. Sci. Technol. 48(12), 6604–6611 (2014).
[Crossref]

Pan, C. G.

L. Wang, H. X. Cao, Y. S. He, C. G. Pan, T. K. Sun, X. Y. Zhang, C. Y. Wang, and G. X. Liang, “Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+,” Sens. Actuators, B 282, 78–84 (2019).
[Crossref]

Parakhonskiy, B. V.

A. N. Severyukhina, B. V. Parakhonskiy, E. S. Prikhozhdenko, D. A. Gorin, G. B. Sukhorukov, H. Mohwald, and A. M. Yashchenok, “Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules,” ACS Appl. Mater. Interfaces 7(28), 15466–15473 (2015).
[Crossref]

Peintler, G.

A. Pallagi, E. G. Bajnoczi, S. E. Canton, T. Bolin, G. Peintler, B. Kutus, Z. Kele, I. Palinko, and P. Sipos, “Multinuclear complex formation between Ca(II) and gluconate ions in hyperalkaline solutions,” Environ. Sci. Technol. 48(12), 6604–6611 (2014).
[Crossref]

Peng, C.

Y. Wen, C. Peng, D. Li, L. Zhuo, S. He, L. Wang, Q. Huang, Q. H. Xu, and C. Fan, “Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range,” Chem. Commun. 47(22), 6278–6280 (2011).
[Crossref]

Pivetz, T.

P. A. Meyer, T. Pivetz, T. A. Dignam, D. M. Homa, J. Schoonover, and D. Brody, “Surveillance for Elevated Blood Lead Levels Among Children — United States, 1997—2001,” MMWR Surveill Summ Morbidity and mortality weekly report. Surveillance summaries 52, 1–21 (2003).

Postnikov, P.

O. Guselnikova, P. Postnikov, A. Trelin, V. Švorčík, and O. Lyutakov, “Dual Mode Chip Enantioselective Express Discrimination of Chiral Amines via Wettability-Based Mobile Application and Portable Surface-Enhanced Raman Spectroscopy Measurements,” ACS Sens. 4(4), 1032–1039 (2019).
[Crossref]

O. Guselnikova, P. Postnikov, M. Erzina, Y. Kalachyova, V. Svorcík, and O. Lyutakov, “Pretreatment-free selective and reproducible SERS-based detection of heavy metal ions on DTPA functionalized plasmonic platform,” Sens. Actuators, B 253, 830–838 (2017).
[Crossref]

Pozebon, D.

V. L. Dressler, D. Pozebon, and A. J. Curtius, “Determination of heavy metals by inductively coupled plasma mass spectrometry after on-line separation and preconcentration,” Spectrochim. Acta, Part B 53(11), 1527–1539 (1998).
[Crossref]

Prikhozhdenko, E. S.

A. N. Severyukhina, B. V. Parakhonskiy, E. S. Prikhozhdenko, D. A. Gorin, G. B. Sukhorukov, H. Mohwald, and A. M. Yashchenok, “Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules,” ACS Appl. Mater. Interfaces 7(28), 15466–15473 (2015).
[Crossref]

Qu, W.

Y. Guo, Z. Wang, W. Qu, H. Shao, and X. Jiang, “Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles,” Biosens. Bioelectron. 26(10), 4064–4069 (2011).
[Crossref]

Rao, L.

Z. C. Zhang, G. Helms, S. B. Clark, G. Tian, P. L. Zanonato, and L. Rao, “Complexation of Uranium(VI) by Gluconate in Acidic Solutions: a Thermodynamic Study with Structural Analysis,” Inorg. Chem. 48(8), 3814–3824 (2009).
[Crossref]

Ren, N.

L. Liang, F. Lan, S. Ge, J. Yu, N. Ren, and M. Yan, “Metal-Enhanced Ratiometric Fluorescence/Naked Eye Bimodal Biosensor for Lead Ions Analysis with Bifunctional Nanocomposite Probes,” Anal. Chem. 89(6), 3597–3605 (2017).
[Crossref]

Rong, M.

M. Rong, J. Li, J. Hu, A. Chen, W. Wu, and J. Lyu, “A highly sensitive and colorimetric biosensor based on magnetic nano-DNAzyme for detection of lead (II) ion in real water samples,” J. Chem. Technol. Biotechnol. 93(11), 3254–3263 (2018).
[Crossref]

Sang, F.

F. Sang, X. Li, Z. Zhang, J. Liu, and G. Chen, “Recyclable colorimetric sensor of Cr(3+) and Pb(2+) ions simultaneously using a zwitterionic amino acid modified gold nanoparticles,” Spectrochim. Acta, Part A 193, 109–116 (2018).
[Crossref]

Sawyer, D.

