Abstract

Resonant coupling between plasmonic nanoantennas and molecular vibrational excitations is employed to amplify the weak overtone transitions that reside in the near-infrared. We explore for the first time the differential extinction of forbidden molecular overtone transitions coupled to the localized surface plasmons. We show a non-trivial interplay between the molecular absorption enhancement and suppression of plasmonic absorption in a coupled system. When the resonance conditions are met at 1.5 $\mu$m, two orders of magnitude enhancement of differential extinction as compared to the extinction of the same amount of free probe molecules is achieved. Our results pave a road toward a new class of surface enhanced near-infrared absorption-based sensors.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Surface enhanced absorption and transmission from dye coated gold nanoparticles in thin films

Virendra N. Rai, Arvind K. Srivastava, Chandrachud Mukherjee, and Sudip K. Deb
Appl. Opt. 51(14) 2606-2615 (2012)

Surface-enhanced infrared absorption with Si-doped InAsSb/GaSb nano-antennas

M. J. Milla, F. Barho, F. González-Posada, L. Cerutti, B. Charlot, M. Bomers, F. Neubrech, E. Tournie, and T. Taliercio
Opt. Express 25(22) 26651-26661 (2017)

Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate

R. K. Harrison and Adela Ben-Yakar
Opt. Express 18(21) 22556-22571 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. Cen and Y. He, “Theory and application of near infrared reflectance spectroscopy in determination of food quality,” Trends Food Sci. Technol. 18(2), 72–83 (2007).
    [Crossref]
  2. M. Manley, “Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials,” Chem. Soc. Rev. 43(24), 8200–8214 (2014).
    [Crossref]
  3. M. Jamrógiewicz, “Application of the near-infrared spectroscopy in the pharmaceutical technology,” J. Pharm. Biomed. Anal. 66, 1–10 (2012).
    [Crossref]
  4. B. C. Smith, Infrared spectral interpretation: a systematic approach (CRC press, 2018).
  5. A. Katiyi and A. Karabchevsky, “Si Nanostrip Optical Waveguide for On-Chip Broadband Molecular Overtone Spectroscopy in Near-Infrared,” ACS Sens. 3(3), 618–623 (2018).
    [Crossref]
  6. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, New York, 2007. (Springer Science and Business Media, 2007).
  7. V. Klimov, Nanoplasmonics (Pan Stanford, 2014).
  8. A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
    [Crossref]
  9. A. Karabchevsky, S. Karabchevsky, and I. Abdulhalim, “Fast surface plasmon resonance imaging sensor using radon transform,” Sens. Actuators, B 155(1), 361–365 (2011).
    [Crossref]
  10. A. Karabchevsky, S. Karabchevsky, and I. Abdulhalim, “Nanoprecision algorithm for surface plasmon resonance determination from images with low contrast for improved sensor resolution,” J. Nanophotonics 5(1), 051813 (2011).
    [Crossref]
  11. A. Karabchevsky, J. S. Wilkinson, and M. N. Zervas, “Transmittance and surface intensity in 3d composite plasmonic waveguides,” Opt. Express 23(11), 14407–14423 (2015).
    [Crossref]
  12. A. Karabchevsky, A. Mosayyebi, and A. V. Kavokin, “Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles,” Light: Sci. Appl. 5(11), e16164 (2016).
    [Crossref]
  13. S. I. Maslovski and C. R. Simovski, “Purcell factor and local intensity enhancement in surface-enhanced raman scattering,” Nanophotonics 8(3), 429–434 (2019).
    [Crossref]
  14. C. Simovski, “Circuit model of plasmon-enhanced fluorescence,” in Photonics, vol. 2 (Multidisciplinary Digital Publishing Institute, 2015), pp. 568–593.
  15. Y. Galutin, E. Falek, and A. Karabchevsky, “Invisibility cloaking scheme by evanescent fields distortion on composite plasmonic waveguides with si nano-spacer,” Sci. Rep. 7(1), 12076 (2017).
    [Crossref]
  16. A. Karabchevsky and A. Shalabney, “Strong interaction of molecular vibrational overtones with near-guided surface plasmon polariton,” in Optical Sensing and Detection IV, vol. 9899 (International Society for Optics and Photonics, 2016), p. 98991T.
  17. A. Karabchevsky, A. Katiyi, M. I. M. Bin Abdul Khudus, and A. V. Kavokin, “Tuning the Near-Infrared Absorption of Aromatic Amines on Tapered Fibers Sculptured with Gold Nanoparticles,” ACS Photonics 5(6), 2200–2207 (2018).
    [Crossref]
  18. W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1-2.5 $\mu$μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16(7), 4641–4647 (2016).
    [Crossref]
  19. D. R. Dadadzhanov, A. Karabchevsky, and T. Vartanyan, “Vibrational overtones spectroscopy enabled by plasmonic nanoantennas,” in Proceedings of SPIE - The International Society for Optical Engineering, vol. 10722 (2018), p. 85.
  20. M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst 140(2), 386–406 (2015).
    [Crossref]
  21. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley and Sons, 2008).
  22. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  24. A. Katiyi and A. Karabchevsky, “Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy,” J. Lightwave Technol. 35(14), 2902–2908 (2017).
    [Crossref]
  25. A. Karabchevsky and A. V. Kavokin, “Giant absorption of light by molecular vibrations on a chip,” Sci. Rep. 6(1), 21201 (2016).
    [Crossref]
  26. A. Karabchevsky, A. Katiyi, M. I. M. Bin Abdul Khudus, and A. V. Kavokin, “Tuning the near-infrared absorption of aromatic amines on tapered fibers sculptured with gold nanoparticles,” ACS Photonics 5(6), 2200–2207 (2018).
    [Crossref]
  27. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
    [Crossref]

