Abstract

Realization of the highly efficient hybrid atom-photon gates is vital to the quantum interface that integrates atoms and superconducting resonators. Here we propose a scheme to realize the hybrid state transfer and controlled-PHASE gate based on Raman chirped shortcut to adiabatic passage. The scheme is fast to protect the quantum state from the decoherence effects in the hybrid interface, as well as is robust due to the geometric phase. We show that this two-qubit gate is more resilient than the Raman pulse and Raman chirped adiabatic passage against the variations in the vacuum coupling strength and two-photon detuning. Its fast and robust features make it especially suitable for long-term storage and optical readout of superconducting qubits, and moreover, entanglement swapping between two disparate components.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage

Yan Liang, Chong Song, Xin Ji, and Shou Zhang
Opt. Express 23(18) 23798-23810 (2015)

Adiabatic and high-fidelity quantum gates with hybrid Rydberg-Rydberg interactions

Dongmin Yu, Han Wang, Dandan Ma, Xingdong Zhao, and Jing Qian
Opt. Express 27(16) 23080-23094 (2019)

Geometric Rydberg quantum gate with shortcuts to adiabaticity

Kai-Yu Liao, Xiao-Hong Liu, Zhi Li, and Yan-Xiong Du
Opt. Lett. 44(19) 4801-4804 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Realization of a superconducting atom chip,” Phys. Rev. Lett. 97(20), 200405 (2006).
    [Crossref]
  2. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature (London) 450(7167), 272–276 (2007).
    [Crossref]
  3. F. Shimizu, C. Hufnagel, and T. Mukai, “Stable neutral atom trap with a thin superconducting disc,” Phys. Rev. Lett. 103(25), 253002 (2009).
    [Crossref]
  4. Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
    [Crossref]
  5. M. Siercke, K. S. Chan, B. Zhang, M. Beian, M. J. Lim, and R. Dumke, “Reconfigurable self-sufficient traps for ultracold atoms based on a superconducting square,” Phys. Rev. A 85(4), 041403 (2012).
    [Crossref]
  6. N. Daniilidis and H. Haffner, “Quantum interfaces between atomic and solid-state systems,” Annu. Rev. Condens. Matter Phys. 4(1), 83–112 (2013).
    [Crossref]
  7. Y. Qiu, W. Xiong, L. Tian, and J. Q. You, “Coupling spin ensembles via superconducting flux qubits,” Phys. Rev. A 89(4), 042321 (2014).
    [Crossref]
  8. M. Gehl, R. Gibson, S. Zandbergen, P. Keiffer, J. Sears, and G. Khitrova, “Superconductivity in epitaxially grown self-assembled indium islands: progress towards hybrid superconductor semiconductor optical sources,” J. Opt. Soc. Am. B 33(7), C50–C56 (2016).
    [Crossref]
  9. S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortágh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nat. Commun. 4(1), 2380 (2013).
    [Crossref]
  10. H. Hattermann, D. Bothner, L. Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sàrkàny, R. Kleiner, D. Koelle, and J. Fortágh, “Coupling ultracold atoms to a superconducting coplanar waveguide resonator,” Nat. Commun. 8(1), 2254 (2017).
    [Crossref]
  11. K. R. Patton and U. R. Fischer, “Ultrafast quantum random access memory utilizing single Rydberg atoms in a Bose-Einstein condensate,” Phys. Rev. Lett. 111(24), 240504 (2013).
    [Crossref]
  12. T. Liu, B. Q. Guo, C. S. Yu, and W. N. Zhang, “One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications,” Opt. Express 26(4), 4498–4511 (2018).
    [Crossref]
  13. M. Stern, G. Catelani, Y. Kubo, C. Grezes, A. Bienfait, D. Vion, D. Esteve, and P. Bertet, “Flux qubits with long coherence times for hybrid quantum circuits,” Phys. Rev. Lett. 113(12), 123601 (2014).
    [Crossref]
  14. D. M. Wang, H. S. Xu, J. B. Xu, and Y. H. Yu, “Enhancement of geometric discord for the system of superconducting qubits and transfer of quantum information,” J. Opt. Soc. Am. B 30(8), 2277–2285 (2013).
    [Crossref]
  15. J. Verdú, H. Zoubi, C. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103(4), 043603 (2009).
    [Crossref]
  16. M. Singh, “Macroscopic entanglement between a Bose Einstein condensate and a superconducting loop,” Opt. Express 17(4), 2600 (2009).
    [Crossref]
  17. D. Yu, A. Landra, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime,” Phys. Rev. A 94(6), 062301 (2016).
    [Crossref]
  18. M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
    [Crossref]
  19. S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving Rydberg-Rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
    [Crossref]
  20. J. D. Carter and J. D. D. Martin, “Coherent manipulation of cold Rydberg atoms near the surface of an atom chip,” Phys. Rev. A 88(4), 043429 (2013).
    [Crossref]
  21. D. Yu, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Charge-qubit-atom hybrid,” Phys. Rev. A 93(4), 042329 (2016).
    [Crossref]