D. Sawyer, “Metal-gluconate complexes,” Chem. Rev. 64(6), 633–643 (1964).
[Crossref]

Schoonover, J.

P. A. Meyer, T. Pivetz, T. A. Dignam, D. M. Homa, J. Schoonover, and D. Brody, “Surveillance for Elevated Blood Lead Levels Among Children — United States, 1997—2001,” MMWR Surveill Summ Morbidity and mortality weekly report. Surveillance summaries 52, 1–21 (2003).

Severyukhina, A. N.

A. N. Severyukhina, B. V. Parakhonskiy, E. S. Prikhozhdenko, D. A. Gorin, G. B. Sukhorukov, H. Mohwald, and A. M. Yashchenok, “Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules,” ACS Appl. Mater. Interfaces 7(28), 15466–15473 (2015).
[Crossref]

Shao, H.

Y. Guo, Z. Wang, W. Qu, H. Shao, and X. Jiang, “Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles,” Biosens. Bioelectron. 26(10), 4064–4069 (2011).
[Crossref]

Shen, G. L.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Shi, Y.

Y. Shi, H. Wang, X. Jiang, B. Sun, B. Song, Y. Su, and Y. He, “Ultrasensitive, Specific, Recyclable, and Reproducible Detection of Lead Ions in Real Systems through a Polyadenine-Assisted, Surface-Enhanced Raman Scattering Silicon Chip,” Anal. Chem. 88(7), 3723–3729 (2016).
[Crossref]

Silva, F. F.

F. Kummrow, F. F. Silva, R. Kuno, A. L. Souza, and P. V. Oliveira, “Biomonitoring method for the simultaneous determination of cadmium and lead in whole blood by electrothermal atomic absorption spectrometry for assessment of environmental exposure,” Talanta 75(1), 246–252 (2008).
[Crossref]

Sipos, P.

A. Pallagi, E. G. Bajnoczi, S. E. Canton, T. Bolin, G. Peintler, B. Kutus, Z. Kele, I. Palinko, and P. Sipos, “Multinuclear complex formation between Ca(II) and gluconate ions in hyperalkaline solutions,” Environ. Sci. Technol. 48(12), 6604–6611 (2014).
[Crossref]

Smith, D. R.

A. R. Flegal and D. R. Smith, “Current Needs for Increased Accuracy and Precision in Measurements of Low Levels of Lead in Blood,” Environ. Res. 58(1–2), 125–133 (1992).
[Crossref]

Song, B.

Y. Shi, H. Wang, X. Jiang, B. Sun, B. Song, Y. Su, and Y. He, “Ultrasensitive, Specific, Recyclable, and Reproducible Detection of Lead Ions in Real Systems through a Polyadenine-Assisted, Surface-Enhanced Raman Scattering Silicon Chip,” Anal. Chem. 88(7), 3723–3729 (2016).
[Crossref]

Song, X. X.

X. X. Song, H. Fu, P. Wang, H. Y. Li, Y. Q. Zhang, and C. C. Wang, “The selectively fluorescent sensing detection and adsorptive removal of Pb(2+) with a stable [delta-Mo8O26]-based hybrid,” J. Colloid Interface Sci. 532, 598–604 (2018).
[Crossref]

Souza, A. L.

F. Kummrow, F. F. Silva, R. Kuno, A. L. Souza, and P. V. Oliveira, “Biomonitoring method for the simultaneous determination of cadmium and lead in whole blood by electrothermal atomic absorption spectrometry for assessment of environmental exposure,” Talanta 75(1), 246–252 (2008).
[Crossref]

Su, Q.

Q. Zou, X. Li, T. Xue, J. Zheng, and Q. Su, “SERS detection of mercury (II)/lead (II): A new class of DNA logic gates,” Talanta 195, 497–505 (2019).
[Crossref]

Su, Y.

Y. Shi, H. Wang, X. Jiang, B. Sun, B. Song, Y. Su, and Y. He, “Ultrasensitive, Specific, Recyclable, and Reproducible Detection of Lead Ions in Real Systems through a Polyadenine-Assisted, Surface-Enhanced Raman Scattering Silicon Chip,” Anal. Chem. 88(7), 3723–3729 (2016).
[Crossref]

Sukhorukov, G. B.

A. N. Severyukhina, B. V. Parakhonskiy, E. S. Prikhozhdenko, D. A. Gorin, G. B. Sukhorukov, H. Mohwald, and A. M. Yashchenok, “Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules,” ACS Appl. Mater. Interfaces 7(28), 15466–15473 (2015).
[Crossref]

Sun, B.