2019 (1)

S. I. Maslovski and C. R. Simovski, “Purcell factor and local intensity enhancement in surface-enhanced raman scattering,” Nanophotonics 8(3), 429–434 (2019).
[Crossref]

2018 (3)

A. Karabchevsky, A. Katiyi, M. I. M. Bin Abdul Khudus, and A. V. Kavokin, “Tuning the near-infrared absorption of aromatic amines on tapered fibers sculptured with gold nanoparticles,” ACS Photonics 5(6), 2200–2207 (2018).
[Crossref]

A. Karabchevsky, A. Katiyi, M. I. M. Bin Abdul Khudus, and A. V. Kavokin, “Tuning the Near-Infrared Absorption of Aromatic Amines on Tapered Fibers Sculptured with Gold Nanoparticles,” ACS Photonics 5(6), 2200–2207 (2018).
[Crossref]

A. Katiyi and A. Karabchevsky, “Si Nanostrip Optical Waveguide for On-Chip Broadband Molecular Overtone Spectroscopy in Near-Infrared,” ACS Sens. 3(3), 618–623 (2018).
[Crossref]

2017 (2)

Y. Galutin, E. Falek, and A. Karabchevsky, “Invisibility cloaking scheme by evanescent fields distortion on composite plasmonic waveguides with si nano-spacer,” Sci. Rep. 7(1), 12076 (2017).
[Crossref]

A. Katiyi and A. Karabchevsky, “Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy,” J. Lightwave Technol. 35(14), 2902–2908 (2017).
[Crossref]

2016 (3)

A. Karabchevsky and A. V. Kavokin, “Giant absorption of light by molecular vibrations on a chip,” Sci. Rep. 6(1), 21201 (2016).
[Crossref]

W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1-2.5 $\mu$μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16(7), 4641–4647 (2016).
[Crossref]

A. Karabchevsky, A. Mosayyebi, and A. V. Kavokin, “Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles,” Light: Sci. Appl. 5(11), e16164 (2016).
[Crossref]

2015 (2)

2014 (1)

M. Manley, “Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials,” Chem. Soc. Rev. 43(24), 8200–8214 (2014).
[Crossref]

