Abstract

In this paper, a gas refractometer based on microfiber Sagnac interferometer is demonstrated, which can achieve an ultrahigh sensitivity when operating at the group birefringence turning point. We undertake a theoretical analysis and a simulated calculation to study the device characteristics and obtain the specific parameters of ellipticity and long axis of the elliptic microfiber for the group birefringence turning point. In the experiment, we obtain a positive sensitivity of 0.295 nm/KPa and a negative sensitivity of −0.219 nm/KPa during gas pressure and refractive index (RI) sensing, the obtained highest RI sensitivity can reach 160,938.9 nm/RIU. To further reveal its practical potential in gas detection, we conduct CO2 gas concentration detection and the device also demonstrates ultrahigh sensitivity and good repeatability. Besides, temperature sensing is performed to explore its temperature response wherein it shows a sensitivity of 486.7 pm/ °C. These results show its potential for use in gas- and acoustic-sensing applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point

Nancy Meng Ying Zhang, Kaiwei Li, Nan Zhang, Yu Zheng, Ting Zhang, Miao Qi, Ping Shum, and Lei Wei
Opt. Express 26(22) 29148-29158 (2018)

Ultra-high sensitivity of dual dispersion turning point taper-based Mach-Zehnder interferometer

Li-Peng Sun, Tiansheng Huang, Zihao Yuan, Wenfu Lin, Peng Xiao, Mingjin Yang, Jun Ma, Yang Ran, Long Jin, Jie Li, and Bai-Ou Guan
Opt. Express 27(16) 23103-23111 (2019)

Ultrasensitive optical sensing in aqueous solution based on microfiber modal interferometer