Y. Shi, H. Wang, X. Jiang, B. Sun, B. Song, Y. Su, and Y. He, “Ultrasensitive, Specific, Recyclable, and Reproducible Detection of Lead Ions in Real Systems through a Polyadenine-Assisted, Surface-Enhanced Raman Scattering Silicon Chip,” Anal. Chem. 88(7), 3723–3729 (2016).
[Crossref]

Sun, T. K.

L. Wang, H. X. Cao, Y. S. He, C. G. Pan, T. K. Sun, X. Y. Zhang, C. Y. Wang, and G. X. Liang, “Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+,” Sens. Actuators, B 282, 78–84 (2019).
[Crossref]

Svorcík, V.

O. Guselnikova, P. Postnikov, M. Erzina, Y. Kalachyova, V. Svorcík, and O. Lyutakov, “Pretreatment-free selective and reproducible SERS-based detection of heavy metal ions on DTPA functionalized plasmonic platform,” Sens. Actuators, B 253, 830–838 (2017).
[Crossref]

Švorcík, V.

O. Guselnikova, P. Postnikov, A. Trelin, V. Švorčík, and O. Lyutakov, “Dual Mode Chip Enantioselective Express Discrimination of Chiral Amines via Wettability-Based Mobile Application and Portable Surface-Enhanced Raman Spectroscopy Measurements,” ACS Sens. 4(4), 1032–1039 (2019).
[Crossref]

Tan, W.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Tian, G.

Z. C. Zhang, G. Helms, S. B. Clark, G. Tian, P. L. Zanonato, and L. Rao, “Complexation of Uranium(VI) by Gluconate in Acidic Solutions: a Thermodynamic Study with Structural Analysis,” Inorg. Chem. 48(8), 3814–3824 (2009).
[Crossref]

Tokalioglu, S

Ş Tokalıoğlu, T. Oymak, and Ş Kartal, “Coprecipitation of lead and cadmium using copper(II) mercaptobenzothiazole prior to flame atomic absorption spectrometric determination,” Microchim. Acta 159(1–2), 133–139 (2007).
[Crossref]

Trelin, A.

O. Guselnikova, P. Postnikov, A. Trelin, V. Švorčík, and O. Lyutakov, “Dual Mode Chip Enantioselective Express Discrimination of Chiral Amines via Wettability-Based Mobile Application and Portable Surface-Enhanced Raman Spectroscopy Measurements,” ACS Sens. 4(4), 1032–1039 (2019).
[Crossref]

Tuzen, M.

D. Citak and M. Tuzen, “A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry,” Food Chem. Toxicol. 48(5), 1399–1404 (2010).
[Crossref]

Wang, C. C.

X. X. Song, H. Fu, P. Wang, H. Y. Li, Y. Q. Zhang, and C. C. Wang, “The selectively fluorescent sensing detection and adsorptive removal of Pb(2+) with a stable [delta-Mo8O26]-based hybrid,” J. Colloid Interface Sci. 532, 598–604 (2018).
[Crossref]

Wang, C. Y.

L. Wang, H. X. Cao, Y. S. He, C. G. Pan, T. K. Sun, X. Y. Zhang, C. Y. Wang, and G. X. Liang, “Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+,” Sens. Actuators, B 282, 78–84 (2019).
[Crossref]

Wang, H.

Y. Shi, H. Wang, X. Jiang, B. Sun, B. Song, Y. Su, and Y. He, “Ultrasensitive, Specific, Recyclable, and Reproducible Detection of Lead Ions in Real Systems through a Polyadenine-Assisted, Surface-Enhanced Raman Scattering Silicon Chip,” Anal. Chem. 88(7), 3723–3729 (2016).
[Crossref]

C. Fu, W. Xu, H. Wang, H. Ding, L. Liang, M. Cong, and S. Xu, “DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced Raman scattering detection of lead ions via a particle-on-a-film hot spot construction,” Anal. Chem. 86(23), 11494–11497 (2014).
[Crossref]

Wang, L.

L. Wang, H. X. Cao, Y. S. He, C. G. Pan, T. K. Sun, X. Y. Zhang, C. Y. Wang, and G. X. Liang, “Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+,” Sens. Actuators, B 282, 78–84 (2019).
[Crossref]

Y. Wen, C. Peng, D. Li, L. Zhuo, S. He, L. Wang, Q. Huang, Q. H. Xu, and C. Fan, “Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range,” Chem. Commun. 47(22), 6278–6280 (2011).
[Crossref]

Wang, P.