  22. M. A. Beck, J. A. Isaacs, D. Booth, J. D. Pritchard, M. Saffman, and R. McDermott, “Optimized coplanar waveguide resonators for a superconductor-atom interface,” Appl. Phys. Lett. 109(9), 092602 (2016).
    [Crossref]
  23. Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85(2), 623–653 (2013).
    [Crossref]
  24. D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, and J. Schmiedmayer, “Reversible state transfer between superconducting qubits and atomic ensembles,” Phys. Rev. A 79(4), 040304 (2009).
    [Crossref]
  25. J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89(1), 010301 (2014).
    [Crossref]
  26. J. Han, T. Vogt, C. Gross, D. Jaksch, M. Kiffner, and W. Li, “Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms,” Phys. Rev. Lett. 120(9), 093201 (2018).
    [Crossref]
  27. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London, Ser. A 392(1802), 45–57 (1984).
    [Crossref]
  28. J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum computation using nuclear magnetic resonance,” Nature (London) 403(6772), 869–871 (2000).
    [Crossref]
  29. L. M. Duan, J. I. Cirac, and P. Zoller, “Geometric manipulation of trapped ions for quantum computation,” Science 292(5522), 1695–1697 (2001).
    [Crossref]
  30. S. L. Zhu and Z. D. Wang, “Implementation of universal quantum gates based on nonadiabatic geometric phases,” Phys. Rev. Lett. 89(9), 097902 (2002).
    [Crossref]
  31. S. L. Zhu and Z. D. Wang, “Unconventional geometric quantum computation,” Phys. Rev. Lett. 91(18), 187902 (2003).
    [Crossref]
  32. E. Sjoqvist, “A new phase in quantum computation,” Physics 1, 35 (2008).
    [Crossref]
  33. X. Tan, D. W. Zhang, Z. Zhang, Y. Yu, S. Han, and S. L. Zhu, “Demonstration of geometric Landau-Zener interferometry in a superconducting qubit,” Phys. Rev. Lett. 112(2), 027001 (2014).
    [Crossref]
  34. Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, “Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit,” Phys. Rev. Lett. 121(11), 110501 (2018).
    [Crossref]
  35. T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
    [Crossref]
  36. C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, and L. M. Duan, “Experimental realization of universal geometric quantum gates with solid-state spins,” Nature (London) 514(7520), 72–75 (2014).
    [Crossref]
  37. S. Chelkowski A. D. Bandrauk, “Raman chirped adiabatic passage: a new method for selective excitation of high vibrational states,” J. Raman Spectrosc. 28(6), 459–466 (1997).
    [Crossref]
  38. J. C. Davis and W. S. Warren, “Selective excitation of high vibrational states using Raman chirped adiabatic passage,” J. Chem. Phys. 110(9), 4229–4237 (1999).
    [Crossref]
  39. M. Demirplak and S. A. Rice, “Adiabatic population transfer with control fields,” J. Phys. Chem. A 107(46), 9937–9945 (2003).
    [Crossref]
  40. M. Demirplak and S. A. Rice, “Assisted adiabatic passage revisited,” J. Phys. Chem. B 109(14), 6838–6844 (2005).
    [Crossref]
  41. L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, “Controllable coherent population transfers in superconducting qubits for quantum computing,” Phys. Rev. Lett. 100(11), 113601 (2008).
    [Crossref]
  42. M. V. Berry, “Transitionless quantum driving,” J. Phys. A: Math. Theor. 42(36), 365303 (2009).
    [Crossref]
  43. X. Chen, I. Lizuain, A. Ruschhaupt, D. Guery-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105(12), 123003 (2010).
    [Crossref]
  44. Y. X. Du, Z. T. Liang, Y. C. Li, X. X. Yue, Q. X. Lv, W. Huang, X. Chen, H. Yan, and S. L. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7(1), 12479 (2016).
    [Crossref]
  45. Z. T. Liang, X. X. Yue, Q. X. Lv, Y. X. Du, W. Huang, H. Yan, and S. L. Zhu, “Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers,” Phys. Rev. A 93(4), 040305 (2016).
    [Crossref]
  46. Y. X. Du, Z. T. Liang, H. Yan, and S. L. Zhu, “Geometric quantum computation with shortcuts to adiabaticity,” Adv. Quantum Technol. 2(9), 1900013 (2019).
    [Crossref]
  47. A. S. Sørensen, C. H. van der Wal, L. I. Childress, and M. D. Lukin, “Capacitive coupling of atomic systems to mesoscopic conductors,” Phys. Rev. Lett. 92(6), 063601 (2004).
    [Crossref]
  48. A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
    [Crossref]
  49. J. Zhou, Y. Hu, Z. Q. Yin, Z. D. Wang, S. L. Zhu, and Z. Y. Xue, “High fidelity quantum state transfer in electromechanical systems with intermediate coupling,” Sci. Rep. 4(1), 6237 (2015).
    [Crossref]
  50. M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, “Tuning the field in a microwave resonator faster than the photon lifetime,” Appl. Phys. Lett. 92(20), 203501 (2008).
    [Crossref]
  51. Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, “Quantum state characterization of a fast tunable superconducting resonator,” Appl. Phys. Lett. 102(16), 163503 (2013).
    [Crossref]

