Abstract

Microscopic thin film doped with different species of nanoparticles displays a unique wavelength selectivity in the context of micro/nanoscale radiative heat transfer. We propose a methodology to shift, broaden, and suppress the thermal radiative selectivity in the desired wavelength ranges. Measured transmittance spectra of potassium bromide pellet doped with a single species of nanoparticles are compared with the theoretical prediction using refractive indices that are extracted by refitting transmittance spectra curve according to the Lorentz-Drude model. For a media doped with more than two species of nanoparticles, a successive effective dielectric function using the refitted complex refractive indices and Maxwell Garnett theory is used to evaluate the thermal radiative selectivity of the composites. It has been confirmed theoretically and experimentally that the wavelength selectivity in the transmittance spectra can be influenced by choosing proper species of materials and varying volume fractions of multiple nanoparticles. This work has shed light on the design and fabrication of novel composites doped with multiple particles for applications such as thermophotovoltaics, radiative cooling, and biosensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes

Alok Ghanekar, Laura Lin, Junwei Su, Hongwei Sun, and Yi Zheng
Opt. Express 23(19) A1129-A1139 (2015)

Ultra-thin titanium nitride films for refractory spectral selectivity [Invited]

Alexander S. Roberts, Manohar Chirumamilla, Deyong Wang, Liqiong An, Kjeld Pedersen, N. Asger Mortensen, and Sergey I. Bozhevolnyi
Opt. Mater. Express 8(12) 3717-3728 (2018)

Radiative heating and cooling with spectrally selective surfaces

C. G. Granqvist
Appl. Opt. 20(15) 2606-2615 (1981)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Lorentz, The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heart: A Course of Lectures Delivered in Columbia University, New York in March and April, 1906, vol. 29 (Teubner, 1916).
  2. L. Lorenz, “L. lorenz, wied. ann. 11, 70 (1880),” Ann. Phys. (Berlin, Ger.) 247(9), 70–103 (1880).
    [Crossref]
  3. A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23(19), A1129–A1139 (2015).
    [Crossref]
  4. J. M. Garnett, “Vii. colours in metal glasses, in metallic films, and in metallic solutions.–ii,” Philos. Trans. R. Soc., A 205(387-401), 237–288 (1906).
    [Crossref]
  5. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
    [Crossref]
  6. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [Crossref]
  7. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref]
  8. C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting sio films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
    [Crossref]
  9. Y. Tian, A. Ghanekar, L. Qian, M. Ricci, X. Liu, G. Xiao, O. Gregory, and Y. Zheng, “Near-infrared optics of nanoparticles embedded silica thin films,” Opt. Express 27(4), A148–A157 (2019).
    [Crossref]
  10. Y. Tian, A. Ghanekar, X. Liu, J. Sheng, and Y. Zheng, “Tunable wavelength selectivity of photonic metamaterials-based thermal devices,” J. Photonics Energy 9(03), 1 (2018).
    [Crossref]
  11. A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24(10), A868–A877 (2016).
    [Crossref]
  12. A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10(8), 885 (2017).
    [Crossref]
  13. K. Krishnan and J. R. Ferraro, Practical Fourier Transform Infrared Spectroscopy: Industrial and Laboratory Chemical Analysis (Academic Press, 1990).
  14. J. R. Ferraro, Practical Fourier transform infrared spectroscopy: industrial and laboratory chemical analysis (Elsevier, 2012).
  15. H. W. Verleur, “Determination of optical constants from reflectance or transmittance measurements on bulk crystals or thin films,” J. Opt. Soc. Am. 58(10), 1356–1364 (1968).
    [Crossref]
  16. W. C. Chew, Waves and fields in inhomogeneous media (IEEE press, 1995).
  17. C. E. Kennedy, “Review of mid-to high-temperature solar selective absorber materials,” Tech. rep., National Renewable Energy Lab., Golden, CO.(US) (2002).
  18. H. Zhang, X. Wang, and Y. Li, “Measuring radiative properties of silica aerogel composite from ftir transmittance test using kbr as diluents,” Exp. Therm. Fluid Sci. 91, 144–154 (2018).
    [Crossref]
  19. W. M. Merrill, R. E. Diaz, M. M. LoRe, M. C. Squires, and N. G. Alexopoulos, “Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum,” IEEE Trans. Antennas Propag. 47(1), 142–148 (1999).
    [Crossref]
  20. U. Kreibig and M. Vollmer, “Theoretical considerations,” in Optical Properties of Metal Clusters, (Springer, 1995), pp. 13–201.
  21. W. Robertson, G. Arjavalingam, and S. Shinde, “Microwave dielectric measurements of zirconia-alumina ceramic composites: A test of the clausius–mossotti mixture equations,” J. Appl. Phys. 70(12), 7648–7650 (1991).
    [Crossref]
  22. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39(14), 9852–9858 (1989).
    [Crossref]
  23. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
    [Crossref]
  24. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, and Y. Flores, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
    [Crossref]
  25. T. Theophile, Infrared spectroscopy: Materials science, engineering and technology (BoD–Books on Demand, 2012).