X. X. Song, H. Fu, P. Wang, H. Y. Li, Y. Q. Zhang, and C. C. Wang, “The selectively fluorescent sensing detection and adsorptive removal of Pb(2+) with a stable [delta-Mo8O26]-based hybrid,” J. Colloid Interface Sci. 532, 598–604 (2018).
[Crossref]

Wang, R.

A. G. Memon, X. Zhou, Y. Xing, R. Wang, L. Liu, M. Khan, and M. He, “Label-free colorimetric nanosensor with improved sensitivity for Pb2 + in water by using a truncated 8–17 DNAzyme,” Front. Environ. Sci. Eng. 13(1), 12 (2019).
[Crossref]

Wang, Z.

Y. Guo, Z. Wang, W. Qu, H. Shao, and X. Jiang, “Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles,” Biosens. Bioelectron. 26(10), 4064–4069 (2011).
[Crossref]

Wararatananurak, P.

P. Chooto, P. Wararatananurak, and C. Innuphat, “Determination of trace levels of Pb(II) in tap water by anodic stripping voltammetry with boron-doped diamond electrode,” ScienceAsia 36(2), 150–156 (2010).
[Crossref]

Wei, C.

B. Zhang and C. Wei, “Highly sensitive and selective detection of Pb(2+) using a turn-on fluorescent aptamer DNA silver nanoclusters sensor,” Talanta 182, 125–130 (2018).
[Crossref]

Wen, Y.

Y. Wen, C. Peng, D. Li, L. Zhuo, S. He, L. Wang, Q. Huang, Q. H. Xu, and C. Fan, “Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range,” Chem. Commun. 47(22), 6278–6280 (2011).
[Crossref]

Whitehead, D. E.

M. S. Frost, M. J. Dempsey, and D. E. Whitehead, “Highly sensitive SERS detection of Pb 2+ ions in aqueous media using citrate functionalised gold nanoparticles,” Sens. Actuators, B 221, 1003–1008 (2015).
[Crossref]

Wu, W.

M. Rong, J. Li, J. Hu, A. Chen, W. Wu, and J. Lyu, “A highly sensitive and colorimetric biosensor based on magnetic nano-DNAzyme for detection of lead (II) ion in real water samples,” J. Chem. Technol. Biotechnol. 93(11), 3254–3263 (2018).
[Crossref]

Xing, Y.

A. G. Memon, X. Zhou, Y. Xing, R. Wang, L. Liu, M. Khan, and M. He, “Label-free colorimetric nanosensor with improved sensitivity for Pb2 + in water by using a truncated 8–17 DNAzyme,” Front. Environ. Sci. Eng. 13(1), 12 (2019).
[Crossref]

Xu, Q. H.

Y. Wen, C. Peng, D. Li, L. Zhuo, S. He, L. Wang, Q. Huang, Q. H. Xu, and C. Fan, “Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range,” Chem. Commun. 47(22), 6278–6280 (2011).
[Crossref]

Xu, S.

C. Fu, W. Xu, H. Wang, H. Ding, L. Liang, M. Cong, and S. Xu, “DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced Raman scattering detection of lead ions via a particle-on-a-film hot spot construction,” Anal. Chem. 86(23), 11494–11497 (2014).
[Crossref]

Xu, W.

C. Fu, W. Xu, H. Wang, H. Ding, L. Liang, M. Cong, and S. Xu, “DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced Raman scattering detection of lead ions via a particle-on-a-film hot spot construction,” Anal. Chem. 86(23), 11494–11497 (2014).
[Crossref]

Xue, T.

Q. Zou, X. Li, T. Xue, J. Zheng, and Q. Su, “SERS detection of mercury (II)/lead (II): A new class of DNA logic gates,” Talanta 195, 497–505 (2019).
[Crossref]

Yan, M.

L. Liang, F. Lan, S. Ge, J. Yu, N. Ren, and M. Yan, “Metal-Enhanced Ratiometric Fluorescence/Naked Eye Bimodal Biosensor for Lead Ions Analysis with Bifunctional Nanocomposite Probes,” Anal. Chem. 89(6), 3597–3605 (2017).
[Crossref]

Yashchenok, A. M.

A. N. Severyukhina, B. V. Parakhonskiy, E. S. Prikhozhdenko, D. A. Gorin, G. B. Sukhorukov, H. Mohwald, and A. M. Yashchenok, “Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules,” ACS Appl. Mater. Interfaces 7(28), 15466–15473 (2015).
[Crossref]

Yu, J.