2019 (2)

T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
[Crossref]

Y. X. Du, Z. T. Liang, H. Yan, and S. L. Zhu, “Geometric quantum computation with shortcuts to adiabaticity,” Adv. Quantum Technol. 2(9), 1900013 (2019).
[Crossref]

2018 (3)

Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, “Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit,” Phys. Rev. Lett. 121(11), 110501 (2018).
[Crossref]

J. Han, T. Vogt, C. Gross, D. Jaksch, M. Kiffner, and W. Li, “Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms,” Phys. Rev. Lett. 120(9), 093201 (2018).
[Crossref]

T. Liu, B. Q. Guo, C. S. Yu, and W. N. Zhang, “One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications,” Opt. Express 26(4), 4498–4511 (2018).
[Crossref]

2017 (1)

H. Hattermann, D. Bothner, L. Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sàrkàny, R. Kleiner, D. Koelle, and J. Fortágh, “Coupling ultracold atoms to a superconducting coplanar waveguide resonator,” Nat. Commun. 8(1), 2254 (2017).
[Crossref]

2016 (6)

M. Gehl, R. Gibson, S. Zandbergen, P. Keiffer, J. Sears, and G. Khitrova, “Superconductivity in epitaxially grown self-assembled indium islands: progress towards hybrid superconductor semiconductor optical sources,” J. Opt. Soc. Am. B 33(7), C50–C56 (2016).
[Crossref]

D. Yu, A. Landra, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime,” Phys. Rev. A 94(6), 062301 (2016).
[Crossref]

D. Yu, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Charge-qubit-atom hybrid,” Phys. Rev. A 93(4), 042329 (2016).
[Crossref]