Jing Wang, Yipeng Liao, Shanshan Wang, and Xin Wang
Opt. Express 26(19) 24843-24853 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  2. L. Xu, N. Liu, J. Ge, X. Wang, and M. P. Fok, “Stretchable fiber-Bragg-grating-based sensor,” Opt. Lett. 43(11), 2503–2506 (2018).
    [Crossref]
  3. Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B.-O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
    [Crossref]
  4. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
    [Crossref]
  5. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref]
  6. H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17(24), 21882–21890 (2009).
    [Crossref]
  7. O. Frazao, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
    [Crossref]
  8. W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
    [Crossref]
  9. X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
    [Crossref]
  10. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12(3), 2467–2486 (2012).
    [Crossref]
  11. Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [Crossref]
  12. G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37(11), 1974–1976 (2012).
    [Crossref]
  13. Z. Yu, L. Jin, L. Sun, J. Li, Y. Ran, and B.-O. Guan, “Highly sensitive fiber taper interferometric hydrogen sensors,” IEEE Photonics J. 8(1), 1–9 (2016).
    [Crossref]
  14. Z. Yu, L. Jin, L. Chen, J. Li, Y. Ran, and B.-O. Guan, “Microfiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 27(24), 2575–2578 (2015).
    [Crossref]
  15. J. Hromadka, B. Tokay, R. Correia, S. P. Morgan, and S. Korposh, “Highly sensitive ethanol vapour measurements using a fibre optic sensor coated with metal organic framework ZIF-8,” in 2017 IEEE SENSORS, 1–3 (2017).
    [Crossref]
  16. J. Hromadka, B. Tokay, S. James, R. P. Tatam, and S. Korposh, “Optical fibre long period grating gas sensor modified with metal organic framework thin films,” Sens. Actuators, B 221, 891–899 (2015).
    [Crossref]
  17. E.-X. Chen, H. Yang, and J. Zhang, “Zeolitic imidazolate framework as formaldehyde gas sensor,” Inorg. Chem. 53(11), 5411–5413 (2014).
    [Crossref]
  18. Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
    [Crossref]
  19. B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators, B 194, 142–148 (2014).
    [Crossref]
  20. B. Renganathan, D. Sastikumar, G. Gobi, N. R. Yogamalar, and A. C. Bose, “Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides,” Sens. Actuators, B 156(1), 263–270 (2011).
    [Crossref]
  21. R. Tabassum, S. K. Mishra, and B. D. Gupta, “Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu–ZnO thin films,” Phys. Chem. Chem. Phys. 15(28), 11868–11874 (2013).
    [Crossref]
  22. E. I. Karakoleva and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators, B 146(1), 331–336 (2010).
    [Crossref]
  23. K.-J. Kim, P. Lu, J. T. Culp, and P. R. Ohodnicki, “Metal–organic framework thin film coated optical fiber sensors: a novel waveguide-based chemical sensing platform,” ACS Sens. 3(2), 386–394 (2018).
    [Crossref]
  24. C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7(1), 13371 (2016).
    [Crossref]
  25. Z. Gong, K. Chen, Y. Yang, X. Zhou, W. Peng, and Q. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sens. Actuators, B 247, 290–295 (2017).
    [Crossref]
  26. S. Lacroix, F. Gonthier, R. J. Black, and J. Bures, “Tapered-fiber interferometric wavelength response: The achromatic fringe,” Opt. Lett. 13(5), 395–397 (1988).
    [Crossref]
  27. H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber based Mach–Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
    [Crossref]
  28. N. M. Y. Zhang, K. Li, N. Zhang, Y. Zheng, T. Zhang, M. Qi, P. Shum, and L. Wei, “Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point,” Opt. Express 26(22), 29148–29158 (2018).
    [Crossref]
  29. P. Pilla, C. Trono, F. Baldini, F. Chiavaioli, M. Giordano, and A. Cusano, “Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach,” Opt. Lett. 37(19), 4152–4154 (2012).
    [Crossref]
  30. L.-P. Sun, J. Li, L. Jin, Y. Ran, and B.-O. Guan, “High-birefringence microfiber Sagnac interferometer based humidity sensor,” Sens. Actuators, B 231, 696–700 (2016).
    [Crossref]
  31. J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
    [Crossref]
  32. K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral characteristics and ultrahigh sensitivities near the dispersion turning point of optical microfiber couplers,” J. Lightwave Technol. 36(12), 2409–2415 (2018).
    [Crossref]
  33. K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
    [Crossref]
  34. K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
    [Crossref]
  35. L.-P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B.-O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
    [Crossref]
  36. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35(9), 1566–1573 (1996).
    [Crossref]
  37. C. Van Leeuwen, A. Hensen, and H. A. J. Meijer, “International Journal of Greenhouse Gas Control Leak detection of CO2 pipelines with simple atmospheric CO2 sensors for carbon capture and storage,” Int. J. Greenhouse Gas Control 19, 420–431 (2013).
    [Crossref]
  38. C. Cuthbertson and M. Cuthbertson, “On the refraction and dispersion of carbon dioxide, carbon monoxide, and methane,” Proc. R. Soc. London, Ser. A 97(683), 152–159 (1920).
    [Crossref]

2018 (5)

2017 (1)

Z. Gong, K. Chen, Y. Yang, X. Zhou, W. Peng, and Q. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sens. Actuators, B 247, 290–295 (2017).
[Crossref]

2016 (4)

Z. Yu, L. Jin, L. Sun, J. Li, Y. Ran, and B.-O. Guan, “Highly sensitive fiber taper interferometric hydrogen sensors,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7(1), 13371 (2016).
[Crossref]

L.-P. Sun, J. Li, L. Jin, Y. Ran, and B.-O. Guan, “High-birefringence microfiber Sagnac interferometer based humidity sensor,” Sens. Actuators, B 231, 696–700 (2016).
[Crossref]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

2015 (4)

Z. Yu, L. Jin, L. Chen, J. Li, Y. Ran, and B.-O. Guan, “Microfiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 27(24), 2575–2578 (2015).
[Crossref]

