Abstract

Flexible electronics, as a futuristic technology, is presenting tremendous impact in areas of wearable displaying, energy saving, and adaptive camouflage. In this work, we constructed a simple triple-layered electrochemical device with high flexibility using the electroplated nickel (Ni) grid electrode and the multifunctional hydrogel. The Ni grid electrode with low resistance (0.5 Ω/sq), high optical transparency (84.8%) and good mechanical flexibility, is beneficial for efficient electron injection, while the transparent lithium chloride hydrogel functions simultaneously for ion storage, ion transportation and counter-conducting. The thin polymer poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) film is utilized as the electrochromic (EC) material and it also distributes the electrons evenly for uniform coloration. The triple-layered EC architecture not only simplifies the manufacturing procedures but also improves the device performance in terms of optical contrast and mechanical robustness. The device shows fast response for coloration and bleaching with an absolute transmittance contrast of 40% and a contrast retention over 72% after 2500 bending cycles. The ability of the flexible electrochromic device for conformable attaching was also investigated without obvious performance degradation. The electroplated Ni grid electrode and the multifunctional hydrogel are advantageous in constructing flexible electrochromic devices in terms of the response time, the working stability and the bending capability, paving a way for next-generation flexible electronics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimized ion diffusion depth for maximizing optical contrast of environmentally friendly PEDOT:PSS electrochromic devices

Joo Yeon Kim, Ji-Young Oh, Sanghoon Cheon, Hyunkoo Lee, Jonghee Lee, Jeong-Ik Lee, Hojun Ryu, Seong M. Cho, Tae-Youb Kim, Chil-Sung Ah, Yong-Hae Kim, and Chi-Sun Hwang
Opt. Mater. Express 6(10) 3127-3134 (2016)

High-performance composite Ag-Ni mesh based flexible transparent conductive film as multifunctional devices

Su Shen, Shi-Yu Chen, Dong-Yu Zhang, and Yan-Hua Liu
Opt. Express 26(21) 27545-27554 (2018)

Embedded Ag mesh electrodes for polymer dispersed liquid crystal devices on flexible substrate

Yanhua Liu, Su Shen, Jin Hu, and Linsen Chen
Opt. Express 24(22) 25774-25784 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Liu, J. Xu, D. Chen, and G. Shen, “Flexible electronics based on inorganic nanowires,” Chem. Soc. Rev. 44(1), 161–192 (2015).
    [Crossref]
  2. J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
    [Crossref]
  3. A. L. S. Eh, A. W. M. Tan, X. Cheng, S. Magdassi, and P. S. Lee, “Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects,” Energy Technol. 6(1), 33–45 (2018).
    [Crossref]
  4. S. G. Lee, D. Y. Lee, H. S. Lim, D. H. Lee, S. Lee, and K. Cho, “Switchable transparency and wetting of elastomeric smart windows,” Adv. Mater. 22(44), 5013–5017 (2010).
    [Crossref]
  5. E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50(73), 10555–10572 (2014).
    [Crossref]
  6. P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
    [Crossref]
  7. W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
    [Crossref]
  8. L. X. YingZhu, T. Chang, J. Bell, A. Huang, P. Jin, and S. Bao, “High performance all-solid-state electrochromic device based on LixNiOy layer with gradient Li distribution,” Electrochim. Acta 317, 10–16 (2019).
    [Crossref]
  9. J. Jensen and F. C. Krebs, “From the bottom up-flexible solid state electrochromic devices,” Adv. Mater. 26(42), 7231–7234 (2014).
    [Crossref]
  10. A. Bessière, J.-C. Badot, M.-C. Certiat, J. Livage, V. Lucas, and N. Baffier, “Sol-gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate,” Electrochim. Acta 46(13-14), 2251–2256 (2001).
    [Crossref]
  11. C. M. White, D. T. Gillaspie, E. Whitney, S.-H. Lee, and A. C. Dillon, “Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition,” Thin Solid Films 517(12), 3596–3599 (2009).
    [Crossref]
  12. L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, and Y. Xie, “High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets,” Sci. Rep. 3(1), 1936 (2013).
    [Crossref]
  13. H.-J. Yen, C.-J. Chen, and G.-S. Liou, “Flexible multi-colored electrochromic and volatile polymer memory devices derived from starburst triarylamine-based electroactive polyimide,” Adv. Funct. Mater. 23(42), 5307–5316 (2013).
    [Crossref]
  14. A. Aliprandi, T. Moreira, C. Anichini, M. A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samorì, “Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics,” Adv. Mater. 29(41), 1703225 (2017).
    [Crossref]
  15. K. Zhou, H. Wang, J. Jiu, J. Liu, H. Yan, and K. Suganuma, “Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications,” Chem. Eng. J. 345, 290–299 (2018).
    [Crossref]
  16. A. A. Argun, A. Cirpan, and J. R. Reynolds, “The first truly all-polymer electrochromic device,” Adv. Mater. 15(16), 1338–1341 (2003).
    [Crossref]
  17. R. Singh, J. Tharion, S. Murugan, and A. Kumar, “ITO-free solution-processed flexible electrochromic devices based on PEDOT: PSS as transparent conducting electrode,” ACS Appl. Mater. Interfaces 9(23), 19427–19435 (2017).
    [Crossref]
  18. L. V. Kayser and D. J. Lipomi, “Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS,” Adv. Mater. 31(10), 1806133 (2019).
    [Crossref]
  19. S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, and H. Wu, “Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows,” Adv. Mater. 29(41), 1703238 (2017).
    [Crossref]
  20. L. Shen, L. Du, S. Tan, Z. Zang, C. Zhao, and W. Mai, “Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires,” Chem. Commun. 52(37), 6296–6299 (2016).
    [Crossref]
  21. C. Lee, Y. Oh, I. S. Yoon, S. H. Kim, B.-K. Ju, and J.-M. Hong, “Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices,” Sci. Rep. 8(1), 2763 (2018).
    [Crossref]
  22. J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
    [Crossref]
  23. W. Kang, M.-F. Lin, J. Chen, and P. S. Lee, “Highly transparent conducting nanopaper for solid state foldable electrochromic devices,” Small 12(46), 6370–6377 (2016).
    [Crossref]
  24. T. G. Yun, M. Park, D.-H. Kim, D. Kim, J. Y. Cheong, J. G. Bae, S. M. Han, and I.-D. Kim, “All-transparent stretchable electrochromic supercapacitor wearable patch device,” ACS Nano 13(3), 3141–3150 (2019).
    [Crossref]
  25. K. Mallikarjuna and H. Kim, “Highly transparent conductive reduced graphene oxide/silver nanowires/silver grid electrodes for low-voltage electrochromic smart windows,” ACS Appl. Mater. Interfaces 11(2), 1969–1978 (2019).
    [Crossref]
  26. C. Chen, Y. G. Jia, D. Jia, S. X. Li, S. L. Ji, and C. H. Ye, “Formulation of concentrated and stable ink of silver nanowires with applications in transparent conductive films,” RSC Adv. 7(4), 1936–1942 (2017).
    [Crossref]
  27. C. Chen, Y. Zhao, W. Wei, J. Q. Tao, G. W. Lei, D. Jia, M. J. Wan, S. X. Li, S. L. Ji, and C. H. Ye, “Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity,” J. Mater. Chem. C 5(9), 2240–2246 (2017).
    [Crossref]
  28. C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
    [Crossref]
  29. G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, and P. S. Lee, “Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors,” Adv. Energy Mater. 6(4), 1501882 (2016).
    [Crossref]
  30. M. Layani, P. Darmawan, W. L. Foo, L. Liu, A. Kamyshny, D. Mandler, S. Magdassi, and P. S. Lee, “Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes,” Nanoscale 6(9), 4572–4576 (2014).
    [Crossref]
  31. L. Liu, M. Layani, S. Yellinek, A. Kamyshny, H. Ling, P. S. Lee, S. Magdassi, and D. Mandler, ““Nano to nano” electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings,” J. Mater. Chem. A 2(38), 16224–16229 (2014).
    [Crossref]
  32. G. Cai, X. Cheng, M. Layani, A. W. M. Tan, S. Li, A. Eh, D. Gao, S. Magdassi, and P. S. Lee, “Direct inkjet-patterning of energy efficient flexible electrochromics,” Nano Energy 49, 147–154 (2018).
    [Crossref]
  33. J. Jensen, M. Hösel, I. Kim, J.-S. Yu, J. Jo, and F. C. Krebs, “Fast switching ITO free electrochromic devices,” Adv. Funct. Mater. 24(9), 1228–1233 (2014).
    [Crossref]
  34. R. R. Søndergaard, M. Hösel, M. Jørgensen, and F. C. Krebs, “Fast printing of thin, large area, ITO free electrochromics on flexible barrier foil,” J. Polym. Sci., Part B: Polym. Phys. 51(2), 132–136 (2013).
    [Crossref]
  35. T. Qiu, B. Luo, M. Liang, J. Ning, B. Wang, X. Li, and L. Zhi, “Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices,” Carbon 81, 232–238 (2015).
    [Crossref]
  36. Y. Kim, H. Shin, M. Han, S. Seo, W. Lee, J. Na, C. Park, and E. Kim, “Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer,” Adv. Funct. Mater. 27(31), 1701192 (2017).
    [Crossref]
  37. C. Keplinger, J.-Y. Sun, C. C. Foo, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
    [Crossref]
  38. H. Kai, W. Suda, Y. Ogawa, K. Nagamine, and M. Nishizawa, “Intrinsically stretchable electrochromic display by a composite film of poly (3, 4-ethylenedioxythiophene) and polyurethane,” ACS Appl. Mater. Interfaces 9(23), 19513–19518 (2017).
    [Crossref]
  39. H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang, Q. Wang, and H. Wang, “Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards,” Mater. Horiz. 5(5), 1000–1007 (2018).
    [Crossref]
  40. Y.-H. Liu, J.-L. Xu, X. Gao, Y.-L. Sun, J.-J. Lv, S. Shen, L.-S. Chen, and S.-D. Wang, “Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors,” Energy Environ. Sci. 10(12), 2534–2543 (2017).
    [Crossref]