M. A. Beck, J. A. Isaacs, D. Booth, J. D. Pritchard, M. Saffman, and R. McDermott, “Optimized coplanar waveguide resonators for a superconductor-atom interface,” Appl. Phys. Lett. 109(9), 092602 (2016).
[Crossref]

Y. X. Du, Z. T. Liang, Y. C. Li, X. X. Yue, Q. X. Lv, W. Huang, X. Chen, H. Yan, and S. L. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7(1), 12479 (2016).
[Crossref]

Z. T. Liang, X. X. Yue, Q. X. Lv, Y. X. Du, W. Huang, H. Yan, and S. L. Zhu, “Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers,” Phys. Rev. A 93(4), 040305 (2016).
[Crossref]

2015 (1)

J. Zhou, Y. Hu, Z. Q. Yin, Z. D. Wang, S. L. Zhu, and Z. Y. Xue, “High fidelity quantum state transfer in electromechanical systems with intermediate coupling,” Sci. Rep. 4(1), 6237 (2015).
[Crossref]

2014 (5)

X. Tan, D. W. Zhang, Z. Zhang, Y. Yu, S. Han, and S. L. Zhu, “Demonstration of geometric Landau-Zener interferometry in a superconducting qubit,” Phys. Rev. Lett. 112(2), 027001 (2014).
[Crossref]

C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, and L. M. Duan, “Experimental realization of universal geometric quantum gates with solid-state spins,” Nature (London) 514(7520), 72–75 (2014).
[Crossref]

J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89(1), 010301 (2014).
[Crossref]

M. Stern, G. Catelani, Y. Kubo, C. Grezes, A. Bienfait, D. Vion, D. Esteve, and P. Bertet, “Flux qubits with long coherence times for hybrid quantum circuits,” Phys. Rev. Lett. 113(12), 123601 (2014).
[Crossref]

Y. Qiu, W. Xiong, L. Tian, and J. Q. You, “Coupling spin ensembles via superconducting flux qubits,” Phys. Rev. A 89(4), 042321 (2014).
[Crossref]

2013 (7)

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortágh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nat. Commun. 4(1), 2380 (2013).
[Crossref]

K. R. Patton and U. R. Fischer, “Ultrafast quantum random access memory utilizing single Rydberg atoms in a Bose-Einstein condensate,” Phys. Rev. Lett. 111(24), 240504 (2013).
[Crossref]

D. M. Wang, H. S. Xu, J. B. Xu, and Y. H. Yu, “Enhancement of geometric discord for the system of superconducting qubits and transfer of quantum information,” J. Opt. Soc. Am. B 30(8), 2277–2285 (2013).
[Crossref]

Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, “Quantum state characterization of a fast tunable superconducting resonator,” Appl. Phys. Lett. 102(16), 163503 (2013).
[Crossref]

N. Daniilidis and H. Haffner, “Quantum interfaces between atomic and solid-state systems,” Annu. Rev. Condens. Matter Phys. 4(1), 83–112 (2013).
[Crossref]

Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85(2), 623–653 (2013).
[Crossref]

J. D. Carter and J. D. D. Martin, “Coherent manipulation of cold Rydberg atoms near the surface of an atom chip,” Phys. Rev. A 88(4), 043429 (2013).
[Crossref]

2012 (3)

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving Rydberg-Rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

M. Siercke, K. S. Chan, B. Zhang, M. Beian, M. J. Lim, and R. Dumke, “Reconfigurable self-sufficient traps for ultracold atoms based on a superconducting square,” Phys. Rev. A 85(4), 041403 (2012).
[Crossref]

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

2011 (1)

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

2010 (2)

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
[Crossref]

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guery-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105(12), 123003 (2010).
[Crossref]

2009 (5)

M. V. Berry, “Transitionless quantum driving,” J. Phys. A: Math. Theor. 42(36), 365303 (2009).
[Crossref]

D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, and J. Schmiedmayer, “Reversible state transfer between superconducting qubits and atomic ensembles,” Phys. Rev. A 79(4), 040304 (2009).
[Crossref]