J. Hromadka, B. Tokay, S. James, R. P. Tatam, and S. Korposh, “Optical fibre long period grating gas sensor modified with metal organic framework thin films,” Sens. Actuators, B 221, 891–899 (2015).
[Crossref]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref]

H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber based Mach–Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
[Crossref]

2014 (4)

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]

L.-P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B.-O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
[Crossref]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators, B 194, 142–148 (2014).
[Crossref]

E.-X. Chen, H. Yang, and J. Zhang, “Zeolitic imidazolate framework as formaldehyde gas sensor,” Inorg. Chem. 53(11), 5411–5413 (2014).
[Crossref]

2013 (2)

R. Tabassum, S. K. Mishra, and B. D. Gupta, “Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu–ZnO thin films,” Phys. Chem. Chem. Phys. 15(28), 11868–11874 (2013).
[Crossref]

C. Van Leeuwen, A. Hensen, and H. A. J. Meijer, “International Journal of Greenhouse Gas Control Leak detection of CO2 pipelines with simple atmospheric CO2 sensors for carbon capture and storage,” Int. J. Greenhouse Gas Control 19, 420–431 (2013).
[Crossref]

2012 (3)

2011 (3)

2010 (1)

E. I. Karakoleva and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators, B 146(1), 331–336 (2010).
[Crossref]

2009 (1)

2008 (1)

O. Frazao, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

2007 (1)

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

2006 (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

2003 (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

1996 (2)

1988 (1)

1920 (1)

C. Cuthbertson and M. Cuthbertson, “On the refraction and dispersion of carbon dioxide, carbon monoxide, and methane,” Proc. R. Soc. London, Ser. A 97(683), 152–159 (1920).
[Crossref]

Albert, J.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7(1), 13371 (2016).
[Crossref]

Andreev, A. T.

E. I. Karakoleva and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators, B 146(1), 331–336 (2010).
[Crossref]

Araujo, F. M.

O. Frazao, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

Baldini, F.

Bhatia, V.

Black, R. J.

Bose, A. C.

B. Renganathan, D. Sastikumar, G. Gobi, N. R. Yogamalar, and A. C. Bose, “Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides,” Sens. Actuators, B 156(1), 263–270 (2011).
[Crossref]

Bures, J.

Cao, Y.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref]

Cardenas-Sevilla, G. A.

Caucheteur, C.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7(1), 13371 (2016).
[Crossref]

Chang, Y.-L.

Chen, E.-X.

E.-X. Chen, H. Yang, and J. Zhang, “Zeolitic imidazolate framework as formaldehyde gas sensor,” Inorg. Chem. 53(11), 5411–5413 (2014).
[Crossref]

Chen, K.

Z. Gong, K. Chen, Y. Yang, X. Zhou, W. Peng, and Q. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sens. Actuators, B 247, 290–295 (2017).
[Crossref]

Chen, L.

Z. Yu, L. Jin, L. Chen, J. Li, Y. Ran, and B.-O. Guan, “Microfiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 27(24), 2575–2578 (2015).
[Crossref]

Chen, Y.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators, B 194, 142–148 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]

Cheng, Y.

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators, B 194, 142–148 (2014).
[Crossref]

Chiang, K. S.

Chiavaioli, F.

Choi, H. Y.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

Ciddor, P. E.

Correia, R.

J. Hromadka, B. Tokay, R. Correia, S. P. Morgan, and S. Korposh, “Highly sensitive ethanol vapour measurements using a fibre optic sensor coated with metal organic framework ZIF-8,” in 2017 IEEE SENSORS, 1–3 (2017).
[Crossref]

Culp, J. T.

K.-J. Kim, P. Lu, J. T. Culp, and P. R. Ohodnicki, “Metal–organic framework thin film coated optical fiber sensors: a novel waveguide-based chemical sensing platform,” ACS Sens. 3(2), 386–394 (2018).
[Crossref]

Cusano, A.