2012 (1)

M. Jamrógiewicz, “Application of the near-infrared spectroscopy in the pharmaceutical technology,” J. Pharm. Biomed. Anal. 66, 1–10 (2012).
[Crossref]

2011 (2)

A. Karabchevsky, S. Karabchevsky, and I. Abdulhalim, “Fast surface plasmon resonance imaging sensor using radon transform,” Sens. Actuators, B 155(1), 361–365 (2011).
[Crossref]

A. Karabchevsky, S. Karabchevsky, and I. Abdulhalim, “Nanoprecision algorithm for surface plasmon resonance determination from images with low contrast for improved sensor resolution,” J. Nanophotonics 5(1), 051813 (2011).
[Crossref]

2009 (1)

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

2008 (1)

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref]

2007 (1)

H. Cen and Y. He, “Theory and application of near infrared reflectance spectroscopy in determination of food quality,” Trends Food Sci. Technol. 18(2), 72–83 (2007).
[Crossref]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abdulhalim, I.

A. Karabchevsky, S. Karabchevsky, and I. Abdulhalim, “Fast surface plasmon resonance imaging sensor using radon transform,” Sens. Actuators, B 155(1), 361–365 (2011).
[Crossref]

A. Karabchevsky, S. Karabchevsky, and I. Abdulhalim, “Nanoprecision algorithm for surface plasmon resonance determination from images with low contrast for improved sensor resolution,” J. Nanophotonics 5(1), 051813 (2011).
[Crossref]

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Arnob, M. M. P.

W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1-2.5 $\mu$μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16(7), 4641–4647 (2016).
[Crossref]

Auslender, M.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Bin Abdul Khudus, M. I. M.

A. Karabchevsky, A. Katiyi, M. I. M. Bin Abdul Khudus, and A. V. Kavokin, “Tuning the near-infrared absorption of aromatic amines on tapered fibers sculptured with gold nanoparticles,” ACS Photonics 5(6), 2200–2207 (2018).
[Crossref]

A. Karabchevsky, A. Katiyi, M. I. M. Bin Abdul Khudus, and A. V. Kavokin, “Tuning the Near-Infrared Absorption of Aromatic Amines on Tapered Fibers Sculptured with Gold Nanoparticles,” ACS Photonics 5(6), 2200–2207 (2018).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley and Sons, 2008).

Cen, H.

H. Cen and Y. He, “Theory and application of near infrared reflectance spectroscopy in determination of food quality,” Trends Food Sci. Technol. 18(2), 72–83 (2007).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Cushing, S. K.

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst 140(2), 386–406 (2015).
[Crossref]

Dadadzhanov, D. R.

D. R. Dadadzhanov, A. Karabchevsky, and T. Vartanyan, “Vibrational overtones spectroscopy enabled by plasmonic nanoantennas,” in Proceedings of SPIE - The International Society for Optical Engineering, vol. 10722 (2018), p. 85.

Falek, E.

Y. Galutin, E. Falek, and A. Karabchevsky, “Invisibility cloaking scheme by evanescent fields distortion on composite plasmonic waveguides with si nano-spacer,” Sci. Rep. 7(1), 12076 (2017).
[Crossref]

Fofang, N. T.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref]

Galutin, Y.

Y. Galutin, E. Falek, and A. Karabchevsky, “Invisibility cloaking scheme by evanescent fields distortion on composite plasmonic waveguides with si nano-spacer,” Sci. Rep. 7(1), 12076 (2017).
[Crossref]

Goldner, A.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Hadad, B.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Halas, N. J.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref]

He, Y.

H. Cen and Y. He, “Theory and application of near infrared reflectance spectroscopy in determination of food quality,” Trends Food Sci. Technol. 18(2), 72–83 (2007).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley and Sons, 2008).

Jamrógiewicz, M.