2019 (5)

L. X. YingZhu, T. Chang, J. Bell, A. Huang, P. Jin, and S. Bao, “High performance all-solid-state electrochromic device based on LixNiOy layer with gradient Li distribution,” Electrochim. Acta 317, 10–16 (2019).
[Crossref]

L. V. Kayser and D. J. Lipomi, “Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS,” Adv. Mater. 31(10), 1806133 (2019).
[Crossref]

T. G. Yun, M. Park, D.-H. Kim, D. Kim, J. Y. Cheong, J. G. Bae, S. M. Han, and I.-D. Kim, “All-transparent stretchable electrochromic supercapacitor wearable patch device,” ACS Nano 13(3), 3141–3150 (2019).
[Crossref]

K. Mallikarjuna and H. Kim, “Highly transparent conductive reduced graphene oxide/silver nanowires/silver grid electrodes for low-voltage electrochromic smart windows,” ACS Appl. Mater. Interfaces 11(2), 1969–1978 (2019).
[Crossref]

C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
[Crossref]

2018 (5)

G. Cai, X. Cheng, M. Layani, A. W. M. Tan, S. Li, A. Eh, D. Gao, S. Magdassi, and P. S. Lee, “Direct inkjet-patterning of energy efficient flexible electrochromics,” Nano Energy 49, 147–154 (2018).
[Crossref]

C. Lee, Y. Oh, I. S. Yoon, S. H. Kim, B.-K. Ju, and J.-M. Hong, “Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices,” Sci. Rep. 8(1), 2763 (2018).
[Crossref]

A. L. S. Eh, A. W. M. Tan, X. Cheng, S. Magdassi, and P. S. Lee, “Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects,” Energy Technol. 6(1), 33–45 (2018).
[Crossref]

K. Zhou, H. Wang, J. Jiu, J. Liu, H. Yan, and K. Suganuma, “Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications,” Chem. Eng. J. 345, 290–299 (2018).
[Crossref]

H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang, Q. Wang, and H. Wang, “Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards,” Mater. Horiz. 5(5), 1000–1007 (2018).
[Crossref]

2017 (9)

Y.-H. Liu, J.-L. Xu, X. Gao, Y.-L. Sun, J.-J. Lv, S. Shen, L.-S. Chen, and S.-D. Wang, “Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors,” Energy Environ. Sci. 10(12), 2534–2543 (2017).
[Crossref]

H. Kai, W. Suda, Y. Ogawa, K. Nagamine, and M. Nishizawa, “Intrinsically stretchable electrochromic display by a composite film of poly (3, 4-ethylenedioxythiophene) and polyurethane,” ACS Appl. Mater. Interfaces 9(23), 19513–19518 (2017).
[Crossref]

A. Aliprandi, T. Moreira, C. Anichini, M. A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samorì, “Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics,” Adv. Mater. 29(41), 1703225 (2017).
[Crossref]

R. Singh, J. Tharion, S. Murugan, and A. Kumar, “ITO-free solution-processed flexible electrochromic devices based on PEDOT: PSS as transparent conducting electrode,” ACS Appl. Mater. Interfaces 9(23), 19427–19435 (2017).
[Crossref]

J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
[Crossref]

S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, and H. Wu, “Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows,” Adv. Mater. 29(41), 1703238 (2017).
[Crossref]

C. Chen, Y. G. Jia, D. Jia, S. X. Li, S. L. Ji, and C. H. Ye, “Formulation of concentrated and stable ink of silver nanowires with applications in transparent conductive films,” RSC Adv. 7(4), 1936–1942 (2017).
[Crossref]

C. Chen, Y. Zhao, W. Wei, J. Q. Tao, G. W. Lei, D. Jia, M. J. Wan, S. X. Li, S. L. Ji, and C. H. Ye, “Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity,” J. Mater. Chem. C 5(9), 2240–2246 (2017).
[Crossref]

Y. Kim, H. Shin, M. Han, S. Seo, W. Lee, J. Na, C. Park, and E. Kim, “Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer,” Adv. Funct. Mater. 27(31), 1701192 (2017).
[Crossref]

2016 (3)

G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, and P. S. Lee, “Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors,” Adv. Energy Mater. 6(4), 1501882 (2016).
[Crossref]

L. Shen, L. Du, S. Tan, Z. Zang, C. Zhao, and W. Mai, “Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires,” Chem. Commun. 52(37), 6296–6299 (2016).
[Crossref]

W. Kang, M.-F. Lin, J. Chen, and P. S. Lee, “Highly transparent conducting nanopaper for solid state foldable electrochromic devices,” Small 12(46), 6370–6377 (2016).
[Crossref]

2015 (2)

Z. Liu, J. Xu, D. Chen, and G. Shen, “Flexible electronics based on inorganic nanowires,” Chem. Soc. Rev. 44(1), 161–192 (2015).
[Crossref]

T. Qiu, B. Luo, M. Liang, J. Ning, B. Wang, X. Li, and L. Zhi, “Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices,” Carbon 81, 232–238 (2015).
[Crossref]

2014 (5)

J. Jensen and F. C. Krebs, “From the bottom up-flexible solid state electrochromic devices,” Adv. Mater. 26(42), 7231–7234 (2014).
[Crossref]

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50(73), 10555–10572 (2014).
[Crossref]

M. Layani, P. Darmawan, W. L. Foo, L. Liu, A. Kamyshny, D. Mandler, S. Magdassi, and P. S. Lee, “Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes,” Nanoscale 6(9), 4572–4576 (2014).
[Crossref]

L. Liu, M. Layani, S. Yellinek, A. Kamyshny, H. Ling, P. S. Lee, S. Magdassi, and D. Mandler, ““Nano to nano” electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings,” J. Mater. Chem. A 2(38), 16224–16229 (2014).
[Crossref]

J. Jensen, M. Hösel, I. Kim, J.-S. Yu, J. Jo, and F. C. Krebs, “Fast switching ITO free electrochromic devices,” Adv. Funct. Mater. 24(9), 1228–1233 (2014).
[Crossref]

2013 (4)

R. R. Søndergaard, M. Hösel, M. Jørgensen, and F. C. Krebs, “Fast printing of thin, large area, ITO free electrochromics on flexible barrier foil,” J. Polym. Sci., Part B: Polym. Phys. 51(2), 132–136 (2013).
[Crossref]

C. Keplinger, J.-Y. Sun, C. C. Foo, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
[Crossref]

L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, and Y. Xie, “High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets,” Sci. Rep. 3(1), 1936 (2013).
[Crossref]

H.-J. Yen, C.-J. Chen, and G.-S. Liou, “Flexible multi-colored electrochromic and volatile polymer memory devices derived from starburst triarylamine-based electroactive polyimide,” Adv. Funct. Mater. 23(42), 5307–5316 (2013).
[Crossref]

2010 (3)

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
[Crossref]

S. G. Lee, D. Y. Lee, H. S. Lim, D. H. Lee, S. Lee, and K. Cho, “Switchable transparency and wetting of elastomeric smart windows,” Adv. Mater. 22(44), 5013–5017 (2010).
[Crossref]

2009 (2)

P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
[Crossref]

C. M. White, D. T. Gillaspie, E. Whitney, S.-H. Lee, and A. C. Dillon, “Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition,” Thin Solid Films 517(12), 3596–3599 (2009).
[Crossref]

2003 (1)

A. A. Argun, A. Cirpan, and J. R. Reynolds, “The first truly all-polymer electrochromic device,” Adv. Mater. 15(16), 1338–1341 (2003).
[Crossref]

2001 (1)

A. Bessière, J.-C. Badot, M.-C. Certiat, J. Livage, V. Lucas, and N. Baffier, “Sol-gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate,” Electrochim. Acta 46(13-14), 2251–2256 (2001).
[Crossref]

Aliprandi, A.

A. Aliprandi, T. Moreira, C. Anichini, M. A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samorì, “Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics,” Adv. Mater. 29(41), 1703225 (2017).
[Crossref]

Anichini, C.

A. Aliprandi, T. Moreira, C. Anichini, M. A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samorì, “Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics,” Adv. Mater. 29(41), 1703225 (2017).
[Crossref]

Argun, A. A.

A. A. Argun, A. Cirpan, and J. R. Reynolds, “The first truly all-polymer electrochromic device,” Adv. Mater. 15(16), 1338–1341 (2003).
[Crossref]

Badot, J.-C.

A. Bessière, J.-C. Badot, M.-C. Certiat, J. Livage, V. Lucas, and N. Baffier, “Sol-gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate,” Electrochim. Acta 46(13-14), 2251–2256 (2001).
[Crossref]

Bae, J. G.

T. G. Yun, M. Park, D.-H. Kim, D. Kim, J. Y. Cheong, J. G. Bae, S. M. Han, and I.-D. Kim, “All-transparent stretchable electrochromic supercapacitor wearable patch device,” ACS Nano 13(3), 3141–3150 (2019).
[Crossref]

Baffier, N.

A. Bessière, J.-C. Badot, M.-C. Certiat, J. Livage, V. Lucas, and N. Baffier, “Sol-gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate,” Electrochim. Acta 46(13-14), 2251–2256 (2001).
[Crossref]

Bai, X.

S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, and H. Wu, “Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows,” Adv. Mater. 29(41), 1703238 (2017).
[Crossref]

Bao, S.

L. X. YingZhu, T. Chang, J. Bell, A. Huang, P. Jin, and S. Bao, “High performance all-solid-state electrochromic device based on LixNiOy layer with gradient Li distribution,” Electrochim. Acta 317, 10–16 (2019).
[Crossref]

Bell, J.

L. X. YingZhu, T. Chang, J. Bell, A. Huang, P. Jin, and S. Bao, “High performance all-solid-state electrochromic device based on LixNiOy layer with gradient Li distribution,” Electrochim. Acta 317, 10–16 (2019).
[Crossref]

Berggren, M.