Cuthbertson, C.

C. Cuthbertson and M. Cuthbertson, “On the refraction and dispersion of carbon dioxide, carbon monoxide, and methane,” Proc. R. Soc. London, Ser. A 97(683), 152–159 (1920).
[Crossref]

Cuthbertson, M.

C. Cuthbertson and M. Cuthbertson, “On the refraction and dispersion of carbon dioxide, carbon monoxide, and methane,” Proc. R. Soc. London, Ser. A 97(683), 152–159 (1920).
[Crossref]

Dong, X. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Eom, J. B.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

Ferreira, L. A.

O. Frazao, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

Fok, M. P.

Frazao, O.

O. Frazao, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

Gao, S.

Ge, J.

Giordano, M.

Gobi, G.

B. Renganathan, D. Sastikumar, G. Gobi, N. R. Yogamalar, and A. C. Bose, “Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides,” Sens. Actuators, B 156(1), 263–270 (2011).
[Crossref]

Gong, Y.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators, B 194, 142–148 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]

Gong, Z.

Z. Gong, K. Chen, Y. Yang, X. Zhou, W. Peng, and Q. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sens. Actuators, B 247, 290–295 (2017).
[Crossref]

Gonthier, F.

Guan, B.-O.

L.-P. Sun, J. Li, L. Jin, Y. Ran, and B.-O. Guan, “High-birefringence microfiber Sagnac interferometer based humidity sensor,” Sens. Actuators, B 231, 696–700 (2016).
[Crossref]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7(1), 13371 (2016).
[Crossref]

Z. Yu, L. Jin, L. Sun, J. Li, Y. Ran, and B.-O. Guan, “Highly sensitive fiber taper interferometric hydrogen sensors,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Z. Yu, L. Jin, L. Chen, J. Li, Y. Ran, and B.-O. Guan, “Microfiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 27(24), 2575–2578 (2015).
[Crossref]

L.-P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B.-O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
[Crossref]

Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B.-O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref]

J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
[Crossref]

Guo, T.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7(1), 13371 (2016).
[Crossref]

Gupta, B. D.

R. Tabassum, S. K. Mishra, and B. D. Gupta, “Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu–ZnO thin films,” Phys. Chem. Chem. Phys. 15(28), 11868–11874 (2013).
[Crossref]

Hensen, A.

C. Van Leeuwen, A. Hensen, and H. A. J. Meijer, “International Journal of Greenhouse Gas Control Leak detection of CO2 pipelines with simple atmospheric CO2 sensors for carbon capture and storage,” Int. J. Greenhouse Gas Control 19, 420–431 (2013).
[Crossref]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Ho, H. L.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref]

Hromadka, J.

J. Hromadka, B. Tokay, S. James, R. P. Tatam, and S. Korposh, “Optical fibre long period grating gas sensor modified with metal organic framework thin films,” Sens. Actuators, B 221, 891–899 (2015).
[Crossref]

J. Hromadka, B. Tokay, R. Correia, S. P. Morgan, and S. Korposh, “Highly sensitive ethanol vapour measurements using a fibre optic sensor coated with metal organic framework ZIF-8,” in 2017 IEEE SENSORS, 1–3 (2017).
[Crossref]

James, S.

J. Hromadka, B. Tokay, S. James, R. P. Tatam, and S. Korposh, “Optical fibre long period grating gas sensor modified with metal organic framework thin films,” Sens. Actuators, B 221, 891–899 (2015).
[Crossref]

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Jin, L.