2019 (1)

2018 (2)

Y. Tian, A. Ghanekar, X. Liu, J. Sheng, and Y. Zheng, “Tunable wavelength selectivity of photonic metamaterials-based thermal devices,” J. Photonics Energy 9(03), 1 (2018).
[Crossref]

H. Zhang, X. Wang, and Y. Li, “Measuring radiative properties of silica aerogel composite from ftir transmittance test using kbr as diluents,” Exp. Therm. Fluid Sci. 91, 144–154 (2018).
[Crossref]

2017 (1)

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10(8), 885 (2017).
[Crossref]

2016 (1)

2015 (1)

2014 (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

2013 (1)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

2012 (1)

1999 (1)

W. M. Merrill, R. E. Diaz, M. M. LoRe, M. C. Squires, and N. G. Alexopoulos, “Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum,” IEEE Trans. Antennas Propag. 47(1), 142–148 (1999).
[Crossref]

1991 (1)

W. Robertson, G. Arjavalingam, and S. Shinde, “Microwave dielectric measurements of zirconia-alumina ceramic composites: A test of the clausius–mossotti mixture equations,” J. Appl. Phys. 70(12), 7648–7650 (1991).
[Crossref]

1989 (1)

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39(14), 9852–9858 (1989).
[Crossref]

1981 (1)

C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting sio films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

1976 (1)

H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
[Crossref]

1975 (1)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

1968 (1)

1906 (1)

J. M. Garnett, “Vii. colours in metal glasses, in metallic films, and in metallic solutions.–ii,” Philos. Trans. R. Soc., A 205(387-401), 237–288 (1906).
[Crossref]

1880 (1)

L. Lorenz, “L. lorenz, wied. ann. 11, 70 (1880),” Ann. Phys. (Berlin, Ger.) 247(9), 70–103 (1880).
[Crossref]

Aleksandrova, A.

Alexopoulos, N. G.

W. M. Merrill, R. E. Diaz, M. M. LoRe, M. C. Squires, and N. G. Alexopoulos, “Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum,” IEEE Trans. Antennas Propag. 47(1), 142–148 (1999).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Arjavalingam, G.

W. Robertson, G. Arjavalingam, and S. Shinde, “Microwave dielectric measurements of zirconia-alumina ceramic composites: A test of the clausius–mossotti mixture equations,” J. Appl. Phys. 70(12), 7648–7650 (1991).
[Crossref]

Catalanotti, S.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Chashnikova, M.

Chew, W. C.

W. C. Chew, Waves and fields in inhomogeneous media (IEEE press, 1995).

Cui, Y.

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10(8), 885 (2017).
[Crossref]

Cuomo, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Diaz, R. E.

W. M. Merrill, R. E. Diaz, M. M. LoRe, M. C. Squires, and N. G. Alexopoulos, “Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum,” IEEE Trans. Antennas Propag. 47(1), 142–148 (1999).
[Crossref]

Doyle, W. T.

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39(14), 9852–9858 (1989).
[Crossref]

Fan, S.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Fedosenko, O.

Ferraro, J. R.

K. Krishnan and J. R. Ferraro, Practical Fourier Transform Infrared Spectroscopy: Industrial and Laboratory Chemical Analysis (Academic Press, 1990).

J. R. Ferraro, Practical Fourier transform infrared spectroscopy: industrial and laboratory chemical analysis (Elsevier, 2012).

Flores, Y.

Garnett, J. M.

J. M. Garnett, “Vii. colours in metal glasses, in metallic films, and in metallic solutions.–ii,” Philos. Trans. R. Soc., A 205(387-401), 237–288 (1906).
[Crossref]

Ghanekar, A.

Granqvist, C.

C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting sio films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Gregory, O.

Gruska, B.

Hjortsberg, A.

C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting sio films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Kennedy, C. E.

C. E. Kennedy, “Review of mid-to high-temperature solar selective absorber materials,” Tech. rep., National Renewable Energy Lab., Golden, CO.(US) (2002).

Kischkat, J.

Klinkmüller, M.

Kreibig, U.

U. Kreibig and M. Vollmer, “Theoretical considerations,” in Optical Properties of Metal Clusters, (Springer, 1995), pp. 13–201.

Krishnan, K.

K. Krishnan and J. R. Ferraro, Practical Fourier Transform Infrared Spectroscopy: Industrial and Laboratory Chemical Analysis (Academic Press, 1990).

Li, H.

H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
[Crossref]

Li, Y.