L. Liang, F. Lan, S. Ge, J. Yu, N. Ren, and M. Yan, “Metal-Enhanced Ratiometric Fluorescence/Naked Eye Bimodal Biosensor for Lead Ions Analysis with Bifunctional Nanocomposite Probes,” Anal. Chem. 89(6), 3597–3605 (2017).
[Crossref]

Yu, R. Q.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Zanonato, P. L.

Z. C. Zhang, G. Helms, S. B. Clark, G. Tian, P. L. Zanonato, and L. Rao, “Complexation of Uranium(VI) by Gluconate in Acidic Solutions: a Thermodynamic Study with Structural Analysis,” Inorg. Chem. 48(8), 3814–3824 (2009).
[Crossref]

Zhang, B.

B. Zhang and C. Wei, “Highly sensitive and selective detection of Pb(2+) using a turn-on fluorescent aptamer DNA silver nanoclusters sensor,” Talanta 182, 125–130 (2018).
[Crossref]

Zhang, L.

L. Zhang, Z. Li, X. Du, R. Li, and X. Chang, “Simultaneous separation and preconcentration of Cr(III), Cu(II), Cd(II) and Pb(II) from environmental samples prior to inductively coupled plasma optical emission spectrometric determination,” Spectrochim. Acta, Part A 86, 443–448 (2012).
[Crossref]

Zhang, X. B.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Zhang, X. Y.

L. Wang, H. X. Cao, Y. S. He, C. G. Pan, T. K. Sun, X. Y. Zhang, C. Y. Wang, and G. X. Liang, “Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+,” Sens. Actuators, B 282, 78–84 (2019).
[Crossref]

Zhang, Y. Q.

X. X. Song, H. Fu, P. Wang, H. Y. Li, Y. Q. Zhang, and C. C. Wang, “The selectively fluorescent sensing detection and adsorptive removal of Pb(2+) with a stable [delta-Mo8O26]-based hybrid,” J. Colloid Interface Sci. 532, 598–604 (2018).
[Crossref]

Zhang, Z.

F. Sang, X. Li, Z. Zhang, J. Liu, and G. Chen, “Recyclable colorimetric sensor of Cr(3+) and Pb(2+) ions simultaneously using a zwitterionic amino acid modified gold nanoparticles,” Spectrochim. Acta, Part A 193, 109–116 (2018).
[Crossref]

Zhang, Z. C.

Z. C. Zhang, G. Helms, S. B. Clark, G. Tian, P. L. Zanonato, and L. Rao, “Complexation of Uranium(VI) by Gluconate in Acidic Solutions: a Thermodynamic Study with Structural Analysis,” Inorg. Chem. 48(8), 3814–3824 (2009).
[Crossref]

Zhao, X. H.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Zheng, J.

Q. Zou, X. Li, T. Xue, J. Zheng, and Q. Su, “SERS detection of mercury (II)/lead (II): A new class of DNA logic gates,” Talanta 195, 497–505 (2019).
[Crossref]

Zhou, X.

A. G. Memon, X. Zhou, Y. Xing, R. Wang, L. Liu, M. Khan, and M. He, “Label-free colorimetric nanosensor with improved sensitivity for Pb2 + in water by using a truncated 8–17 DNAzyme,” Front. Environ. Sci. Eng. 13(1), 12 (2019).
[Crossref]

Zhuo, L.

Y. Wen, C. Peng, D. Li, L. Zhuo, S. He, L. Wang, Q. Huang, Q. H. Xu, and C. Fan, “Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range,” Chem. Commun. 47(22), 6278–6280 (2011).
[Crossref]

Zou, Q.

Q. Zou, X. Li, T. Xue, J. Zheng, and Q. Su, “SERS detection of mercury (II)/lead (II): A new class of DNA logic gates,” Talanta 195, 497–505 (2019).
[Crossref]

ACS Appl. Mater. Interfaces (1)

A. N. Severyukhina, B. V. Parakhonskiy, E. S. Prikhozhdenko, D. A. Gorin, G. B. Sukhorukov, H. Mohwald, and A. M. Yashchenok, “Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules,” ACS Appl. Mater. Interfaces 7(28), 15466–15473 (2015).
[Crossref]

ACS Sens. (1)

O. Guselnikova, P. Postnikov, A. Trelin, V. Švorčík, and O. Lyutakov, “Dual Mode Chip Enantioselective Express Discrimination of Chiral Amines via Wettability-Based Mobile Application and Portable Surface-Enhanced Raman Spectroscopy Measurements,” ACS Sens. 4(4), 1032–1039 (2019).
[Crossref]

Anal. Chem. (5)