L.-P. Sun, J. Li, L. Jin, Y. Ran, and B.-O. Guan, “High-birefringence microfiber Sagnac interferometer based humidity sensor,” Sens. Actuators, B 231, 696–700 (2016).
[Crossref]

Z. Yu, L. Jin, L. Sun, J. Li, Y. Ran, and B.-O. Guan, “Highly sensitive fiber taper interferometric hydrogen sensors,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Z. Yu, L. Jin, L. Chen, J. Li, Y. Ran, and B.-O. Guan, “Microfiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 27(24), 2575–2578 (2015).
[Crossref]

L.-P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B.-O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
[Crossref]

Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B.-O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref]

J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
[Crossref]

Jin, W.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref]

H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17(24), 21882–21890 (2009).
[Crossref]

Karakoleva, E. I.

E. I. Karakoleva and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators, B 146(1), 331–336 (2010).
[Crossref]

Kim, K.-J.

K.-J. Kim, P. Lu, J. T. Culp, and P. R. Ohodnicki, “Metal–organic framework thin film coated optical fiber sensors: a novel waveguide-based chemical sensing platform,” ACS Sens. 3(2), 386–394 (2018).
[Crossref]

Kim, M. J.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

Kim, Y. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

Korposh, S.

J. Hromadka, B. Tokay, S. James, R. P. Tatam, and S. Korposh, “Optical fibre long period grating gas sensor modified with metal organic framework thin films,” Sens. Actuators, B 221, 891–899 (2015).
[Crossref]

J. Hromadka, B. Tokay, R. Correia, S. P. Morgan, and S. Korposh, “Highly sensitive ethanol vapour measurements using a fibre optic sensor coated with metal organic framework ZIF-8,” in 2017 IEEE SENSORS, 1–3 (2017).
[Crossref]

Lacroix, S.

Lee, B. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

Li, J.

L.-P. Sun, J. Li, L. Jin, Y. Ran, and B.-O. Guan, “High-birefringence microfiber Sagnac interferometer based humidity sensor,” Sens. Actuators, B 231, 696–700 (2016).
[Crossref]

Z. Yu, L. Jin, L. Sun, J. Li, Y. Ran, and B.-O. Guan, “Highly sensitive fiber taper interferometric hydrogen sensors,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Z. Yu, L. Jin, L. Chen, J. Li, Y. Ran, and B.-O. Guan, “Microfiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 27(24), 2575–2578 (2015).
[Crossref]

L.-P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B.-O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
[Crossref]

J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
[Crossref]

Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B.-O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref]

Li, K.

Li, X.

Li, Y.

Liu, D.

Liu, F.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7(1), 13371 (2016).
[Crossref]

Liu, G.

Liu, N.

Lu, P.

K.-J. Kim, P. Lu, J. T. Culp, and P. R. Ohodnicki, “Metal–organic framework thin film coated optical fiber sensors: a novel waveguide-based chemical sensing platform,” ACS Sens. 3(2), 386–394 (2018).
[Crossref]

Luo, H.

Martinez-Rios, A.

Meijer, H. A. J.

C. Van Leeuwen, A. Hensen, and H. A. J. Meijer, “International Journal of Greenhouse Gas Control Leak detection of CO2 pipelines with simple atmospheric CO2 sensors for carbon capture and storage,” Int. J. Greenhouse Gas Control 19, 420–431 (2013).
[Crossref]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Mishra, S. K.

R. Tabassum, S. K. Mishra, and B. D. Gupta, “Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu–ZnO thin films,” Phys. Chem. Chem. Phys. 15(28), 11868–11874 (2013).
[Crossref]

Monzon-Hernandez, D.

Morgan, S. P.

J. Hromadka, B. Tokay, R. Correia, S. P. Morgan, and S. Korposh, “Highly sensitive ethanol vapour measurements using a fibre optic sensor coated with metal organic framework ZIF-8,” in 2017 IEEE SENSORS, 1–3 (2017).
[Crossref]

Ohodnicki, P. R.

K.-J. Kim, P. Lu, J. T. Culp, and P. R. Ohodnicki, “Metal–organic framework thin film coated optical fiber sensors: a novel waveguide-based chemical sensing platform,” ACS Sens. 3(2), 386–394 (2018).
[Crossref]

Park, K. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

Peng, W.