F. Shimizu, C. Hufnagel, and T. Mukai, “Stable neutral atom trap with a thin superconducting disc,” Phys. Rev. Lett. 103(25), 253002 (2009).
[Crossref]

J. Verdú, H. Zoubi, C. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103(4), 043603 (2009).
[Crossref]

M. Singh, “Macroscopic entanglement between a Bose Einstein condensate and a superconducting loop,” Opt. Express 17(4), 2600 (2009).
[Crossref]

2008 (3)

E. Sjoqvist, “A new phase in quantum computation,” Physics 1, 35 (2008).
[Crossref]

M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, “Tuning the field in a microwave resonator faster than the photon lifetime,” Appl. Phys. Lett. 92(20), 203501 (2008).
[Crossref]

L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, “Controllable coherent population transfers in superconducting qubits for quantum computing,” Phys. Rev. Lett. 100(11), 113601 (2008).
[Crossref]

2007 (1)

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature (London) 450(7167), 272–276 (2007).
[Crossref]

2006 (1)

T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Realization of a superconducting atom chip,” Phys. Rev. Lett. 97(20), 200405 (2006).
[Crossref]

2005 (1)

M. Demirplak and S. A. Rice, “Assisted adiabatic passage revisited,” J. Phys. Chem. B 109(14), 6838–6844 (2005).
[Crossref]

2004 (1)

A. S. Sørensen, C. H. van der Wal, L. I. Childress, and M. D. Lukin, “Capacitive coupling of atomic systems to mesoscopic conductors,” Phys. Rev. Lett. 92(6), 063601 (2004).
[Crossref]

2003 (2)

M. Demirplak and S. A. Rice, “Adiabatic population transfer with control fields,” J. Phys. Chem. A 107(46), 9937–9945 (2003).
[Crossref]

S. L. Zhu and Z. D. Wang, “Unconventional geometric quantum computation,” Phys. Rev. Lett. 91(18), 187902 (2003).
[Crossref]

2002 (1)

S. L. Zhu and Z. D. Wang, “Implementation of universal quantum gates based on nonadiabatic geometric phases,” Phys. Rev. Lett. 89(9), 097902 (2002).
[Crossref]

2001 (1)

L. M. Duan, J. I. Cirac, and P. Zoller, “Geometric manipulation of trapped ions for quantum computation,” Science 292(5522), 1695–1697 (2001).
[Crossref]

2000 (1)

J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum computation using nuclear magnetic resonance,” Nature (London) 403(6772), 869–871 (2000).
[Crossref]

1999 (1)

J. C. Davis and W. S. Warren, “Selective excitation of high vibrational states using Raman chirped adiabatic passage,” J. Chem. Phys. 110(9), 4229–4237 (1999).
[Crossref]

1997 (1)

S. Chelkowski A. D. Bandrauk, “Raman chirped adiabatic passage: a new method for selective excitation of high vibrational states,” J. Raman Spectrosc. 28(6), 459–466 (1997).
[Crossref]

1984 (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London, Ser. A 392(1802), 45–57 (1984).
[Crossref]

Abe, H.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Agner, J. A.

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving Rydberg-Rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

Amico, L.

D. Yu, A. Landra, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime,” Phys. Rev. A 94(6), 062301 (2016).
[Crossref]

D. Yu, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Charge-qubit-atom hybrid,” Phys. Rev. A 93(4), 042329 (2016).
[Crossref]

Ashhab, S.

Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85(2), 623–653 (2013).
[Crossref]

L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, “Controllable coherent population transfers in superconducting qubits for quantum computing,” Phys. Rev. Lett. 100(11), 113601 (2008).
[Crossref]

Auffeves, A.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Barends, R.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Bauch, T.

M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, “Tuning the field in a microwave resonator faster than the photon lifetime,” Appl. Phys. Lett. 92(20), 203501 (2008).
[Crossref]

Beck, M. A.