P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
[Crossref]

Bessière, A.

A. Bessière, J.-C. Badot, M.-C. Certiat, J. Livage, V. Lucas, and N. Baffier, “Sol-gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate,” Electrochim. Acta 46(13-14), 2251–2256 (2001).
[Crossref]

Bonacchi, S.

A. Aliprandi, T. Moreira, C. Anichini, M. A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samorì, “Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics,” Adv. Mater. 29(41), 1703225 (2017).
[Crossref]

Bruna, M.

A. Aliprandi, T. Moreira, C. Anichini, M. A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samorì, “Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics,” Adv. Mater. 29(41), 1703225 (2017).
[Crossref]

Cai, G.

G. Cai, X. Cheng, M. Layani, A. W. M. Tan, S. Li, A. Eh, D. Gao, S. Magdassi, and P. S. Lee, “Direct inkjet-patterning of energy efficient flexible electrochromics,” Nano Energy 49, 147–154 (2018).
[Crossref]

G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, and P. S. Lee, “Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors,” Adv. Energy Mater. 6(4), 1501882 (2016).
[Crossref]

Certiat, M.-C.

A. Bessière, J.-C. Badot, M.-C. Certiat, J. Livage, V. Lucas, and N. Baffier, “Sol-gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate,” Electrochim. Acta 46(13-14), 2251–2256 (2001).
[Crossref]

Chang, T.

L. X. YingZhu, T. Chang, J. Bell, A. Huang, P. Jin, and S. Bao, “High performance all-solid-state electrochromic device based on LixNiOy layer with gradient Li distribution,” Electrochim. Acta 317, 10–16 (2019).
[Crossref]

Chen, C.

C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
[Crossref]

C. Chen, Y. Zhao, W. Wei, J. Q. Tao, G. W. Lei, D. Jia, M. J. Wan, S. X. Li, S. L. Ji, and C. H. Ye, “Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity,” J. Mater. Chem. C 5(9), 2240–2246 (2017).
[Crossref]

C. Chen, Y. G. Jia, D. Jia, S. X. Li, S. L. Ji, and C. H. Ye, “Formulation of concentrated and stable ink of silver nanowires with applications in transparent conductive films,” RSC Adv. 7(4), 1936–1942 (2017).
[Crossref]

Chen, C.-J.

H.-J. Yen, C.-J. Chen, and G.-S. Liou, “Flexible multi-colored electrochromic and volatile polymer memory devices derived from starburst triarylamine-based electroactive polyimide,” Adv. Funct. Mater. 23(42), 5307–5316 (2013).
[Crossref]

Chen, D.

Z. Liu, J. Xu, D. Chen, and G. Shen, “Flexible electronics based on inorganic nanowires,” Chem. Soc. Rev. 44(1), 161–192 (2015).
[Crossref]

Chen, J.

W. Kang, M.-F. Lin, J. Chen, and P. S. Lee, “Highly transparent conducting nanopaper for solid state foldable electrochromic devices,” Small 12(46), 6370–6377 (2016).
[Crossref]

G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, and P. S. Lee, “Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors,” Adv. Energy Mater. 6(4), 1501882 (2016).
[Crossref]

Chen, L.-S.

Y.-H. Liu, J.-L. Xu, X. Gao, Y.-L. Sun, J.-J. Lv, S. Shen, L.-S. Chen, and S.-D. Wang, “Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors,” Energy Environ. Sci. 10(12), 2534–2543 (2017).
[Crossref]

Cheng, X.

G. Cai, X. Cheng, M. Layani, A. W. M. Tan, S. Li, A. Eh, D. Gao, S. Magdassi, and P. S. Lee, “Direct inkjet-patterning of energy efficient flexible electrochromics,” Nano Energy 49, 147–154 (2018).
[Crossref]

A. L. S. Eh, A. W. M. Tan, X. Cheng, S. Magdassi, and P. S. Lee, “Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects,” Energy Technol. 6(1), 33–45 (2018).
[Crossref]

Cheong, J. Y.

T. G. Yun, M. Park, D.-H. Kim, D. Kim, J. Y. Cheong, J. G. Bae, S. M. Han, and I.-D. Kim, “All-transparent stretchable electrochromic supercapacitor wearable patch device,” ACS Nano 13(3), 3141–3150 (2019).
[Crossref]

Cho, K.

S. G. Lee, D. Y. Lee, H. S. Lim, D. H. Lee, S. Lee, and K. Cho, “Switchable transparency and wetting of elastomeric smart windows,” Adv. Mater. 22(44), 5013–5017 (2010).
[Crossref]

Chu, J. R.

C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
[Crossref]

Cirpan, A.

A. A. Argun, A. Cirpan, and J. R. Reynolds, “The first truly all-polymer electrochromic device,” Adv. Mater. 15(16), 1338–1341 (2003).
[Crossref]

Cui, M.

G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, and P. S. Lee, “Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors,” Adv. Energy Mater. 6(4), 1501882 (2016).
[Crossref]

Darmawan, P.

G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, and P. S. Lee, “Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors,” Adv. Energy Mater. 6(4), 1501882 (2016).
[Crossref]

M. Layani, P. Darmawan, W. L. Foo, L. Liu, A. Kamyshny, D. Mandler, S. Magdassi, and P. S. Lee, “Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes,” Nanoscale 6(9), 4572–4576 (2014).
[Crossref]

Dillon, A. C.

C. M. White, D. T. Gillaspie, E. Whitney, S.-H. Lee, and A. C. Dillon, “Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition,” Thin Solid Films 517(12), 3596–3599 (2009).
[Crossref]

Du, L.

L. Shen, L. Du, S. Tan, Z. Zang, C. Zhao, and W. Mai, “Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires,” Chem. Commun. 52(37), 6296–6299 (2016).
[Crossref]

Dyer, A. L.

P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
[Crossref]

Eh, A.

G. Cai, X. Cheng, M. Layani, A. W. M. Tan, S. Li, A. Eh, D. Gao, S. Magdassi, and P. S. Lee, “Direct inkjet-patterning of energy efficient flexible electrochromics,” Nano Energy 49, 147–154 (2018).
[Crossref]

Eh, A. L. S.

A. L. S. Eh, A. W. M. Tan, X. Cheng, S. Magdassi, and P. S. Lee, “Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects,” Energy Technol. 6(1), 33–45 (2018).
[Crossref]

Eredia, M.

A. Aliprandi, T. Moreira, C. Anichini, M. A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samorì, “Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics,” Adv. Mater. 29(41), 1703225 (2017).
[Crossref]

Fang, H.

H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang, Q. Wang, and H. Wang, “Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards,” Mater. Horiz. 5(5), 1000–1007 (2018).
[Crossref]

Foo, C. C.

C. Keplinger, J.-Y. Sun, C. C. Foo, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
[Crossref]

Foo, W. L.

M. Layani, P. Darmawan, W. L. Foo, L. Liu, A. Kamyshny, D. Mandler, S. Magdassi, and P. S. Lee, “Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes,” Nanoscale 6(9), 4572–4576 (2014).
[Crossref]

Fukuoka, T.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Gao, D.

G. Cai, X. Cheng, M. Layani, A. W. M. Tan, S. Li, A. Eh, D. Gao, S. Magdassi, and P. S. Lee, “Direct inkjet-patterning of energy efficient flexible electrochromics,” Nano Energy 49, 147–154 (2018).
[Crossref]

Gao, X.

Y.-H. Liu, J.-L. Xu, X. Gao, Y.-L. Sun, J.-J. Lv, S. Shen, L.-S. Chen, and S.-D. Wang, “Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors,” Energy Environ. Sci. 10(12), 2534–2543 (2017).
[Crossref]

Gillaspie, D. T.

C. M. White, D. T. Gillaspie, E. Whitney, S.-H. Lee, and A. C. Dillon, “Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition,” Thin Solid Films 517(12), 3596–3599 (2009).
[Crossref]

Guan, M.

L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, and Y. Xie, “High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets,” Sci. Rep. 3(1), 1936 (2013).
[Crossref]

Han, M.

Y. Kim, H. Shin, M. Han, S. Seo, W. Lee, J. Na, C. Park, and E. Kim, “Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer,” Adv. Funct. Mater. 27(31), 1701192 (2017).
[Crossref]

Han, S. M.

T. G. Yun, M. Park, D.-H. Kim, D. Kim, J. Y. Cheong, J. G. Bae, S. M. Han, and I.-D. Kim, “All-transparent stretchable electrochromic supercapacitor wearable patch device,” ACS Nano 13(3), 3141–3150 (2019).
[Crossref]

Hennerdal, L.-O.

P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
[Crossref]

Higuchi, T.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Hong, J.-M.

C. Lee, Y. Oh, I. S. Yoon, S. H. Kim, B.-K. Ju, and J.-M. Hong, “Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices,” Sci. Rep. 8(1), 2763 (2018).
[Crossref]

Hösel, M.

J. Jensen, M. Hösel, I. Kim, J.-S. Yu, J. Jo, and F. C. Krebs, “Fast switching ITO free electrochromic devices,” Adv. Funct. Mater. 24(9), 1228–1233 (2014).
[Crossref]

R. R. Søndergaard, M. Hösel, M. Jørgensen, and F. C. Krebs, “Fast printing of thin, large area, ITO free electrochromics on flexible barrier foil,” J. Polym. Sci., Part B: Polym. Phys. 51(2), 132–136 (2013).
[Crossref]

Hu, Y. L.

C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
[Crossref]

Huang, A.

L. X. YingZhu, T. Chang, J. Bell, A. Huang, P. Jin, and S. Bao, “High performance all-solid-state electrochromic device based on LixNiOy layer with gradient Li distribution,” Electrochim. Acta 317, 10–16 (2019).
[Crossref]

Huang, K.

S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, and H. Wu, “Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows,” Adv. Mater. 29(41), 1703238 (2017).
[Crossref]

Huang, Y.