Z. Gong, K. Chen, Y. Yang, X. Zhou, W. Peng, and Q. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sens. Actuators, B 247, 290–295 (2017).
[Crossref]

Pilla, P.

Qi, M.

Quan, Z.

Ran, Y.

L.-P. Sun, J. Li, L. Jin, Y. Ran, and B.-O. Guan, “High-birefringence microfiber Sagnac interferometer based humidity sensor,” Sens. Actuators, B 231, 696–700 (2016).
[Crossref]

Z. Yu, L. Jin, L. Sun, J. Li, Y. Ran, and B.-O. Guan, “Highly sensitive fiber taper interferometric hydrogen sensors,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Z. Yu, L. Jin, L. Chen, J. Li, Y. Ran, and B.-O. Guan, “Microfiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 27(24), 2575–2578 (2015).
[Crossref]

L.-P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B.-O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
[Crossref]

Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B.-O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref]

J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
[Crossref]

Rao, Y.

Rao, Y. J.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators, B 194, 142–148 (2014).
[Crossref]

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Renganathan, B.

B. Renganathan, D. Sastikumar, G. Gobi, N. R. Yogamalar, and A. C. Bose, “Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides,” Sens. Actuators, B 156(1), 263–270 (2011).
[Crossref]

Rho, B. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

Salceda-Delgado, G.

Santos, J. L.

O. Frazao, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

Sastikumar, D.

B. Renganathan, D. Sastikumar, G. Gobi, N. R. Yogamalar, and A. C. Bose, “Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides,” Sens. Actuators, B 156(1), 263–270 (2011).
[Crossref]

Shum, P.

N. M. Y. Zhang, K. Li, N. Zhang, Y. Zheng, T. Zhang, M. Qi, P. Shum, and L. Wei, “Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point,” Opt. Express 26(22), 29148–29158 (2018).
[Crossref]

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Sun, L.

Z. Yu, L. Jin, L. Sun, J. Li, Y. Ran, and B.-O. Guan, “Highly sensitive fiber taper interferometric hydrogen sensors,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Sun, L.-P.

Sun, Q.

Tabassum, R.

R. Tabassum, S. K. Mishra, and B. D. Gupta, “Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu–ZnO thin films,” Phys. Chem. Chem. Phys. 15(28), 11868–11874 (2013).
[Crossref]

Tam, H. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Tan, Y.-N.

Tatam, R. P.

J. Hromadka, B. Tokay, S. James, R. P. Tatam, and S. Korposh, “Optical fibre long period grating gas sensor modified with metal organic framework thin films,” Sens. Actuators, B 221, 891–899 (2015).
[Crossref]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Tokay, B.

J. Hromadka, B. Tokay, S. James, R. P. Tatam, and S. Korposh, “Optical fibre long period grating gas sensor modified with metal organic framework thin films,” Sens. Actuators, B 221, 891–899 (2015).
[Crossref]

J. Hromadka, B. Tokay, R. Correia, S. P. Morgan, and S. Korposh, “Highly sensitive ethanol vapour measurements using a fibre optic sensor coated with metal organic framework ZIF-8,” in 2017 IEEE SENSORS, 1–3 (2017).
[Crossref]

Trono, C.

Van Leeuwen, C.

C. Van Leeuwen, A. Hensen, and H. A. J. Meijer, “International Journal of Greenhouse Gas Control Leak detection of CO2 pipelines with simple atmospheric CO2 sensors for carbon capture and storage,” Int. J. Greenhouse Gas Control 19, 420–431 (2013).
[Crossref]

Vengsarkar, A. M.

Villatoro, J.

Wang, X.

Wang, Z.

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators, B 194, 142–148 (2014).
[Crossref]

Wei, L.

Wu, Y.

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators, B 194, 142–148 (2014).
[Crossref]

Xu, L.