M. A. Beck, J. A. Isaacs, D. Booth, J. D. Pritchard, M. Saffman, and R. McDermott, “Optimized coplanar waveguide resonators for a superconductor-atom interface,” Appl. Phys. Lett. 109(9), 092602 (2016).
[Crossref]

J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89(1), 010301 (2014).
[Crossref]

Beian, M.

M. Siercke, K. S. Chan, B. Zhang, M. Beian, M. J. Lim, and R. Dumke, “Reconfigurable self-sufficient traps for ultracold atoms based on a superconducting square,” Phys. Rev. A 85(4), 041403 (2012).
[Crossref]

Bensky, G.

D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, and J. Schmiedmayer, “Reversible state transfer between superconducting qubits and atomic ensembles,” Phys. Rev. A 79(4), 040304 (2009).
[Crossref]

Bernon, S.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortágh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nat. Commun. 4(1), 2380 (2013).
[Crossref]

Berry, M. V.

M. V. Berry, “Transitionless quantum driving,” J. Phys. A: Math. Theor. 42(36), 365303 (2009).
[Crossref]

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London, Ser. A 392(1802), 45–57 (1984).
[Crossref]

Bertet, P.

M. Stern, G. Catelani, Y. Kubo, C. Grezes, A. Bienfait, D. Vion, D. Esteve, and P. Bertet, “Flux qubits with long coherence times for hybrid quantum circuits,” Phys. Rev. Lett. 113(12), 123601 (2014).
[Crossref]

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Bienfait, A.

M. Stern, G. Catelani, Y. Kubo, C. Grezes, A. Bienfait, D. Vion, D. Esteve, and P. Bertet, “Flux qubits with long coherence times for hybrid quantum circuits,” Phys. Rev. Lett. 113(12), 123601 (2014).
[Crossref]

Booth, D.

M. A. Beck, J. A. Isaacs, D. Booth, J. D. Pritchard, M. Saffman, and R. McDermott, “Optimized coplanar waveguide resonators for a superconductor-atom interface,” Appl. Phys. Lett. 109(9), 092602 (2016).
[Crossref]

Bothner, D.

H. Hattermann, D. Bothner, L. Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sàrkàny, R. Kleiner, D. Koelle, and J. Fortágh, “Coupling ultracold atoms to a superconducting coplanar waveguide resonator,” Nat. Commun. 8(1), 2254 (2017).
[Crossref]

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortágh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nat. Commun. 4(1), 2380 (2013).
[Crossref]

Brune, M.

T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Realization of a superconducting atom chip,” Phys. Rev. Lett. 97(20), 200405 (2006).
[Crossref]

Cai, W.

Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, “Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit,” Phys. Rev. Lett. 121(11), 110501 (2018).
[Crossref]

Cano, D.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortágh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nat. Commun. 4(1), 2380 (2013).
[Crossref]

Carter, J. D.

J. D. Carter and J. D. D. Martin, “Coherent manipulation of cold Rydberg atoms near the surface of an atom chip,” Phys. Rev. A 88(4), 043429 (2013).
[Crossref]

Castagnoli, G.

J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum computation using nuclear magnetic resonance,” Nature (London) 403(6772), 869–871 (2000).
[Crossref]

Catelani, G.

M. Stern, G. Catelani, Y. Kubo, C. Grezes, A. Bienfait, D. Vion, D. Esteve, and P. Bertet, “Flux qubits with long coherence times for hybrid quantum circuits,” Phys. Rev. Lett. 113(12), 123601 (2014).
[Crossref]

Cen, L. X.

L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, “Controllable coherent population transfers in superconducting qubits for quantum computing,” Phys. Rev. Lett. 100(11), 113601 (2008).
[Crossref]

Chan, K. S.

M. Siercke, K. S. Chan, B. Zhang, M. Beian, M. J. Lim, and R. Dumke, “Reconfigurable self-sufficient traps for ultracold atoms based on a superconducting square,” Phys. Rev. A 85(4), 041403 (2012).
[Crossref]

Chelkowski A. D. Bandrauk, S.