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
[Crossref]

Huang, Z. C.

C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
[Crossref]

Jensen, J.

J. Jensen, M. Hösel, I. Kim, J.-S. Yu, J. Jo, and F. C. Krebs, “Fast switching ITO free electrochromic devices,” Adv. Funct. Mater. 24(9), 1228–1233 (2014).
[Crossref]

J. Jensen and F. C. Krebs, “From the bottom up-flexible solid state electrochromic devices,” Adv. Mater. 26(42), 7231–7234 (2014).
[Crossref]

Ji, S. L.

C. Chen, Y. Zhao, W. Wei, J. Q. Tao, G. W. Lei, D. Jia, M. J. Wan, S. X. Li, S. L. Ji, and C. H. Ye, “Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity,” J. Mater. Chem. C 5(9), 2240–2246 (2017).
[Crossref]

C. Chen, Y. G. Jia, D. Jia, S. X. Li, S. L. Ji, and C. H. Ye, “Formulation of concentrated and stable ink of silver nanowires with applications in transparent conductive films,” RSC Adv. 7(4), 1936–1942 (2017).
[Crossref]

Jia, D.

C. Chen, Y. Zhao, W. Wei, J. Q. Tao, G. W. Lei, D. Jia, M. J. Wan, S. X. Li, S. L. Ji, and C. H. Ye, “Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity,” J. Mater. Chem. C 5(9), 2240–2246 (2017).
[Crossref]

C. Chen, Y. G. Jia, D. Jia, S. X. Li, S. L. Ji, and C. H. Ye, “Formulation of concentrated and stable ink of silver nanowires with applications in transparent conductive films,” RSC Adv. 7(4), 1936–1942 (2017).
[Crossref]

Jia, Y. G.

C. Chen, Y. G. Jia, D. Jia, S. X. Li, S. L. Ji, and C. H. Ye, “Formulation of concentrated and stable ink of silver nanowires with applications in transparent conductive films,” RSC Adv. 7(4), 1936–1942 (2017).
[Crossref]

Jiang, L.

C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
[Crossref]

Jiao, Y. L.

C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
[Crossref]

Jin, P.

L. X. YingZhu, T. Chang, J. Bell, A. Huang, P. Jin, and S. Bao, “High performance all-solid-state electrochromic device based on LixNiOy layer with gradient Li distribution,” Electrochim. Acta 317, 10–16 (2019).
[Crossref]

Jiu, J.

K. Zhou, H. Wang, J. Jiu, J. Liu, H. Yan, and K. Suganuma, “Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications,” Chem. Eng. J. 345, 290–299 (2018).
[Crossref]

Jo, J.

J. Jensen, M. Hösel, I. Kim, J.-S. Yu, J. Jo, and F. C. Krebs, “Fast switching ITO free electrochromic devices,” Adv. Funct. Mater. 24(9), 1228–1233 (2014).
[Crossref]

Jørgensen, M.

R. R. Søndergaard, M. Hösel, M. Jørgensen, and F. C. Krebs, “Fast printing of thin, large area, ITO free electrochromics on flexible barrier foil,” J. Polym. Sci., Part B: Polym. Phys. 51(2), 132–136 (2013).
[Crossref]

Ju, B.-K.

C. Lee, Y. Oh, I. S. Yoon, S. H. Kim, B.-K. Ju, and J.-M. Hong, “Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices,” Sci. Rep. 8(1), 2763 (2018).
[Crossref]

Kai, H.

H. Kai, W. Suda, Y. Ogawa, K. Nagamine, and M. Nishizawa, “Intrinsically stretchable electrochromic display by a composite film of poly (3, 4-ethylenedioxythiophene) and polyurethane,” ACS Appl. Mater. Interfaces 9(23), 19513–19518 (2017).
[Crossref]

Kamyshny, A.

M. Layani, P. Darmawan, W. L. Foo, L. Liu, A. Kamyshny, D. Mandler, S. Magdassi, and P. S. Lee, “Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes,” Nanoscale 6(9), 4572–4576 (2014).
[Crossref]

L. Liu, M. Layani, S. Yellinek, A. Kamyshny, H. Ling, P. S. Lee, S. Magdassi, and D. Mandler, ““Nano to nano” electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings,” J. Mater. Chem. A 2(38), 16224–16229 (2014).
[Crossref]

Kang, W.

W. Kang, M.-F. Lin, J. Chen, and P. S. Lee, “Highly transparent conducting nanopaper for solid state foldable electrochromic devices,” Small 12(46), 6370–6377 (2016).
[Crossref]

Kayser, L. V.

L. V. Kayser and D. J. Lipomi, “Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS,” Adv. Mater. 31(10), 1806133 (2019).
[Crossref]

Keplinger, C.

C. Keplinger, J.-Y. Sun, C. C. Foo, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
[Crossref]

Kim, D.

T. G. Yun, M. Park, D.-H. Kim, D. Kim, J. Y. Cheong, J. G. Bae, S. M. Han, and I.-D. Kim, “All-transparent stretchable electrochromic supercapacitor wearable patch device,” ACS Nano 13(3), 3141–3150 (2019).
[Crossref]

Kim, D.-H.

T. G. Yun, M. Park, D.-H. Kim, D. Kim, J. Y. Cheong, J. G. Bae, S. M. Han, and I.-D. Kim, “All-transparent stretchable electrochromic supercapacitor wearable patch device,” ACS Nano 13(3), 3141–3150 (2019).
[Crossref]

Kim, E.

Y. Kim, H. Shin, M. Han, S. Seo, W. Lee, J. Na, C. Park, and E. Kim, “Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer,” Adv. Funct. Mater. 27(31), 1701192 (2017).
[Crossref]

Kim, H.

K. Mallikarjuna and H. Kim, “Highly transparent conductive reduced graphene oxide/silver nanowires/silver grid electrodes for low-voltage electrochromic smart windows,” ACS Appl. Mater. Interfaces 11(2), 1969–1978 (2019).
[Crossref]

Kim, I.

J. Jensen, M. Hösel, I. Kim, J.-S. Yu, J. Jo, and F. C. Krebs, “Fast switching ITO free electrochromic devices,” Adv. Funct. Mater. 24(9), 1228–1233 (2014).
[Crossref]

Kim, I.-D.

T. G. Yun, M. Park, D.-H. Kim, D. Kim, J. Y. Cheong, J. G. Bae, S. M. Han, and I.-D. Kim, “All-transparent stretchable electrochromic supercapacitor wearable patch device,” ACS Nano 13(3), 3141–3150 (2019).
[Crossref]

Kim, S. H.

C. Lee, Y. Oh, I. S. Yoon, S. H. Kim, B.-K. Ju, and J.-M. Hong, “Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices,” Sci. Rep. 8(1), 2763 (2018).
[Crossref]

Kim, Y.

Y. Kim, H. Shin, M. Han, S. Seo, W. Lee, J. Na, C. Park, and E. Kim, “Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer,” Adv. Funct. Mater. 27(31), 1701192 (2017).
[Crossref]

Krebs, F. C.

J. Jensen, M. Hösel, I. Kim, J.-S. Yu, J. Jo, and F. C. Krebs, “Fast switching ITO free electrochromic devices,” Adv. Funct. Mater. 24(9), 1228–1233 (2014).
[Crossref]

J. Jensen and F. C. Krebs, “From the bottom up-flexible solid state electrochromic devices,” Adv. Mater. 26(42), 7231–7234 (2014).
[Crossref]

R. R. Søndergaard, M. Hösel, M. Jørgensen, and F. C. Krebs, “Fast printing of thin, large area, ITO free electrochromics on flexible barrier foil,” J. Polym. Sci., Part B: Polym. Phys. 51(2), 132–136 (2013).
[Crossref]

Kumar, A.

R. Singh, J. Tharion, S. Murugan, and A. Kumar, “ITO-free solution-processed flexible electrochromic devices based on PEDOT: PSS as transparent conducting electrode,” ACS Appl. Mater. Interfaces 9(23), 19427–19435 (2017).
[Crossref]

Laia, C. A. T.

A. Aliprandi, T. Moreira, C. Anichini, M. A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samorì, “Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics,” Adv. Mater. 29(41), 1703225 (2017).
[Crossref]

Layani, M.

G. Cai, X. Cheng, M. Layani, A. W. M. Tan, S. Li, A. Eh, D. Gao, S. Magdassi, and P. S. Lee, “Direct inkjet-patterning of energy efficient flexible electrochromics,” Nano Energy 49, 147–154 (2018).
[Crossref]

L. Liu, M. Layani, S. Yellinek, A. Kamyshny, H. Ling, P. S. Lee, S. Magdassi, and D. Mandler, ““Nano to nano” electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings,” J. Mater. Chem. A 2(38), 16224–16229 (2014).
[Crossref]

M. Layani, P. Darmawan, W. L. Foo, L. Liu, A. Kamyshny, D. Mandler, S. Magdassi, and P. S. Lee, “Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes,” Nanoscale 6(9), 4572–4576 (2014).
[Crossref]

Lee, C.

C. Lee, Y. Oh, I. S. Yoon, S. H. Kim, B.-K. Ju, and J.-M. Hong, “Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices,” Sci. Rep. 8(1), 2763 (2018).
[Crossref]

Lee, D. H.

S. G. Lee, D. Y. Lee, H. S. Lim, D. H. Lee, S. Lee, and K. Cho, “Switchable transparency and wetting of elastomeric smart windows,” Adv. Mater. 22(44), 5013–5017 (2010).
[Crossref]

Lee, D. Y.

S. G. Lee, D. Y. Lee, H. S. Lim, D. H. Lee, S. Lee, and K. Cho, “Switchable transparency and wetting of elastomeric smart windows,” Adv. Mater. 22(44), 5013–5017 (2010).
[Crossref]

Lee, P. S.