H. Zhang, X. Wang, and Y. Li, “Measuring radiative properties of silica aerogel composite from ftir transmittance test using kbr as diluents,” Exp. Therm. Fluid Sci. 91, 144–154 (2018).
[Crossref]

Lin, L.

Liu, X.

Y. Tian, A. Ghanekar, L. Qian, M. Ricci, X. Liu, G. Xiao, O. Gregory, and Y. Zheng, “Near-infrared optics of nanoparticles embedded silica thin films,” Opt. Express 27(4), A148–A157 (2019).
[Crossref]

Y. Tian, A. Ghanekar, X. Liu, J. Sheng, and Y. Zheng, “Tunable wavelength selectivity of photonic metamaterials-based thermal devices,” J. Photonics Energy 9(03), 1 (2018).
[Crossref]

LoRe, M. M.

W. M. Merrill, R. E. Diaz, M. M. LoRe, M. C. Squires, and N. G. Alexopoulos, “Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum,” IEEE Trans. Antennas Propag. 47(1), 142–148 (1999).
[Crossref]

Lorentz, H. A.

H. A. Lorentz, The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heart: A Course of Lectures Delivered in Columbia University, New York in March and April, 1906, vol. 29 (Teubner, 1916).

Lorenz, L.

L. Lorenz, “L. lorenz, wied. ann. 11, 70 (1880),” Ann. Phys. (Berlin, Ger.) 247(9), 70–103 (1880).
[Crossref]

Machulik, S.

Merrill, W. M.

W. M. Merrill, R. E. Diaz, M. M. LoRe, M. C. Squires, and N. G. Alexopoulos, “Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum,” IEEE Trans. Antennas Propag. 47(1), 142–148 (1999).
[Crossref]

Monastyrskyi, G.

Peters, S.

Piro, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Qian, L.

Raman, A.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Ricci, M.

Robertson, W.

W. Robertson, G. Arjavalingam, and S. Shinde, “Microwave dielectric measurements of zirconia-alumina ceramic composites: A test of the clausius–mossotti mixture equations,” J. Appl. Phys. 70(12), 7648–7650 (1991).
[Crossref]

Ruggi, D.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Semtsiv, M.

Sheng, J.

Y. Tian, A. Ghanekar, X. Liu, J. Sheng, and Y. Zheng, “Tunable wavelength selectivity of photonic metamaterials-based thermal devices,” J. Photonics Energy 9(03), 1 (2018).
[Crossref]

Shinde, S.

W. Robertson, G. Arjavalingam, and S. Shinde, “Microwave dielectric measurements of zirconia-alumina ceramic composites: A test of the clausius–mossotti mixture equations,” J. Appl. Phys. 70(12), 7648–7650 (1991).
[Crossref]

Silvestrini, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Squires, M. C.

W. M. Merrill, R. E. Diaz, M. M. LoRe, M. C. Squires, and N. G. Alexopoulos, “Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum,” IEEE Trans. Antennas Propag. 47(1), 142–148 (1999).
[Crossref]

Su, J.

Sun, H.

Theophile, T.

T. Theophile, Infrared spectroscopy: Materials science, engineering and technology (BoD–Books on Demand, 2012).

Tian, Y.

Y. Tian, A. Ghanekar, L. Qian, M. Ricci, X. Liu, G. Xiao, O. Gregory, and Y. Zheng, “Near-infrared optics of nanoparticles embedded silica thin films,” Opt. Express 27(4), A148–A157 (2019).
[Crossref]

Y. Tian, A. Ghanekar, X. Liu, J. Sheng, and Y. Zheng, “Tunable wavelength selectivity of photonic metamaterials-based thermal devices,” J. Photonics Energy 9(03), 1 (2018).
[Crossref]

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10(8), 885 (2017).
[Crossref]

Troise, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Verleur, H. W.

Vollmer, M.

U. Kreibig and M. Vollmer, “Theoretical considerations,” in Optical Properties of Metal Clusters, (Springer, 1995), pp. 13–201.

Wang, X.

H. Zhang, X. Wang, and Y. Li, “Measuring radiative properties of silica aerogel composite from ftir transmittance test using kbr as diluents,” Exp. Therm. Fluid Sci. 91, 144–154 (2018).
[Crossref]

Xiao, G.

Zhang, H.

H. Zhang, X. Wang, and Y. Li, “Measuring radiative properties of silica aerogel composite from ftir transmittance test using kbr as diluents,” Exp. Therm. Fluid Sci. 91, 144–154 (2018).
[Crossref]

Zhang, S.

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10(8), 885 (2017).
[Crossref]

Zheng, Y.