Xuan, H.

Yan, Z.

Yang, F.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref]

Yang, H.

E.-X. Chen, H. Yang, and J. Zhang, “Zeolitic imidazolate framework as formaldehyde gas sensor,” Inorg. Chem. 53(11), 5411–5413 (2014).
[Crossref]

Yang, Y.

Z. Gong, K. Chen, Y. Yang, X. Zhou, W. Peng, and Q. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sens. Actuators, B 247, 290–295 (2017).
[Crossref]

Yao, B.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators, B 194, 142–148 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]

Yogamalar, N. R.

B. Renganathan, D. Sastikumar, G. Gobi, N. R. Yogamalar, and A. C. Bose, “Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides,” Sens. Actuators, B 156(1), 263–270 (2011).
[Crossref]

Yu, Q.

Z. Gong, K. Chen, Y. Yang, X. Zhou, W. Peng, and Q. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sens. Actuators, B 247, 290–295 (2017).
[Crossref]

Yu, Z.

Z. Yu, L. Jin, L. Sun, J. Li, Y. Ran, and B.-O. Guan, “Highly sensitive fiber taper interferometric hydrogen sensors,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Z. Yu, L. Jin, L. Chen, J. Li, Y. Ran, and B.-O. Guan, “Microfiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 27(24), 2575–2578 (2015).
[Crossref]

Zhang, A.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators, B 194, 142–148 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]

Zhang, J.

E.-X. Chen, H. Yang, and J. Zhang, “Zeolitic imidazolate framework as formaldehyde gas sensor,” Inorg. Chem. 53(11), 5411–5413 (2014).
[Crossref]

Zhang, L.

Zhang, M.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17(24), 21882–21890 (2009).
[Crossref]

Zhang, N.

Zhang, N. M. Y.

Zhang, T.

Zhang, W.

Zheng, Y.

Zhou, X.

Z. Gong, K. Chen, Y. Yang, X. Zhou, W. Peng, and Q. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sens. Actuators, B 247, 290–295 (2017).
[Crossref]

ACS Sens. (1)

K.-J. Kim, P. Lu, J. T. Culp, and P. R. Ohodnicki, “Metal–organic framework thin film coated optical fiber sensors: a novel waveguide-based chemical sensing platform,” ACS Sens. 3(2), 386–394 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

IEEE Photonics J. (1)

Z. Yu, L. Jin, L. Sun, J. Li, Y. Ran, and B.-O. Guan, “Highly sensitive fiber taper interferometric hydrogen sensors,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Yu, L. Jin, L. Chen, J. Li, Y. Ran, and B.-O. Guan, “Microfiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 27(24), 2575–2578 (2015).
[Crossref]

Inorg. Chem. (1)

E.-X. Chen, H. Yang, and J. Zhang, “Zeolitic imidazolate framework as formaldehyde gas sensor,” Inorg. Chem. 53(11), 5411–5413 (2014).
[Crossref]

Int. J. Greenhouse Gas Control (1)

C. Van Leeuwen, A. Hensen, and H. A. J. Meijer, “International Journal of Greenhouse Gas Control Leak detection of CO2 pipelines with simple atmospheric CO2 sensors for carbon capture and storage,” Int. J. Greenhouse Gas Control 19, 420–431 (2013).
[Crossref]

J. Lightwave Technol. (2)

Laser Photonics Rev. (1)

O. Frazao, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Nat. Commun. (2)

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7(1), 13371 (2016).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Opt. Lett. (10)

J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
[Crossref]

G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37(11), 1974–1976 (2012).
[Crossref]

P. Pilla, C. Trono, F. Baldini, F. Chiavaioli, M. Giordano, and A. Cusano, “Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach,” Opt. Lett. 37(19), 4152–4154 (2012).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]

L.-P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B.-O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
[Crossref]

H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber based Mach–Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
[Crossref]

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref]