A. L. S. Eh, A. W. M. Tan, X. Cheng, S. Magdassi, and P. S. Lee, “Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects,” Energy Technol. 6(1), 33–45 (2018).
[Crossref]

G. Cai, X. Cheng, M. Layani, A. W. M. Tan, S. Li, A. Eh, D. Gao, S. Magdassi, and P. S. Lee, “Direct inkjet-patterning of energy efficient flexible electrochromics,” Nano Energy 49, 147–154 (2018).
[Crossref]

G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, and P. S. Lee, “Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors,” Adv. Energy Mater. 6(4), 1501882 (2016).
[Crossref]

W. Kang, M.-F. Lin, J. Chen, and P. S. Lee, “Highly transparent conducting nanopaper for solid state foldable electrochromic devices,” Small 12(46), 6370–6377 (2016).
[Crossref]

M. Layani, P. Darmawan, W. L. Foo, L. Liu, A. Kamyshny, D. Mandler, S. Magdassi, and P. S. Lee, “Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes,” Nanoscale 6(9), 4572–4576 (2014).
[Crossref]

L. Liu, M. Layani, S. Yellinek, A. Kamyshny, H. Ling, P. S. Lee, S. Magdassi, and D. Mandler, ““Nano to nano” electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings,” J. Mater. Chem. A 2(38), 16224–16229 (2014).
[Crossref]

Lee, S.

S. G. Lee, D. Y. Lee, H. S. Lim, D. H. Lee, S. Lee, and K. Cho, “Switchable transparency and wetting of elastomeric smart windows,” Adv. Mater. 22(44), 5013–5017 (2010).
[Crossref]

Lee, S. G.

S. G. Lee, D. Y. Lee, H. S. Lim, D. H. Lee, S. Lee, and K. Cho, “Switchable transparency and wetting of elastomeric smart windows,” Adv. Mater. 22(44), 5013–5017 (2010).
[Crossref]

Lee, S.-H.

C. M. White, D. T. Gillaspie, E. Whitney, S.-H. Lee, and A. C. Dillon, “Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition,” Thin Solid Films 517(12), 3596–3599 (2009).
[Crossref]

Lee, W.

Y. Kim, H. Shin, M. Han, S. Seo, W. Lee, J. Na, C. Park, and E. Kim, “Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer,” Adv. Funct. Mater. 27(31), 1701192 (2017).
[Crossref]

Lei, G. W.

C. Chen, Y. Zhao, W. Wei, J. Q. Tao, G. W. Lei, D. Jia, M. J. Wan, S. X. Li, S. L. Ji, and C. H. Ye, “Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity,” J. Mater. Chem. C 5(9), 2240–2246 (2017).
[Crossref]

Lei, M.

S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, and H. Wu, “Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows,” Adv. Mater. 29(41), 1703238 (2017).
[Crossref]

Li, B.

S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, and H. Wu, “Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows,” Adv. Mater. 29(41), 1703238 (2017).
[Crossref]

Li, C. Z.

C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
[Crossref]

Li, H.-H.

J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
[Crossref]

Li, J. W.

C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
[Crossref]

Li, S.

G. Cai, X. Cheng, M. Layani, A. W. M. Tan, S. Li, A. Eh, D. Gao, S. Magdassi, and P. S. Lee, “Direct inkjet-patterning of energy efficient flexible electrochromics,” Nano Energy 49, 147–154 (2018).
[Crossref]

Li, S. X.

C. Chen, Y. Zhao, W. Wei, J. Q. Tao, G. W. Lei, D. Jia, M. J. Wan, S. X. Li, S. L. Ji, and C. H. Ye, “Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity,” J. Mater. Chem. C 5(9), 2240–2246 (2017).
[Crossref]

C. Chen, Y. G. Jia, D. Jia, S. X. Li, S. L. Ji, and C. H. Ye, “Formulation of concentrated and stable ink of silver nanowires with applications in transparent conductive films,” RSC Adv. 7(4), 1936–1942 (2017).
[Crossref]

Li, X.

T. Qiu, B. Luo, M. Liang, J. Ning, B. Wang, X. Li, and L. Zhi, “Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices,” Carbon 81, 232–238 (2015).
[Crossref]

Liang, L.

L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, and Y. Xie, “High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets,” Sci. Rep. 3(1), 1936 (2013).
[Crossref]

Liang, M.

T. Qiu, B. Luo, M. Liang, J. Ning, B. Wang, X. Li, and L. Zhi, “Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices,” Carbon 81, 232–238 (2015).
[Crossref]

Lim, H. S.

S. G. Lee, D. Y. Lee, H. S. Lim, D. H. Lee, S. Lee, and K. Cho, “Switchable transparency and wetting of elastomeric smart windows,” Adv. Mater. 22(44), 5013–5017 (2010).
[Crossref]

Lin, M.-F.

W. Kang, M.-F. Lin, J. Chen, and P. S. Lee, “Highly transparent conducting nanopaper for solid state foldable electrochromic devices,” Small 12(46), 6370–6377 (2016).
[Crossref]

Lin, S.

S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, and H. Wu, “Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows,” Adv. Mater. 29(41), 1703238 (2017).
[Crossref]

Ling, H.

L. Liu, M. Layani, S. Yellinek, A. Kamyshny, H. Ling, P. S. Lee, S. Magdassi, and D. Mandler, ““Nano to nano” electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings,” J. Mater. Chem. A 2(38), 16224–16229 (2014).
[Crossref]

Liou, G.-S.

H.-J. Yen, C.-J. Chen, and G.-S. Liou, “Flexible multi-colored electrochromic and volatile polymer memory devices derived from starburst triarylamine-based electroactive polyimide,” Adv. Funct. Mater. 23(42), 5307–5316 (2013).
[Crossref]

Lipomi, D. J.

L. V. Kayser and D. J. Lipomi, “Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS,” Adv. Mater. 31(10), 1806133 (2019).
[Crossref]

Liu, J.

K. Zhou, H. Wang, J. Jiu, J. Liu, H. Yan, and K. Suganuma, “Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications,” Chem. Eng. J. 345, 290–299 (2018).
[Crossref]

Liu, J.-W.

J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
[Crossref]

Liu, L.

L. Liu, M. Layani, S. Yellinek, A. Kamyshny, H. Ling, P. S. Lee, S. Magdassi, and D. Mandler, ““Nano to nano” electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings,” J. Mater. Chem. A 2(38), 16224–16229 (2014).
[Crossref]

M. Layani, P. Darmawan, W. L. Foo, L. Liu, A. Kamyshny, D. Mandler, S. Magdassi, and P. S. Lee, “Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes,” Nanoscale 6(9), 4572–4576 (2014).
[Crossref]

Liu, Y.-H.

Y.-H. Liu, J.-L. Xu, X. Gao, Y.-L. Sun, J.-J. Lv, S. Shen, L.-S. Chen, and S.-D. Wang, “Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors,” Energy Environ. Sci. 10(12), 2534–2543 (2017).
[Crossref]

Liu, Z.

Z. Liu, J. Xu, D. Chen, and G. Shen, “Flexible electronics based on inorganic nanowires,” Chem. Soc. Rev. 44(1), 161–192 (2015).
[Crossref]

Livage, J.

A. Bessière, J.-C. Badot, M.-C. Certiat, J. Livage, V. Lucas, and N. Baffier, “Sol-gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate,” Electrochim. Acta 46(13-14), 2251–2256 (2001).
[Crossref]

Llordés, A.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50(73), 10555–10572 (2014).
[Crossref]

Lounis, S. D.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50(73), 10555–10572 (2014).
[Crossref]

Lu, Y.-R.

J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
[Crossref]

Lucas, V.

A. Bessière, J.-C. Badot, M.-C. Certiat, J. Livage, V. Lucas, and N. Baffier, “Sol-gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate,” Electrochim. Acta 46(13-14), 2251–2256 (2001).
[Crossref]

Luo, B.

T. Qiu, B. Luo, M. Liang, J. Ning, B. Wang, X. Li, and L. Zhi, “Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices,” Carbon 81, 232–238 (2015).
[Crossref]

Lv, J.-J.

Y.-H. Liu, J.-L. Xu, X. Gao, Y.-L. Sun, J.-J. Lv, S. Shen, L.-S. Chen, and S.-D. Wang, “Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors,” Energy Environ. Sci. 10(12), 2534–2543 (2017).
[Crossref]

Lv, X. D.

C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
[Crossref]

Ma, R.

H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang, Q. Wang, and H. Wang, “Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards,” Mater. Horiz. 5(5), 1000–1007 (2018).
[Crossref]

Magdassi, S.

G. Cai, X. Cheng, M. Layani, A. W. M. Tan, S. Li, A. Eh, D. Gao, S. Magdassi, and P. S. Lee, “Direct inkjet-patterning of energy efficient flexible electrochromics,” Nano Energy 49, 147–154 (2018).
[Crossref]

A. L. S. Eh, A. W. M. Tan, X. Cheng, S. Magdassi, and P. S. Lee, “Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects,” Energy Technol. 6(1), 33–45 (2018).
[Crossref]

G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, and P. S. Lee, “Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors,” Adv. Energy Mater. 6(4), 1501882 (2016).
[Crossref]

M. Layani, P. Darmawan, W. L. Foo, L. Liu, A. Kamyshny, D. Mandler, S. Magdassi, and P. S. Lee, “Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes,” Nanoscale 6(9), 4572–4576 (2014).
[Crossref]

L. Liu, M. Layani, S. Yellinek, A. Kamyshny, H. Ling, P. S. Lee, S. Magdassi, and D. Mandler, ““Nano to nano” electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings,” J. Mater. Chem. A 2(38), 16224–16229 (2014).
[Crossref]

Mai, W.

L. Shen, L. Du, S. Tan, Z. Zang, C. Zhao, and W. Mai, “Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires,” Chem. Commun. 52(37), 6296–6299 (2016).
[Crossref]

Mallikarjuna, K.

K. Mallikarjuna and H. Kim, “Highly transparent conductive reduced graphene oxide/silver nanowires/silver grid electrodes for low-voltage electrochromic smart windows,” ACS Appl. Mater. Interfaces 11(2), 1969–1978 (2019).
[Crossref]

Mandler, D.