M. Jamrógiewicz, “Application of the near-infrared spectroscopy in the pharmaceutical technology,” J. Pharm. Biomed. Anal. 66, 1–10 (2012).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Karabchevsky, A.

A. Karabchevsky, A. Katiyi, M. I. M. Bin Abdul Khudus, and A. V. Kavokin, “Tuning the Near-Infrared Absorption of Aromatic Amines on Tapered Fibers Sculptured with Gold Nanoparticles,” ACS Photonics 5(6), 2200–2207 (2018).
[Crossref]

A. Katiyi and A. Karabchevsky, “Si Nanostrip Optical Waveguide for On-Chip Broadband Molecular Overtone Spectroscopy in Near-Infrared,” ACS Sens. 3(3), 618–623 (2018).
[Crossref]

A. Karabchevsky, A. Katiyi, M. I. M. Bin Abdul Khudus, and A. V. Kavokin, “Tuning the near-infrared absorption of aromatic amines on tapered fibers sculptured with gold nanoparticles,” ACS Photonics 5(6), 2200–2207 (2018).
[Crossref]

Y. Galutin, E. Falek, and A. Karabchevsky, “Invisibility cloaking scheme by evanescent fields distortion on composite plasmonic waveguides with si nano-spacer,” Sci. Rep. 7(1), 12076 (2017).
[Crossref]

A. Katiyi and A. Karabchevsky, “Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy,” J. Lightwave Technol. 35(14), 2902–2908 (2017).
[Crossref]

A. Karabchevsky, A. Mosayyebi, and A. V. Kavokin, “Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles,” Light: Sci. Appl. 5(11), e16164 (2016).
[Crossref]

A. Karabchevsky and A. V. Kavokin, “Giant absorption of light by molecular vibrations on a chip,” Sci. Rep. 6(1), 21201 (2016).
[Crossref]

A. Karabchevsky, J. S. Wilkinson, and M. N. Zervas, “Transmittance and surface intensity in 3d composite plasmonic waveguides,” Opt. Express 23(11), 14407–14423 (2015).
[Crossref]

A. Karabchevsky, S. Karabchevsky, and I. Abdulhalim, “Fast surface plasmon resonance imaging sensor using radon transform,” Sens. Actuators, B 155(1), 361–365 (2011).
[Crossref]

A. Karabchevsky, S. Karabchevsky, and I. Abdulhalim, “Nanoprecision algorithm for surface plasmon resonance determination from images with low contrast for improved sensor resolution,” J. Nanophotonics 5(1), 051813 (2011).
[Crossref]

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

A. Karabchevsky and A. Shalabney, “Strong interaction of molecular vibrational overtones with near-guided surface plasmon polariton,” in Optical Sensing and Detection IV, vol. 9899 (International Society for Optics and Photonics, 2016), p. 98991T.

D. R. Dadadzhanov, A. Karabchevsky, and T. Vartanyan, “Vibrational overtones spectroscopy enabled by plasmonic nanoantennas,” in Proceedings of SPIE - The International Society for Optical Engineering, vol. 10722 (2018), p. 85.

Karabchevsky, S.

A. Karabchevsky, S. Karabchevsky, and I. Abdulhalim, “Nanoprecision algorithm for surface plasmon resonance determination from images with low contrast for improved sensor resolution,” J. Nanophotonics 5(1), 051813 (2011).
[Crossref]

A. Karabchevsky, S. Karabchevsky, and I. Abdulhalim, “Fast surface plasmon resonance imaging sensor using radon transform,” Sens. Actuators, B 155(1), 361–365 (2011).
[Crossref]

Katiyi, A.