S. Chelkowski A. D. Bandrauk, “Raman chirped adiabatic passage: a new method for selective excitation of high vibrational states,” J. Raman Spectrosc. 28(6), 459–466 (1997).
[Crossref]

Chen, T.

Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, “Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit,” Phys. Rev. Lett. 121(11), 110501 (2018).
[Crossref]

Chen, X.

Y. X. Du, Z. T. Liang, Y. C. Li, X. X. Yue, Q. X. Lv, W. Huang, X. Chen, H. Yan, and S. L. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7(1), 12479 (2016).
[Crossref]

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guery-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105(12), 123003 (2010).
[Crossref]

Chen, Y.

T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
[Crossref]

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Chiaro, B.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Childress, L. I.

A. S. Sørensen, C. H. van der Wal, L. I. Childress, and M. D. Lukin, “Capacitive coupling of atomic systems to mesoscopic conductors,” Phys. Rev. Lett. 92(6), 063601 (2004).
[Crossref]

Cirac, J. I.

L. M. Duan, J. I. Cirac, and P. Zoller, “Geometric manipulation of trapped ions for quantum computation,” Science 292(5522), 1695–1697 (2001).
[Crossref]

Cleland, A. N.

Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, “Quantum state characterization of a fast tunable superconducting resonator,” Appl. Phys. Lett. 102(16), 163503 (2013).
[Crossref]

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Colombe, Y.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature (London) 450(7167), 272–276 (2007).
[Crossref]

Dai, C. Y.

C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, and L. M. Duan, “Experimental realization of universal geometric quantum gates with solid-state spins,” Nature (London) 514(7520), 72–75 (2014).
[Crossref]

Daniilidis, N.

N. Daniilidis and H. Haffner, “Quantum interfaces between atomic and solid-state systems,” Annu. Rev. Condens. Matter Phys. 4(1), 83–112 (2013).
[Crossref]

Davis, J. C.

J. C. Davis and W. S. Warren, “Selective excitation of high vibrational states using Raman chirped adiabatic passage,” J. Chem. Phys. 110(9), 4229–4237 (1999).
[Crossref]

Delsing, P.

M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, “Tuning the field in a microwave resonator faster than the photon lifetime,” Appl. Phys. Lett. 92(20), 203501 (2008).
[Crossref]

Demirplak, M.

M. Demirplak and S. A. Rice, “Assisted adiabatic passage revisited,” J. Phys. Chem. B 109(14), 6838–6844 (2005).
[Crossref]

M. Demirplak and S. A. Rice, “Adiabatic population transfer with control fields,” J. Phys. Chem. A 107(46), 9937–9945 (2003).
[Crossref]

Deng, H.

T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
[Crossref]

Dewes, A.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Diniz, I.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Drèau, A.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Du, Y. X.

Y. X. Du, Z. T. Liang, H. Yan, and S. L. Zhu, “Geometric quantum computation with shortcuts to adiabaticity,” Adv. Quantum Technol. 2(9), 1900013 (2019).
[Crossref]

Y. X. Du, Z. T. Liang, Y. C. Li, X. X. Yue, Q. X. Lv, W. Huang, X. Chen, H. Yan, and S. L. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7(1), 12479 (2016).
[Crossref]

Z. T. Liang, X. X. Yue, Q. X. Lv, Y. X. Du, W. Huang, H. Yan, and S. L. Zhu, “Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers,” Phys. Rev. A 93(4), 040305 (2016).
[Crossref]

Duan, L. M.

C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, and L. M. Duan, “Experimental realization of universal geometric quantum gates with solid-state spins,” Nature (London) 514(7520), 72–75 (2014).
[Crossref]

L. M. Duan, J. I. Cirac, and P. Zoller, “Geometric manipulation of trapped ions for quantum computation,” Science 292(5522), 1695–1697 (2001).
[Crossref]

Dubois, G.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature (London) 450(7167), 272–276 (2007).
[Crossref]

Dumke, R.