C. Fu, W. Xu, H. Wang, H. Ding, L. Liang, M. Cong, and S. Xu, “DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced Raman scattering detection of lead ions via a particle-on-a-film hot spot construction,” Anal. Chem. 86(23), 11494–11497 (2014).
[Crossref]

Y. Shi, H. Wang, X. Jiang, B. Sun, B. Song, Y. Su, and Y. He, “Ultrasensitive, Specific, Recyclable, and Reproducible Detection of Lead Ions in Real Systems through a Polyadenine-Assisted, Surface-Enhanced Raman Scattering Silicon Chip,” Anal. Chem. 88(7), 3723–3729 (2016).
[Crossref]

R. A. Alvarez-Puebla, D. S. Dos Santos, and R. F. Aroca, “Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols,” Anal. Chem. 129(12), 1251–1256 (2004).
[Crossref]

L. Liang, F. Lan, S. Ge, J. Yu, N. Ren, and M. Yan, “Metal-Enhanced Ratiometric Fluorescence/Naked Eye Bimodal Biosensor for Lead Ions Analysis with Bifunctional Nanocomposite Probes,” Anal. Chem. 89(6), 3597–3605 (2017).
[Crossref]

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Biosens. Bioelectron. (1)

Y. Guo, Z. Wang, W. Qu, H. Shao, and X. Jiang, “Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles,” Biosens. Bioelectron. 26(10), 4064–4069 (2011).
[Crossref]

Chem. Commun. (2)

D.-K. Lim, I.-J. Kim, and J.-M. Nam, “DNA-embedded Au/Ag core–shell nanoparticles,” Chem. Commun. 129(42), 5312–5314 (2008).
[Crossref]

Y. Wen, C. Peng, D. Li, L. Zhuo, S. He, L. Wang, Q. Huang, Q. H. Xu, and C. Fan, “Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range,” Chem. Commun. 47(22), 6278–6280 (2011).
[Crossref]

Chem. Rev. (1)

D. Sawyer, “Metal-gluconate complexes,” Chem. Rev. 64(6), 633–643 (1964).
[Crossref]

Colloids Surf., A (1)

R. Choudhury and T. K. Misra, “Gluconate stabilized silver nanoparticles as a colorimetric sensor for Pb 2+,” Colloids Surf., A 545, 179–187 (2018).
[Crossref]

Environ. Res. (1)

A. R. Flegal and D. R. Smith, “Current Needs for Increased Accuracy and Precision in Measurements of Low Levels of Lead in Blood,” Environ. Res. 58(1–2), 125–133 (1992).
[Crossref]

Environ. Sci. Technol. (1)

A. Pallagi, E. G. Bajnoczi, S. E. Canton, T. Bolin, G. Peintler, B. Kutus, Z. Kele, I. Palinko, and P. Sipos, “Multinuclear complex formation between Ca(II) and gluconate ions in hyperalkaline solutions,” Environ. Sci. Technol. 48(12), 6604–6611 (2014).
[Crossref]

Food Chem. Toxicol. (1)

D. Citak and M. Tuzen, “A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry,” Food Chem. Toxicol. 48(5), 1399–1404 (2010).
[Crossref]

Front. Environ. Sci. Eng. (1)

A. G. Memon, X. Zhou, Y. Xing, R. Wang, L. Liu, M. Khan, and M. He, “Label-free colorimetric nanosensor with improved sensitivity for Pb2 + in water by using a truncated 8–17 DNAzyme,” Front. Environ. Sci. Eng. 13(1), 12 (2019).
[Crossref]

Inorg. Chem. (1)

Z. C. Zhang, G. Helms, S. B. Clark, G. Tian, P. L. Zanonato, and L. Rao, “Complexation of Uranium(VI) by Gluconate in Acidic Solutions: a Thermodynamic Study with Structural Analysis,” Inorg. Chem. 48(8), 3814–3824 (2009).
[Crossref]

J. Chem. Technol. Biotechnol. (1)

M. Rong, J. Li, J. Hu, A. Chen, W. Wu, and J. Lyu, “A highly sensitive and colorimetric biosensor based on magnetic nano-DNAzyme for detection of lead (II) ion in real water samples,” J. Chem. Technol. Biotechnol. 93(11), 3254–3263 (2018).
[Crossref]

J. Colloid Interface Sci. (1)

X. X. Song, H. Fu, P. Wang, H. Y. Li, Y. Q. Zhang, and C. C. Wang, “The selectively fluorescent sensing detection and adsorptive removal of Pb(2+) with a stable [delta-Mo8O26]-based hybrid,” J. Colloid Interface Sci. 532, 598–604 (2018).
[Crossref]