A. Katiyi and A. Karabchevsky, “Si Nanostrip Optical Waveguide for On-Chip Broadband Molecular Overtone Spectroscopy in Near-Infrared,” ACS Sens. 3(3), 618–623 (2018).
[Crossref]

A. Karabchevsky, A. Katiyi, M. I. M. Bin Abdul Khudus, and A. V. Kavokin, “Tuning the near-infrared absorption of aromatic amines on tapered fibers sculptured with gold nanoparticles,” ACS Photonics 5(6), 2200–2207 (2018).
[Crossref]

A. Karabchevsky, A. Katiyi, M. I. M. Bin Abdul Khudus, and A. V. Kavokin, “Tuning the Near-Infrared Absorption of Aromatic Amines on Tapered Fibers Sculptured with Gold Nanoparticles,” ACS Photonics 5(6), 2200–2207 (2018).
[Crossref]

A. Katiyi and A. Karabchevsky, “Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy,” J. Lightwave Technol. 35(14), 2902–2908 (2017).
[Crossref]

Kavokin, A. V.

A. Karabchevsky, A. Katiyi, M. I. M. Bin Abdul Khudus, and A. V. Kavokin, “Tuning the near-infrared absorption of aromatic amines on tapered fibers sculptured with gold nanoparticles,” ACS Photonics 5(6), 2200–2207 (2018).
[Crossref]

A. Karabchevsky, A. Katiyi, M. I. M. Bin Abdul Khudus, and A. V. Kavokin, “Tuning the Near-Infrared Absorption of Aromatic Amines on Tapered Fibers Sculptured with Gold Nanoparticles,” ACS Photonics 5(6), 2200–2207 (2018).
[Crossref]

A. Karabchevsky, A. Mosayyebi, and A. V. Kavokin, “Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles,” Light: Sci. Appl. 5(11), e16164 (2016).
[Crossref]

A. Karabchevsky and A. V. Kavokin, “Giant absorption of light by molecular vibrations on a chip,” Sci. Rep. 6(1), 21201 (2016).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Klimov, V.

V. Klimov, Nanoplasmonics (Pan Stanford, 2014).

Krasnykov, O.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Li, M.

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst 140(2), 386–406 (2015).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, New York, 2007. (Springer Science and Business Media, 2007).

Manley, M.

M. Manley, “Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials,” Chem. Soc. Rev. 43(24), 8200–8214 (2014).
[Crossref]

Maslovski, S. I.

S. I. Maslovski and C. R. Simovski, “Purcell factor and local intensity enhancement in surface-enhanced raman scattering,” Nanophotonics 8(3), 429–434 (2019).
[Crossref]

Mirin, N. A.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref]

Mosayyebi, A.

A. Karabchevsky, A. Mosayyebi, and A. V. Kavokin, “Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles,” Light: Sci. Appl. 5(11), e16164 (2016).
[Crossref]

Neumann, O.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref]

Nordlander, P.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref]

Park, T.-H.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref]

Santos, G. M.

W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1-2.5 $\mu$μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16(7), 4641–4647 (2016).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Shalabney, A.

A. Karabchevsky and A. Shalabney, “Strong interaction of molecular vibrational overtones with near-guided surface plasmon polariton,” in Optical Sensing and Detection IV, vol. 9899 (International Society for Optics and Photonics, 2016), p. 98991T.

Shih, W. C.

W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1-2.5 $\mu$μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16(7), 4641–4647 (2016).
[Crossref]

Simovski, C.

C. Simovski, “Circuit model of plasmon-enhanced fluorescence,” in Photonics, vol. 2 (Multidisciplinary Digital Publishing Institute, 2015), pp. 568–593.

Simovski, C. R.

S. I. Maslovski and C. R. Simovski, “Purcell factor and local intensity enhancement in surface-enhanced raman scattering,” Nanophotonics 8(3), 429–434 (2019).
[Crossref]

Smith, B. C.

B. C. Smith, Infrared spectral interpretation: a systematic approach (CRC press, 2018).

Vartanyan, T.

D. R. Dadadzhanov, A. Karabchevsky, and T. Vartanyan, “Vibrational overtones spectroscopy enabled by plasmonic nanoantennas,” in Proceedings of SPIE - The International Society for Optical Engineering, vol. 10722 (2018), p. 85.

Wilkinson, J. S.

Wu, N.