Zhu, L.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Ann. Phys. (Berlin, Ger.) (1)

L. Lorenz, “L. lorenz, wied. ann. 11, 70 (1880),” Ann. Phys. (Berlin, Ger.) 247(9), 70–103 (1880).
[Crossref]

Appl. Opt. (1)

Exp. Therm. Fluid Sci. (1)

H. Zhang, X. Wang, and Y. Li, “Measuring radiative properties of silica aerogel composite from ftir transmittance test using kbr as diluents,” Exp. Therm. Fluid Sci. 91, 144–154 (2018).
[Crossref]

IEEE Trans. Antennas Propag. (1)

W. M. Merrill, R. E. Diaz, M. M. LoRe, M. C. Squires, and N. G. Alexopoulos, “Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum,” IEEE Trans. Antennas Propag. 47(1), 142–148 (1999).
[Crossref]

J. Appl. Phys. (2)

C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting sio films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

W. Robertson, G. Arjavalingam, and S. Shinde, “Microwave dielectric measurements of zirconia-alumina ceramic composites: A test of the clausius–mossotti mixture equations,” J. Appl. Phys. 70(12), 7648–7650 (1991).
[Crossref]

J. Opt. Soc. Am. (1)

J. Photonics Energy (1)

Y. Tian, A. Ghanekar, X. Liu, J. Sheng, and Y. Zheng, “Tunable wavelength selectivity of photonic metamaterials-based thermal devices,” J. Photonics Energy 9(03), 1 (2018).
[Crossref]

J. Phys. Chem. Ref. Data (1)

H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
[Crossref]

Materials (1)

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10(8), 885 (2017).
[Crossref]

Nano Lett. (1)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Opt. Express (3)

Philos. Trans. R. Soc., A (1)

J. M. Garnett, “Vii. colours in metal glasses, in metallic films, and in metallic solutions.–ii,” Philos. Trans. R. Soc., A 205(387-401), 237–288 (1906).
[Crossref]

Phys. Rev. B (1)

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39(14), 9852–9858 (1989).
[Crossref]

Sol. Energy (1)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Other (7)

K. Krishnan and J. R. Ferraro, Practical Fourier Transform Infrared Spectroscopy: Industrial and Laboratory Chemical Analysis (Academic Press, 1990).

J. R. Ferraro, Practical Fourier transform infrared spectroscopy: industrial and laboratory chemical analysis (Elsevier, 2012).

W. C. Chew, Waves and fields in inhomogeneous media (IEEE press, 1995).

C. E. Kennedy, “Review of mid-to high-temperature solar selective absorber materials,” Tech. rep., National Renewable Energy Lab., Golden, CO.(US) (2002).

U. Kreibig and M. Vollmer, “Theoretical considerations,” in Optical Properties of Metal Clusters, (Springer, 1995), pp. 13–201.

H. A. Lorentz, The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heart: A Course of Lectures Delivered in Columbia University, New York in March and April, 1906, vol. 29 (Teubner, 1916).

T. Theophile, Infrared spectroscopy: Materials science, engineering and technology (BoD–Books on Demand, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of potassium bromide (KBr) pellets with multiple nanoparticles. (a) KBr pellet doped with boron nitride (BN) nanoparticles, and (b) KBr pellet doped with BN and silicon nitride (Si$_3$N$_4$) nanoparticles.
Fig. 2.
Fig. 2. (a) Explode view of schematic of hydraulic press mold for KBr pellet. (b) The working process of hydraulic press mold. (c) The transparent KBr pellet in the collar
Fig. 3.
Fig. 3. Schematic of an experimental setup for the spectral transmittance measurement.
Fig. 4.
Fig. 4. Transmittance measurement of a pure KBr pellet and a KBr pellet doped with BN nanoparticles in comparison with refitted spectra using the Drude-Lortenz oscillator model. The sky window is highlighted with the blue area.
Fig. 5.
Fig. 5. Refractive index characteristics of KBr pellet doped with different nanoparticles: (a) Real part $n$, and (b) imaginary par $\kappa$
Fig. 6.
Fig. 6. Transmittance spectra of sample pellet mixed with BN and Si$_3$N$_4$ nanoparticle in comparison with simulation result

Tables (1)

Tables Icon

Table 1. Oscillator Parameters of a BN Nanoparticles embedded KBr Pellet

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε + k = 1 N s k 1 ( ω ω k ) 2 j Γ k ( ω ω k )
T ~ ( β ) = T 1 , 2 ( β ) e j k 1 z d 1 R 1 , 2 ( β ) R ~ 2 , 3 ( β ) e 2 j k 2 z d
τ = 1 2 β = s , p | T ~ ( β ) | 2
ε e f f = ε h ( r 3 + 2 α p f r 3 α p f )
α p = 3 j c 3 2 ω 3 ε h 3 / 2 a 1 , r
a 1 , r = ε n ψ 1 ( x n ) ψ 1 ( x h ) ε h ψ 1 ( x h ) ψ 1 ( x n ) ε n ψ 1 ( x n ) ξ 1 ( x h ) ε h ξ 1 ( x h ) ψ 1 ( x n )

Metrics