Microchem. J. (1)

H. R. Badiei, C. Liu, and V. Karanassios, “Taking part of the lab to the sample: On-site electrodeposition of Pb followed by measurement in a lab using electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry,” Microchem. J. 108, 131–136 (2013).
[Crossref]

Microchim. Acta (1)

Ş Tokalıoğlu, T. Oymak, and Ş Kartal, “Coprecipitation of lead and cadmium using copper(II) mercaptobenzothiazole prior to flame atomic absorption spectrometric determination,” Microchim. Acta 159(1–2), 133–139 (2007).
[Crossref]

MMWR Surveill Summ Morbidity and mortality weekly report. Surveillance summaries (1)

P. A. Meyer, T. Pivetz, T. A. Dignam, D. M. Homa, J. Schoonover, and D. Brody, “Surveillance for Elevated Blood Lead Levels Among Children — United States, 1997—2001,” MMWR Surveill Summ Morbidity and mortality weekly report. Surveillance summaries 52, 1–21 (2003).

Nature (London), Phys. Sci. (1)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature (London), Phys. Sci. 241(105), 20–22 (1973).
[Crossref]

Public Health Reports (1)

B. P. Lanphear, K. Dietrich, P. Auinger, and C. Cox, “Cognitive Deficits Associated with Blood Lead Concentrations <10 pg/dL in US Children and Adolescents,” Public Health Reports 115(6), 521–529 (2000).
[Crossref]

ScienceAsia (1)

P. Chooto, P. Wararatananurak, and C. Innuphat, “Determination of trace levels of Pb(II) in tap water by anodic stripping voltammetry with boron-doped diamond electrode,” ScienceAsia 36(2), 150–156 (2010).
[Crossref]

Sens. Actuators, B (3)

L. Wang, H. X. Cao, Y. S. He, C. G. Pan, T. K. Sun, X. Y. Zhang, C. Y. Wang, and G. X. Liang, “Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+,” Sens. Actuators, B 282, 78–84 (2019).
[Crossref]

O. Guselnikova, P. Postnikov, M. Erzina, Y. Kalachyova, V. Svorcík, and O. Lyutakov, “Pretreatment-free selective and reproducible SERS-based detection of heavy metal ions on DTPA functionalized plasmonic platform,” Sens. Actuators, B 253, 830–838 (2017).
[Crossref]

M. S. Frost, M. J. Dempsey, and D. E. Whitehead, “Highly sensitive SERS detection of Pb 2+ ions in aqueous media using citrate functionalised gold nanoparticles,” Sens. Actuators, B 221, 1003–1008 (2015).
[Crossref]

Spectrochim. Acta, Part A (2)

F. Sang, X. Li, Z. Zhang, J. Liu, and G. Chen, “Recyclable colorimetric sensor of Cr(3+) and Pb(2+) ions simultaneously using a zwitterionic amino acid modified gold nanoparticles,” Spectrochim. Acta, Part A 193, 109–116 (2018).
[Crossref]

L. Zhang, Z. Li, X. Du, R. Li, and X. Chang, “Simultaneous separation and preconcentration of Cr(III), Cu(II), Cd(II) and Pb(II) from environmental samples prior to inductively coupled plasma optical emission spectrometric determination,” Spectrochim. Acta, Part A 86, 443–448 (2012).
[Crossref]

Spectrochim. Acta, Part B (1)

V. L. Dressler, D. Pozebon, and A. J. Curtius, “Determination of heavy metals by inductively coupled plasma mass spectrometry after on-line separation and preconcentration,” Spectrochim. Acta, Part B 53(11), 1527–1539 (1998).
[Crossref]

Talanta (3)

F. Kummrow, F. F. Silva, R. Kuno, A. L. Souza, and P. V. Oliveira, “Biomonitoring method for the simultaneous determination of cadmium and lead in whole blood by electrothermal atomic absorption spectrometry for assessment of environmental exposure,” Talanta 75(1), 246–252 (2008).
[Crossref]

B. Zhang and C. Wei, “Highly sensitive and selective detection of Pb(2+) using a turn-on fluorescent aptamer DNA silver nanoclusters sensor,” Talanta 182, 125–130 (2018).
[Crossref]

Q. Zou, X. Li, T. Xue, J. Zheng, and Q. Su, “SERS detection of mercury (II)/lead (II): A new class of DNA logic gates,” Talanta 195, 497–505 (2019).
[Crossref]

Other (2)