L. Xu, N. Liu, J. Ge, X. Wang, and M. P. Fok, “Stretchable fiber-Bragg-grating-based sensor,” Opt. Lett. 43(11), 2503–2506 (2018).
[Crossref]

S. Lacroix, F. Gonthier, R. J. Black, and J. Bures, “Tapered-fiber interferometric wavelength response: The achromatic fringe,” Opt. Lett. 13(5), 395–397 (1988).
[Crossref]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref]

Phys. Chem. Chem. Phys. (1)

R. Tabassum, S. K. Mishra, and B. D. Gupta, “Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu–ZnO thin films,” Phys. Chem. Chem. Phys. 15(28), 11868–11874 (2013).
[Crossref]

Proc. R. Soc. London, Ser. A (1)

C. Cuthbertson and M. Cuthbertson, “On the refraction and dispersion of carbon dioxide, carbon monoxide, and methane,” Proc. R. Soc. London, Ser. A 97(683), 152–159 (1920).
[Crossref]

Sens. Actuators, B (6)

J. Hromadka, B. Tokay, S. James, R. P. Tatam, and S. Korposh, “Optical fibre long period grating gas sensor modified with metal organic framework thin films,” Sens. Actuators, B 221, 891–899 (2015).
[Crossref]

E. I. Karakoleva and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators, B 146(1), 331–336 (2010).
[Crossref]

Z. Gong, K. Chen, Y. Yang, X. Zhou, W. Peng, and Q. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sens. Actuators, B 247, 290–295 (2017).
[Crossref]

L.-P. Sun, J. Li, L. Jin, Y. Ran, and B.-O. Guan, “High-birefringence microfiber Sagnac interferometer based humidity sensor,” Sens. Actuators, B 231, 696–700 (2016).
[Crossref]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators, B 194, 142–148 (2014).
[Crossref]

B. Renganathan, D. Sastikumar, G. Gobi, N. R. Yogamalar, and A. C. Bose, “Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides,” Sens. Actuators, B 156(1), 263–270 (2011).
[Crossref]

Sensors (1)

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

Other (1)

J. Hromadka, B. Tokay, R. Correia, S. P. Morgan, and S. Korposh, “Highly sensitive ethanol vapour measurements using a fibre optic sensor coated with metal organic framework ZIF-8,” in 2017 IEEE SENSORS, 1–3 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. The schematic of elliptic microfiber and electric field distribution of the two orthogonal polarization fundamental modes.
Fig. 2.
Fig. 2. (a) The RI sensitivity of the elliptic microfibers with e∼0.5 and different diameters. (b) The simulated data of a and e when the turning point occurs at the wavelength 1550nm. (c) The simulated transmission spectra as the external refractive index changes from 1 to 1.00027330 (e = 0.5, a = 1.66µm, L = 3mm). (d) The wavelengths shift of peak A and peak B.
Fig. 3.
Fig. 3. (a) The schematic of detection equipment in gas pressure and RI sensing. (b) The transmission spectra in different relative pressure. (c) The dip wavelengths shift as the function of negative gauge pressure. (d) The RI sensitivity as the function of wavelength.
Fig. 4.
Fig. 4. (a) Schematic of the detection system. (b) Transmission spectra in different CO2 concentrations. (c) Dip wavelength shift as the CO2 concentration detection experiment continues. (d) Dip wavelength shift as a function of CO2 concentration. (e) The RI sensitivity as the function of wavelength. (f) The wavelengths shift in the test of repeatability (with an elliptic microfiber having a group birefringence turning point at ∼1470 nm).
Fig. 5.
Fig. 5. (a) Transmission spectra for the temperature range of 30 °C to 90 °C. (b) Dip wavelength shift as a function of temperature.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S n = d λ / d λ dn dn = λ B λ B / λ B n = λ G B n
n = 1 + ( n s 1 ) p p S T S T

Metrics