L. Liu, M. Layani, S. Yellinek, A. Kamyshny, H. Ling, P. S. Lee, S. Magdassi, and D. Mandler, ““Nano to nano” electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings,” J. Mater. Chem. A 2(38), 16224–16229 (2014).
[Crossref]

M. Layani, P. Darmawan, W. L. Foo, L. Liu, A. Kamyshny, D. Mandler, S. Magdassi, and P. S. Lee, “Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes,” Nanoscale 6(9), 4572–4576 (2014).
[Crossref]

Milliron, D. J.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50(73), 10555–10572 (2014).
[Crossref]

Moreira, T.

A. Aliprandi, T. Moreira, C. Anichini, M. A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samorì, “Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics,” Adv. Mater. 29(41), 1703225 (2017).
[Crossref]

Murugan, S.

R. Singh, J. Tharion, S. Murugan, and A. Kumar, “ITO-free solution-processed flexible electrochromic devices based on PEDOT: PSS as transparent conducting electrode,” ACS Appl. Mater. Interfaces 9(23), 19427–19435 (2017).
[Crossref]

Na, J.

Y. Kim, H. Shin, M. Han, S. Seo, W. Lee, J. Na, C. Park, and E. Kim, “Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer,” Adv. Funct. Mater. 27(31), 1701192 (2017).
[Crossref]

Nagamine, K.

H. Kai, W. Suda, Y. Ogawa, K. Nagamine, and M. Nishizawa, “Intrinsically stretchable electrochromic display by a composite film of poly (3, 4-ethylenedioxythiophene) and polyurethane,” ACS Appl. Mater. Interfaces 9(23), 19513–19518 (2017).
[Crossref]

Ning, J.

T. Qiu, B. Luo, M. Liang, J. Ning, B. Wang, X. Li, and L. Zhi, “Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices,” Carbon 81, 232–238 (2015).
[Crossref]

Nishizawa, M.

H. Kai, W. Suda, Y. Ogawa, K. Nagamine, and M. Nishizawa, “Intrinsically stretchable electrochromic display by a composite film of poly (3, 4-ethylenedioxythiophene) and polyurethane,” ACS Appl. Mater. Interfaces 9(23), 19513–19518 (2017).
[Crossref]

Ogawa, Y.

H. Kai, W. Suda, Y. Ogawa, K. Nagamine, and M. Nishizawa, “Intrinsically stretchable electrochromic display by a composite film of poly (3, 4-ethylenedioxythiophene) and polyurethane,” ACS Appl. Mater. Interfaces 9(23), 19513–19518 (2017).
[Crossref]

Oh, Y.

C. Lee, Y. Oh, I. S. Yoon, S. H. Kim, B.-K. Ju, and J.-M. Hong, “Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices,” Sci. Rep. 8(1), 2763 (2018).
[Crossref]

Ono, M.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Oveisi, H.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Pan, B.

L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, and Y. Xie, “High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets,” Sci. Rep. 3(1), 1936 (2013).
[Crossref]

Park, C.

Y. Kim, H. Shin, M. Han, S. Seo, W. Lee, J. Na, C. Park, and E. Kim, “Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer,” Adv. Funct. Mater. 27(31), 1701192 (2017).
[Crossref]

Park, M.

T. G. Yun, M. Park, D.-H. Kim, D. Kim, J. Y. Cheong, J. G. Bae, S. M. Han, and I.-D. Kim, “All-transparent stretchable electrochromic supercapacitor wearable patch device,” ACS Nano 13(3), 3141–3150 (2019).
[Crossref]

Pinheiro, C.

A. Aliprandi, T. Moreira, C. Anichini, M. A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samorì, “Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics,” Adv. Mater. 29(41), 1703225 (2017).
[Crossref]

Qiu, T.

T. Qiu, B. Luo, M. Liang, J. Ning, B. Wang, X. Li, and L. Zhi, “Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices,” Carbon 81, 232–238 (2015).
[Crossref]

Radhakrishnan, L.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Reynolds, J. R.

P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
[Crossref]

A. A. Argun, A. Cirpan, and J. R. Reynolds, “The first truly all-polymer electrochromic device,” Adv. Mater. 15(16), 1338–1341 (2003).
[Crossref]

Rogers, J. A.

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
[Crossref]

Runnerstrom, E. L.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50(73), 10555–10572 (2014).
[Crossref]

Samorì, P.

A. Aliprandi, T. Moreira, C. Anichini, M. A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samorì, “Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics,” Adv. Mater. 29(41), 1703225 (2017).
[Crossref]

Sassi, U.

A. Aliprandi, T. Moreira, C. Anichini, M. A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samorì, “Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics,” Adv. Mater. 29(41), 1703225 (2017).
[Crossref]

Seo, S.

Y. Kim, H. Shin, M. Han, S. Seo, W. Lee, J. Na, C. Park, and E. Kim, “Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer,” Adv. Funct. Mater. 27(31), 1701192 (2017).
[Crossref]

Shen, G.

Z. Liu, J. Xu, D. Chen, and G. Shen, “Flexible electronics based on inorganic nanowires,” Chem. Soc. Rev. 44(1), 161–192 (2015).
[Crossref]

Shen, L.

L. Shen, L. Du, S. Tan, Z. Zang, C. Zhao, and W. Mai, “Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires,” Chem. Commun. 52(37), 6296–6299 (2016).
[Crossref]

Shen, S.

Y.-H. Liu, J.-L. Xu, X. Gao, Y.-L. Sun, J.-J. Lv, S. Shen, L.-S. Chen, and S.-D. Wang, “Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors,” Energy Environ. Sci. 10(12), 2534–2543 (2017).
[Crossref]

Shimomura, T.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Shin, H.

Y. Kim, H. Shin, M. Han, S. Seo, W. Lee, J. Na, C. Park, and E. Kim, “Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer,” Adv. Funct. Mater. 27(31), 1701192 (2017).
[Crossref]

Singh, R.

R. Singh, J. Tharion, S. Murugan, and A. Kumar, “ITO-free solution-processed flexible electrochromic devices based on PEDOT: PSS as transparent conducting electrode,” ACS Appl. Mater. Interfaces 9(23), 19427–19435 (2017).
[Crossref]

Someya, T.

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
[Crossref]

Søndergaard, R. R.

R. R. Søndergaard, M. Hösel, M. Jørgensen, and F. C. Krebs, “Fast printing of thin, large area, ITO free electrochromics on flexible barrier foil,” J. Polym. Sci., Part B: Polym. Phys. 51(2), 132–136 (2013).
[Crossref]

Song, J.

S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, and H. Wu, “Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows,” Adv. Mater. 29(41), 1703238 (2017).
[Crossref]

Stoeckel, M. A.

A. Aliprandi, T. Moreira, C. Anichini, M. A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samorì, “Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics,” Adv. Mater. 29(41), 1703225 (2017).
[Crossref]

Suda, W.

H. Kai, W. Suda, Y. Ogawa, K. Nagamine, and M. Nishizawa, “Intrinsically stretchable electrochromic display by a composite film of poly (3, 4-ethylenedioxythiophene) and polyurethane,” ACS Appl. Mater. Interfaces 9(23), 19513–19518 (2017).
[Crossref]

Suganuma, K.

K. Zhou, H. Wang, J. Jiu, J. Liu, H. Yan, and K. Suganuma, “Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications,” Chem. Eng. J. 345, 290–299 (2018).
[Crossref]

Sun, J.-Y.

C. Keplinger, J.-Y. Sun, C. C. Foo, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
[Crossref]

Sun, Y.-L.

Y.-H. Liu, J.-L. Xu, X. Gao, Y.-L. Sun, J.-J. Lv, S. Shen, L.-S. Chen, and S.-D. Wang, “Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors,” Energy Environ. Sci. 10(12), 2534–2543 (2017).
[Crossref]

Suo, Z.

C. Keplinger, J.-Y. Sun, C. C. Foo, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
[Crossref]

Suzuki, M.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Suzuki, N.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Tan, A. W. M.

A. L. S. Eh, A. W. M. Tan, X. Cheng, S. Magdassi, and P. S. Lee, “Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects,” Energy Technol. 6(1), 33–45 (2018).
[Crossref]

G. Cai, X. Cheng, M. Layani, A. W. M. Tan, S. Li, A. Eh, D. Gao, S. Magdassi, and P. S. Lee, “Direct inkjet-patterning of energy efficient flexible electrochromics,” Nano Energy 49, 147–154 (2018).
[Crossref]

Tan, S.

L. Shen, L. Du, S. Tan, Z. Zang, C. Zhao, and W. Mai, “Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires,” Chem. Commun. 52(37), 6296–6299 (2016).
[Crossref]

Tao, J. Q.

C. Chen, Y. Zhao, W. Wei, J. Q. Tao, G. W. Lei, D. Jia, M. J. Wan, S. X. Li, S. L. Ji, and C. H. Ye, “Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity,” J. Mater. Chem. C 5(9), 2240–2246 (2017).
[Crossref]

Tehrani, P.

P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
[Crossref]

Tharion, J.

R. Singh, J. Tharion, S. Murugan, and A. Kumar, “ITO-free solution-processed flexible electrochromic devices based on PEDOT: PSS as transparent conducting electrode,” ACS Appl. Mater. Interfaces 9(23), 19427–19435 (2017).
[Crossref]

Wan, M. J.

C. Chen, Y. Zhao, W. Wei, J. Q. Tao, G. W. Lei, D. Jia, M. J. Wan, S. X. Li, S. L. Ji, and C. H. Ye, “Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity,” J. Mater. Chem. C 5(9), 2240–2246 (2017).
[Crossref]

Wang, B.

T. Qiu, B. Luo, M. Liang, J. Ning, B. Wang, X. Li, and L. Zhi, “Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices,” Carbon 81, 232–238 (2015).
[Crossref]

Wang, C.

S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, and H. Wu, “Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows,” Adv. Mater. 29(41), 1703238 (2017).
[Crossref]

Wang, H.