W. H. Organization, Guidelines for Drinking Water Quality, vol. 1, 2nd ed.

A. K. De, Environmental Chemistry, 3rd ed. (Royal Society of Chemistry, 2016)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (A) The synthesis principle of Gluc/2-NT@Au@Ag NPs. (B) Schematic illustration of SERS and colorimetric determination for Pb2+.
Fig. 2.
Fig. 2. TEM images of (A) Au NPs. (B) Gluc@Au@Ag NPs. (C) Gluc/2-NT@Au@Ag NPs. (D) The aggregations of Gluc/2-NT@Au@Ag NPs in the presence Pb2+ of 7.5E-6 M. (E) The extinction spectra of the Gluc/2-NT@Au@Ag NPs suspension (without the addition of Pb2+) for 5 days. (F) The hydrodynamic size of the Gluc/2-NT@Au@Ag NPs suspension (without the addition of Pb2+) for 5 days. (G)The histogram of SERS intensity of Gluc/2-NT-@Au@Ag NPs at 1621 cm−1 band. (inset: SERS mapping image integrated at 1621 cm−1 band and the corresponding bright-field image). (H) A serials of SERS spectra for all mapping blocks in (G) (RSD of the intensities of 1621 cm−1 band is calculated to be 9.365%).
Fig. 3.
Fig. 3. (A) Extinction spectra of (a) Au NPs, (b) Gluc@Au@Ag NPs, (c) Gluc/2-NT@Au@Ag NPs and (d) Gluc/2-NT@Au@Ag NPs aggregations in the presence Pb2+ of 7.5E-6 M. (inset: Corresponding photographs (Sequencing from left to right: Au NPs, Gluc@Au@Ag NPs, Gluc/2-NT@Au@Ag NPs, the aggregations of Gluc/2-NT@Au@Ag NPs in the presence Pb2+)). (B) The SERS spectra of (a) Gluc/2-NT@Au@Ag NPs aggregations in the presence Pb2+ of 7.5E-6 M. (b) Gluc/2-NT@Au@Ag NPs and (c) Gluc@Au@Ag NPs.
Fig. 4.
Fig. 4. (A) Extinction spectra of Gluc/2-NT@Au@Ag NPs in presence of 1E-5 M Pb2+ over time. (B) Plot of absorbance of SPR band at 417 nm with time in presence of different concentration of Pb2+ ions (1E-6 M, 5E-6 M and 1E-5 M). (C) Extinction spectral change of Gluc@Au@Ag NPs in presence of Pb2+ (10−4–10−6 M). (D) Linear plot of absorbance of SPR band at 417 nm at different concentrations of Pb2+. The error bars indicate the standard deviation of 15 measurements.
Fig. 5.
Fig. 5. (A) Raman spectra of Gluc/2-NT@Au@Ag NPs in presence of Pb2+ (10−11–10−6 M). (B) Linear plot of Raman intensity of the 1621 cm−1 peak at various concentrations of Pb2+. The error bars indicate the standard deviation of 15 measurements.
Fig. 6.
Fig. 6. Selectivity test with various metal ions. (A) Histogram of absorbance of SPR band at 417 nm in the presence of different metal ions. (inset: Photographs of Gluc/2-NT@Au@Ag NPs in the presence of different metal ions of 10−5 M). (B) Extinction spectra of Gluc/2-NT@Au@Ag NPs in the presence of different metal ions. (C) Histogram of Raman intensity of the 1621 cm−1 band in the presence of different metal ions. The error bars indicate the standard deviation of 15 measurements. (D) Raman intensity of the 1621 cm−1 band in the presence of different metal ions of 10−6 M.
Fig. 7.
Fig. 7. (A) Statistical results of interparticle distance of Au@Ag NPs. (B) –(H) The simulation of electric field distributions in different possible aggregation states of Au@Ag NPs with FDTD solutions.

Tables (4)

Tables Icon

Table 1. Linear plot of absorption band at 417 nm and SERS intensity of the 1621 cm−1 band upon the addition of Pb2+ in different concentrations.

Tables Icon

Table 2. The comparison of the detection of Pb2+ with previously reported methods.

Tables Icon

Table 3. Determination of Pb2+ spiked in the real water sample

Tables Icon

Table 4. Observed fundamental vibrational wavenumbers of 2-naphthalenethiol

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Y = 0.31786 7513.53449 X
Y = 8997.46 9 + 706.525 × L og 10 X
Recovery ( % ) = [ ( C d / C s ) ] × 100 %
Y = A + K × L o g 10 X
L O D = 10 [ [ ( Y b + 3 S D ) / Y b A ] / K ]
S D = ( 1 n - 1 × i = 1 n ( X i X a v e r a g e ) 2 )

Metrics