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst 140(2), 386–406 (2015).
[Crossref]

Zenasni, O.

W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1-2.5 $\mu$μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16(7), 4641–4647 (2016).
[Crossref]

Zervas, M. N.

Zhao, F.

W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1-2.5 $\mu$μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16(7), 4641–4647 (2016).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

ACS Photonics (2)

A. Karabchevsky, A. Katiyi, M. I. M. Bin Abdul Khudus, and A. V. Kavokin, “Tuning the Near-Infrared Absorption of Aromatic Amines on Tapered Fibers Sculptured with Gold Nanoparticles,” ACS Photonics 5(6), 2200–2207 (2018).
[Crossref]

A. Karabchevsky, A. Katiyi, M. I. M. Bin Abdul Khudus, and A. V. Kavokin, “Tuning the near-infrared absorption of aromatic amines on tapered fibers sculptured with gold nanoparticles,” ACS Photonics 5(6), 2200–2207 (2018).
[Crossref]

ACS Sens. (1)

A. Katiyi and A. Karabchevsky, “Si Nanostrip Optical Waveguide for On-Chip Broadband Molecular Overtone Spectroscopy in Near-Infrared,” ACS Sens. 3(3), 618–623 (2018).
[Crossref]

Analyst (1)

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst 140(2), 386–406 (2015).
[Crossref]

Chem. Soc. Rev. (1)

M. Manley, “Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials,” Chem. Soc. Rev. 43(24), 8200–8214 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Nanophotonics (1)

A. Karabchevsky, S. Karabchevsky, and I. Abdulhalim, “Nanoprecision algorithm for surface plasmon resonance determination from images with low contrast for improved sensor resolution,” J. Nanophotonics 5(1), 051813 (2011).
[Crossref]

J. Pharm. Biomed. Anal. (1)

M. Jamrógiewicz, “Application of the near-infrared spectroscopy in the pharmaceutical technology,” J. Pharm. Biomed. Anal. 66, 1–10 (2012).
[Crossref]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Light: Sci. Appl. (1)

A. Karabchevsky, A. Mosayyebi, and A. V. Kavokin, “Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles,” Light: Sci. Appl. 5(11), e16164 (2016).
[Crossref]

Nano Lett. (2)

W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1-2.5 $\mu$μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16(7), 4641–4647 (2016).
[Crossref]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref]

Nanophotonics (1)

S. I. Maslovski and C. R. Simovski, “Purcell factor and local intensity enhancement in surface-enhanced raman scattering,” Nanophotonics 8(3), 429–434 (2019).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Plasmonics (1)

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Sci. Rep. (2)

Y. Galutin, E. Falek, and A. Karabchevsky, “Invisibility cloaking scheme by evanescent fields distortion on composite plasmonic waveguides with si nano-spacer,” Sci. Rep. 7(1), 12076 (2017).
[Crossref]

A. Karabchevsky and A. V. Kavokin, “Giant absorption of light by molecular vibrations on a chip,” Sci. Rep. 6(1), 21201 (2016).
[Crossref]

Sens. Actuators, B (1)

A. Karabchevsky, S. Karabchevsky, and I. Abdulhalim, “Fast surface plasmon resonance imaging sensor using radon transform,” Sens. Actuators, B 155(1), 361–365 (2011).
[Crossref]

Trends Food Sci. Technol. (1)

H. Cen and Y. He, “Theory and application of near infrared reflectance spectroscopy in determination of food quality,” Trends Food Sci. Technol. 18(2), 72–83 (2007).
[Crossref]

Other (7)

A. Karabchevsky and A. Shalabney, “Strong interaction of molecular vibrational overtones with near-guided surface plasmon polariton,” in Optical Sensing and Detection IV, vol. 9899 (International Society for Optics and Photonics, 2016), p. 98991T.

D. R. Dadadzhanov, A. Karabchevsky, and T. Vartanyan, “Vibrational overtones spectroscopy enabled by plasmonic nanoantennas,” in Proceedings of SPIE - The International Society for Optical Engineering, vol. 10722 (2018), p. 85.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley and Sons, 2008).