K. Zhou, H. Wang, J. Jiu, J. Liu, H. Yan, and K. Suganuma, “Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications,” Chem. Eng. J. 345, 290–299 (2018).
[Crossref]

H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang, Q. Wang, and H. Wang, “Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards,” Mater. Horiz. 5(5), 1000–1007 (2018).
[Crossref]

S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, and H. Wu, “Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows,” Adv. Mater. 29(41), 1703238 (2017).
[Crossref]

S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, and H. Wu, “Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows,” Adv. Mater. 29(41), 1703238 (2017).
[Crossref]

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Wang, J.

G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, and P. S. Lee, “Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors,” Adv. Energy Mater. 6(4), 1501882 (2016).
[Crossref]

Wang, J.-L.

J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
[Crossref]

Wang, N.

S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, and H. Wu, “Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows,” Adv. Mater. 29(41), 1703238 (2017).
[Crossref]

Wang, Q.

H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang, Q. Wang, and H. Wang, “Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards,” Mater. Horiz. 5(5), 1000–1007 (2018).
[Crossref]

Wang, S.-D.

Y.-H. Liu, J.-L. Xu, X. Gao, Y.-L. Sun, J.-J. Lv, S. Shen, L.-S. Chen, and S.-D. Wang, “Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors,” Energy Environ. Sci. 10(12), 2534–2543 (2017).
[Crossref]

Wei, W.

C. Chen, Y. Zhao, W. Wei, J. Q. Tao, G. W. Lei, D. Jia, M. J. Wan, S. X. Li, S. L. Ji, and C. H. Ye, “Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity,” J. Mater. Chem. C 5(9), 2240–2246 (2017).
[Crossref]

Weng, W.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

White, C. M.

C. M. White, D. T. Gillaspie, E. Whitney, S.-H. Lee, and A. C. Dillon, “Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition,” Thin Solid Films 517(12), 3596–3599 (2009).
[Crossref]

Whitesides, G. M.

C. Keplinger, J.-Y. Sun, C. C. Foo, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
[Crossref]

Whitney, E.

C. M. White, D. T. Gillaspie, E. Whitney, S.-H. Lee, and A. C. Dillon, “Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition,” Thin Solid Films 517(12), 3596–3599 (2009).
[Crossref]

Wu, D.

C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
[Crossref]

Wu, H.

S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, and H. Wu, “Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows,” Adv. Mater. 29(41), 1703238 (2017).
[Crossref]

Wu, S. H.

C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
[Crossref]

Xie, J.

L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, and Y. Xie, “High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets,” Sci. Rep. 3(1), 1936 (2013).
[Crossref]

Xie, Y.

L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, and Y. Xie, “High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets,” Sci. Rep. 3(1), 1936 (2013).
[Crossref]

Xu, C.

H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang, Q. Wang, and H. Wang, “Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards,” Mater. Horiz. 5(5), 1000–1007 (2018).
[Crossref]

Xu, J.

Z. Liu, J. Xu, D. Chen, and G. Shen, “Flexible electronics based on inorganic nanowires,” Chem. Soc. Rev. 44(1), 161–192 (2015).
[Crossref]

Xu, J.-L.

Y.-H. Liu, J.-L. Xu, X. Gao, Y.-L. Sun, J.-J. Lv, S. Shen, L.-S. Chen, and S.-D. Wang, “Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors,” Energy Environ. Sci. 10(12), 2534–2543 (2017).
[Crossref]

Yamauchi, Y.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Yan, H.

K. Zhou, H. Wang, J. Jiu, J. Liu, H. Yan, and K. Suganuma, “Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications,” Chem. Eng. J. 345, 290–299 (2018).
[Crossref]

Yang, G.

H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang, Q. Wang, and H. Wang, “Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards,” Mater. Horiz. 5(5), 1000–1007 (2018).
[Crossref]

Ye, C. H.

C. Chen, Y. G. Jia, D. Jia, S. X. Li, S. L. Ji, and C. H. Ye, “Formulation of concentrated and stable ink of silver nanowires with applications in transparent conductive films,” RSC Adv. 7(4), 1936–1942 (2017).
[Crossref]

C. Chen, Y. Zhao, W. Wei, J. Q. Tao, G. W. Lei, D. Jia, M. J. Wan, S. X. Li, S. L. Ji, and C. H. Ye, “Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity,” J. Mater. Chem. C 5(9), 2240–2246 (2017).
[Crossref]

Yellinek, S.

L. Liu, M. Layani, S. Yellinek, A. Kamyshny, H. Ling, P. S. Lee, S. Magdassi, and D. Mandler, ““Nano to nano” electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings,” J. Mater. Chem. A 2(38), 16224–16229 (2014).
[Crossref]

Yen, H.-J.

H.-J. Yen, C.-J. Chen, and G.-S. Liou, “Flexible multi-colored electrochromic and volatile polymer memory devices derived from starburst triarylamine-based electroactive polyimide,” Adv. Funct. Mater. 23(42), 5307–5316 (2013).
[Crossref]

YingZhu, L. X.

L. X. YingZhu, T. Chang, J. Bell, A. Huang, P. Jin, and S. Bao, “High performance all-solid-state electrochromic device based on LixNiOy layer with gradient Li distribution,” Electrochim. Acta 317, 10–16 (2019).
[Crossref]

Yoon, I. S.

C. Lee, Y. Oh, I. S. Yoon, S. H. Kim, B.-K. Ju, and J.-M. Hong, “Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices,” Sci. Rep. 8(1), 2763 (2018).
[Crossref]

Yu, J.-S.

J. Jensen, M. Hösel, I. Kim, J.-S. Yu, J. Jo, and F. C. Krebs, “Fast switching ITO free electrochromic devices,” Adv. Funct. Mater. 24(9), 1228–1233 (2014).
[Crossref]

Yu, S.-H.

J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
[Crossref]

Yun, T. G.

T. G. Yun, M. Park, D.-H. Kim, D. Kim, J. Y. Cheong, J. G. Bae, S. M. Han, and I.-D. Kim, “All-transparent stretchable electrochromic supercapacitor wearable patch device,” ACS Nano 13(3), 3141–3150 (2019).
[Crossref]

Zang, Z.

L. Shen, L. Du, S. Tan, Z. Zang, C. Zhao, and W. Mai, “Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires,” Chem. Commun. 52(37), 6296–6299 (2016).
[Crossref]

Zhang, J.

L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, and Y. Xie, “High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets,” Sci. Rep. 3(1), 1936 (2013).
[Crossref]

Zhang, X.

L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, and Y. Xie, “High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets,” Sci. Rep. 3(1), 1936 (2013).
[Crossref]

Zhang, Y. Y.

C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
[Crossref]

Zhao, C.

L. Shen, L. Du, S. Tan, Z. Zang, C. Zhao, and W. Mai, “Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires,” Chem. Commun. 52(37), 6296–6299 (2016).
[Crossref]

Zhao, Y.

C. Chen, Y. Zhao, W. Wei, J. Q. Tao, G. W. Lei, D. Jia, M. J. Wan, S. X. Li, S. L. Ji, and C. H. Ye, “Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity,” J. Mater. Chem. C 5(9), 2240–2246 (2017).
[Crossref]

Zheng, P.

H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang, Q. Wang, and H. Wang, “Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards,” Mater. Horiz. 5(5), 1000–1007 (2018).
[Crossref]

Zhi, L.

T. Qiu, B. Luo, M. Liang, J. Ning, B. Wang, X. Li, and L. Zhi, “Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices,” Carbon 81, 232–238 (2015).
[Crossref]

Zhou, K.

K. Zhou, H. Wang, J. Jiu, J. Liu, H. Yan, and K. Suganuma, “Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications,” Chem. Eng. J. 345, 290–299 (2018).
[Crossref]

Zhou, Y.

L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, and Y. Xie, “High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets,” Sci. Rep. 3(1), 1936 (2013).
[Crossref]

Zhu, W. L.

C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
[Crossref]

ACS Appl. Mater. Interfaces (3)

R. Singh, J. Tharion, S. Murugan, and A. Kumar, “ITO-free solution-processed flexible electrochromic devices based on PEDOT: PSS as transparent conducting electrode,” ACS Appl. Mater. Interfaces 9(23), 19427–19435 (2017).
[Crossref]

K. Mallikarjuna and H. Kim, “Highly transparent conductive reduced graphene oxide/silver nanowires/silver grid electrodes for low-voltage electrochromic smart windows,” ACS Appl. Mater. Interfaces 11(2), 1969–1978 (2019).
[Crossref]

H. Kai, W. Suda, Y. Ogawa, K. Nagamine, and M. Nishizawa, “Intrinsically stretchable electrochromic display by a composite film of poly (3, 4-ethylenedioxythiophene) and polyurethane,” ACS Appl. Mater. Interfaces 9(23), 19513–19518 (2017).
[Crossref]

ACS Nano (2)

C. Chen, Z. C. Huang, Y. L. Jiao, Y. Y. Zhang, J. W. Li, C. Z. Li, X. D. Lv, S. H. Wu, Y. L. Hu, W. L. Zhu, D. Wu, J. R. Chu, and L. Jiang, “In-situ reversible control between sliding and pinning for diverse liquids under ultralow voltage,” ACS Nano 13(5), 5742–5752 (2019).
[Crossref]

T. G. Yun, M. Park, D.-H. Kim, D. Kim, J. Y. Cheong, J. G. Bae, S. M. Han, and I.-D. Kim, “All-transparent stretchable electrochromic supercapacitor wearable patch device,” ACS Nano 13(3), 3141–3150 (2019).
[Crossref]

Adv. Energy Mater. (1)

G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, and P. S. Lee, “Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors,” Adv. Energy Mater. 6(4), 1501882 (2016).
[Crossref]

Adv. Funct. Mater. (3)