C. Simovski, “Circuit model of plasmon-enhanced fluorescence,” in Photonics, vol. 2 (Multidisciplinary Digital Publishing Institute, 2015), pp. 568–593.

B. C. Smith, Infrared spectral interpretation: a systematic approach (CRC press, 2018).

S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, New York, 2007. (Springer Science and Business Media, 2007).

V. Klimov, Nanoplasmonics (Pan Stanford, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematics of systems with gold nanorods (left) studied in numerical simulations and nanoellipsoids (right) used in the analytical model. The shells are made of N-Methylaniline (NMA). $L$ and $R$ are semi-major and semi-minor axises of gold nanoparticles respectively, while $t$ is the thickness of molecular shells. The incident wave is polarized along the rod.
Fig. 2.
Fig. 2. Extinction cross-sections of gold nanoellipsoids with NMA shells of different thicknesses. (a) the semi-major axis of the gold core is $L$ = 55.9 nm (b) the semi-major axis of the gold core is $L$ = 68.1 nm. The semi-minor axis is $R$ = 5 nm in both cases.
Fig. 3.
Fig. 3. Extinction (brown), absorption (red) and scattering (pink) cross-sections of gold nanorods with NMA shell. The nanorod diameter is set to 10 nm for (a) $L$ = 49.9 nm, (b) $L$ = 60.6 nm. The thickness of the NMA molecular shell is homogeneous and equals to $t$ = 20 nm. Extinction coefficient of NMA (blue) is also shown for comparison.
Fig. 4.
Fig. 4. Comparative analysis of differential extinction (DE) spectra of gold nanorod and nanoellipsoid with NMA shells: (a) with semi-major axises $L$ = 49.9 (nanorod) and $L$ = 55.9 nm (nanoellipsoid); (b) $L$ = 60.6 (nanorod) and $L$ = 68.1 nm (nanoellipsoid). Blue curves correspond to numerically calculated results (nanorod) while the red curves correspond to results obtained in the quasi-static approximation (nanoellipsoid)
Fig. 5.
Fig. 5. (a) Optical cross-section as function of shell thickness of NMA: (1) differential extinction, (2) absorption cross-section of NMA shell encapsulating GNR, (3) extinction cross-section of the NMA shell without the GNR, and (4) the difference between ACSs of the GNR -with and -without the NMA shell GNR semi-major axis (a) $L$ is 49.9 nm and the wavelength is set to 1494 nm. Absorption cross-section of the NMA shell when the GNR is absent is multiplied by 20. (b) same graphs as in subplot (a) for the case when the wavelength is set to 1676 nm, while $L$ is 60.6 nm.
Fig. 6.
Fig. 6. (a) Differential extinction (DE) values are given as the functions of the NMA shell thickness and the incident radiation wavelength for GNR with semi-major axis of: $L$ = 55.9 nm (a) and $L$ = 68.1 nm (b), respectively. The vertical dashed lines show the position of two overtone bands, while the horizontal dashed lines mark the shell thickness ($t$ = 20 nm) that leads to tuned plasmon resonance with the corresponding overtone band. The dark curve is drawn through the maxima of the plasmon resonances.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α = v ( ( ε 2 ε m ) [ ε 2 + ( ε 1 ε 2 ) ( S ( 1 ) f S ( 2 ) ) ] + f ε 2 ( ε 1 ε 2 ) ) ( [ ε 2 + ( ε 1 ε 2 ) ( S ( 1 ) f S ( 2 ) ) ] [ ε m + ( ε 2 ε m ) S ( 2 ) ] + f S ( 2 ) ε 2 ( ε 1 ε 2 ) ) ,
σ e x t = σ a b s + σ s c = 4 π k Im { α } + 8 π 3 k 4 | α | 2 ,
D E = σ e x t N R / N M A σ e x t N R / N M A ,

Metrics