J. Jensen, M. Hösel, I. Kim, J.-S. Yu, J. Jo, and F. C. Krebs, “Fast switching ITO free electrochromic devices,” Adv. Funct. Mater. 24(9), 1228–1233 (2014).
[Crossref]

Y. Kim, H. Shin, M. Han, S. Seo, W. Lee, J. Na, C. Park, and E. Kim, “Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer,” Adv. Funct. Mater. 27(31), 1701192 (2017).
[Crossref]

H.-J. Yen, C.-J. Chen, and G.-S. Liou, “Flexible multi-colored electrochromic and volatile polymer memory devices derived from starburst triarylamine-based electroactive polyimide,” Adv. Funct. Mater. 23(42), 5307–5316 (2013).
[Crossref]

Adv. Mater. (6)

A. Aliprandi, T. Moreira, C. Anichini, M. A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samorì, “Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics,” Adv. Mater. 29(41), 1703225 (2017).
[Crossref]

L. V. Kayser and D. J. Lipomi, “Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS,” Adv. Mater. 31(10), 1806133 (2019).
[Crossref]

S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, and H. Wu, “Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows,” Adv. Mater. 29(41), 1703238 (2017).
[Crossref]

S. G. Lee, D. Y. Lee, H. S. Lim, D. H. Lee, S. Lee, and K. Cho, “Switchable transparency and wetting of elastomeric smart windows,” Adv. Mater. 22(44), 5013–5017 (2010).
[Crossref]

J. Jensen and F. C. Krebs, “From the bottom up-flexible solid state electrochromic devices,” Adv. Mater. 26(42), 7231–7234 (2014).
[Crossref]

A. A. Argun, A. Cirpan, and J. R. Reynolds, “The first truly all-polymer electrochromic device,” Adv. Mater. 15(16), 1338–1341 (2003).
[Crossref]

Angew. Chem., Int. Ed. (1)

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Carbon (1)

T. Qiu, B. Luo, M. Liang, J. Ning, B. Wang, X. Li, and L. Zhi, “Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices,” Carbon 81, 232–238 (2015).
[Crossref]

Chem. Commun. (2)

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50(73), 10555–10572 (2014).
[Crossref]

L. Shen, L. Du, S. Tan, Z. Zang, C. Zhao, and W. Mai, “Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires,” Chem. Commun. 52(37), 6296–6299 (2016).
[Crossref]

Chem. Eng. J. (1)

K. Zhou, H. Wang, J. Jiu, J. Liu, H. Yan, and K. Suganuma, “Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications,” Chem. Eng. J. 345, 290–299 (2018).
[Crossref]

Chem. Soc. Rev. (1)

Z. Liu, J. Xu, D. Chen, and G. Shen, “Flexible electronics based on inorganic nanowires,” Chem. Soc. Rev. 44(1), 161–192 (2015).
[Crossref]

Electrochim. Acta (2)

L. X. YingZhu, T. Chang, J. Bell, A. Huang, P. Jin, and S. Bao, “High performance all-solid-state electrochromic device based on LixNiOy layer with gradient Li distribution,” Electrochim. Acta 317, 10–16 (2019).
[Crossref]

A. Bessière, J.-C. Badot, M.-C. Certiat, J. Livage, V. Lucas, and N. Baffier, “Sol-gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate,” Electrochim. Acta 46(13-14), 2251–2256 (2001).
[Crossref]

Energy Environ. Sci. (1)

Y.-H. Liu, J.-L. Xu, X. Gao, Y.-L. Sun, J.-J. Lv, S. Shen, L.-S. Chen, and S.-D. Wang, “Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors,” Energy Environ. Sci. 10(12), 2534–2543 (2017).
[Crossref]

Energy Technol. (1)

A. L. S. Eh, A. W. M. Tan, X. Cheng, S. Magdassi, and P. S. Lee, “Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects,” Energy Technol. 6(1), 33–45 (2018).
[Crossref]

J. Am. Chem. Soc. (1)

J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
[Crossref]

J. Mater. Chem. (1)

P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
[Crossref]

J. Mater. Chem. A (1)

L. Liu, M. Layani, S. Yellinek, A. Kamyshny, H. Ling, P. S. Lee, S. Magdassi, and D. Mandler, ““Nano to nano” electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings,” J. Mater. Chem. A 2(38), 16224–16229 (2014).
[Crossref]

J. Mater. Chem. C (1)

C. Chen, Y. Zhao, W. Wei, J. Q. Tao, G. W. Lei, D. Jia, M. J. Wan, S. X. Li, S. L. Ji, and C. H. Ye, “Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity,” J. Mater. Chem. C 5(9), 2240–2246 (2017).
[Crossref]

J. Polym. Sci., Part B: Polym. Phys. (1)

R. R. Søndergaard, M. Hösel, M. Jørgensen, and F. C. Krebs, “Fast printing of thin, large area, ITO free electrochromics on flexible barrier foil,” J. Polym. Sci., Part B: Polym. Phys. 51(2), 132–136 (2013).
[Crossref]

Mater. Horiz. (1)

H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang, Q. Wang, and H. Wang, “Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards,” Mater. Horiz. 5(5), 1000–1007 (2018).
[Crossref]

Nano Energy (1)

G. Cai, X. Cheng, M. Layani, A. W. M. Tan, S. Li, A. Eh, D. Gao, S. Magdassi, and P. S. Lee, “Direct inkjet-patterning of energy efficient flexible electrochromics,” Nano Energy 49, 147–154 (2018).
[Crossref]

Nanoscale (1)

M. Layani, P. Darmawan, W. L. Foo, L. Liu, A. Kamyshny, D. Mandler, S. Magdassi, and P. S. Lee, “Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes,” Nanoscale 6(9), 4572–4576 (2014).
[Crossref]

RSC Adv. (1)

C. Chen, Y. G. Jia, D. Jia, S. X. Li, S. L. Ji, and C. H. Ye, “Formulation of concentrated and stable ink of silver nanowires with applications in transparent conductive films,” RSC Adv. 7(4), 1936–1942 (2017).
[Crossref]

Sci. Rep. (2)

L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, and Y. Xie, “High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets,” Sci. Rep. 3(1), 1936 (2013).
[Crossref]

C. Lee, Y. Oh, I. S. Yoon, S. H. Kim, B.-K. Ju, and J.-M. Hong, “Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices,” Sci. Rep. 8(1), 2763 (2018).
[Crossref]

Science (2)

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
[Crossref]

C. Keplinger, J.-Y. Sun, C. C. Foo, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
[Crossref]

Small (1)

W. Kang, M.-F. Lin, J. Chen, and P. S. Lee, “Highly transparent conducting nanopaper for solid state foldable electrochromic devices,” Small 12(46), 6370–6377 (2016).
[Crossref]

Thin Solid Films (1)

C. M. White, D. T. Gillaspie, E. Whitney, S.-H. Lee, and A. C. Dillon, “Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition,” Thin Solid Films 517(12), 3596–3599 (2009).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1       Patterned electrochromic device displaying the propitious cloud
» Visualization 2       A dynamic operation of the electrochromic device at the bending state

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Illustration of the flexible ECD with simple triple-layered structure. (b) SEM image of the Ni grid electrode. (c) A flower image taken behind the Ni grid electrode. The yellow square denotes the electrode region. EDS mapping of (d) Ni element and (e) S element in the composite grid electrode/PEDOT: PSS film. (f) An image of the semi-solid hydrogel. (g) An image of a LED connected with the hydrogel in series. (h) The transmittance spectra of the ITO glass (green), the flexible ITO PET (purple), the Ni electrode (brown) and the hydrogel (blue) in the UV-Vis-NIR range. (i) Sheet resistance as a function of bending cycles for the Ni grid electrode (purple) and the flexible ITO PET (blue) with the bending radius of 0.5 cm. (j) Photographs of the bleached and colored state of propitious cloud using the flexible ECD with a patterned Ni grid electrode.
Fig. 2.
Fig. 2. Electrochromic performance of the ECD. (a) Photographs of the device at different coloration voltages. (b) Transmission spectra of the ECD at different coloring states. (c) The switching characteristics of the ECD, where the coloring and bleaching voltage was −2 V and 1 V, respectively. (d) Optical responses for coloring and bleaching steps. (e) The transmittance of the ECD at 650 nm as a function of the operation cycles at the bleaching and coloring states. (f) The response time as a function of the operation cycles for the bleaching and coloring steps.
Fig. 3.
Fig. 3. Switching performance of the ECD at a bending radius of 1.3 cm (a), 1 cm (b) and 0.8 cm (c), respectively. The transmission spectra were monitored at the wavelength of 650 nm. The low panel are photographs of samples in bleached and colored states at the corresponding bending radius.
Fig. 4.
Fig. 4. Electrochromic performance of the ECD as a function of the bending cycles. (a) The transmission spectra of ECD in the coloring state after 0, 500, 1000, 1500, 2000, and 2500 bending cycles. (b) Switching behaviors of the ECD at 650 nm after 0, 500, 1000, 1500, 2000, and 2500 bending cycles. (c) The dependence of bleached transmittance, colored transmittance and transmittance change at 650 nm on the bending cycles. (d) The dependence of the bleaching time and the coloring time on the bending cycles. The coloring voltage is −2 V, and the bleaching voltage is 1 V.
Fig. 5.
Fig. 5. Electrochromic performance of the ECD on the flexible ITO substrate. (a) The transmittance spectra of the flexible ITO PET (purple) and the completed ECD at the bleaching state (green) in the UV-Vis-NIR range. (b) Transmission spectra of the device at different coloring states. (c) The switching characteristics of the device at 650 nm, where the coloring and bleaching voltage was −2 V and 1 V, respectively. (d) Optical responses for coloring and bleaching steps at 650 nm.
Fig. 6.
Fig. 6. The switching characteristics of our device at 650 nm (a) up to an operation cycle number over 3200, where the absolute transmittance contrast first decreases and then flattens; (b) in stable manner with an operation cycle number between 1000 and 1100. The coloring and bleaching voltage was −2 V and 1 V, respectively.

Metrics