D. Yu, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Charge-qubit-atom hybrid,” Phys. Rev. A 93(4), 042329 (2016).
[Crossref]

D. Yu, A. Landra, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime,” Phys. Rev. A 94(6), 062301 (2016).
[Crossref]

M. Siercke, K. S. Chan, B. Zhang, M. Beian, M. J. Lim, and R. Dumke, “Reconfigurable self-sufficient traps for ultracold atoms based on a superconducting square,” Phys. Rev. A 85(4), 041403 (2012).
[Crossref]

Duty, T.

M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, “Tuning the field in a microwave resonator faster than the photon lifetime,” Appl. Phys. Lett. 92(20), 203501 (2008).
[Crossref]

Ekert, A.

J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum computation using nuclear magnetic resonance,” Nature (London) 403(6772), 869–871 (2000).
[Crossref]

Emmert, A.

T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Realization of a superconducting atom chip,” Phys. Rev. Lett. 97(20), 200405 (2006).
[Crossref]

Esteve, D.

M. Stern, G. Catelani, Y. Kubo, C. Grezes, A. Bienfait, D. Vion, D. Esteve, and P. Bertet, “Flux qubits with long coherence times for hybrid quantum circuits,” Phys. Rev. Lett. 113(12), 123601 (2014).
[Crossref]

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Feigl, L.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Ferdinand, B.

H. Hattermann, D. Bothner, L. Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sàrkàny, R. Kleiner, D. Koelle, and J. Fortágh, “Coupling ultracold atoms to a superconducting coplanar waveguide resonator,” Nat. Commun. 8(1), 2254 (2017).
[Crossref]

Filipp, S.

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving Rydberg-Rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

Fischer, U. R.

K. R. Patton and U. R. Fischer, “Ultrafast quantum random access memory utilizing single Rydberg atoms in a Bose-Einstein condensate,” Phys. Rev. Lett. 111(24), 240504 (2013).
[Crossref]

Fortágh, J.

H. Hattermann, D. Bothner, L. Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sàrkàny, R. Kleiner, D. Koelle, and J. Fortágh, “Coupling ultracold atoms to a superconducting coplanar waveguide resonator,” Nat. Commun. 8(1), 2254 (2017).
[Crossref]

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortágh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nat. Commun. 4(1), 2380 (2013).
[Crossref]

Gehl, M.

Gibson, R.

Grezes, C.

M. Stern, G. Catelani, Y. Kubo, C. Grezes, A. Bienfait, D. Vion, D. Esteve, and P. Bertet, “Flux qubits with long coherence times for hybrid quantum circuits,” Phys. Rev. Lett. 113(12), 123601 (2014).
[Crossref]

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Gross, C.

J. Han, T. Vogt, C. Gross, D. Jaksch, M. Kiffner, and W. Li, “Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms,” Phys. Rev. Lett. 120(9), 093201 (2018).
[Crossref]

Guery-Odelin, D.

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guery-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105(12), 123003 (2010).
[Crossref]

Guo, B. Q.

Haffner, H.

N. Daniilidis and H. Haffner, “Quantum interfaces between atomic and solid-state systems,” Annu. Rev. Condens. Matter Phys. 4(1), 83–112 (2013).
[Crossref]

Han, J.

J. Han, T. Vogt, C. Gross, D. Jaksch, M. Kiffner, and W. Li, “Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms,” Phys. Rev. Lett. 120(9), 093201 (2018).
[Crossref]

Han, S.

X. Tan, D. W. Zhang, Z. Zhang, Y. Yu, S. Han, and S. L. Zhu, “Demonstration of geometric Landau-Zener interferometry in a superconducting qubit,” Phys. Rev. Lett. 112(2), 027001 (2014).
[Crossref]

Haroche, S.

T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Realization of a superconducting atom chip,” Phys. Rev. Lett. 97(20), 200405 (2006).
[Crossref]

Hattermann, H.

H. Hattermann, D. Bothner, L. Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sàrkàny, R. Kleiner, D. Koelle, and J. Fortágh, “Coupling ultracold atoms to a superconducting coplanar waveguide resonator,” Nat. Commun. 8(1), 2254 (2017).
[Crossref]

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortágh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nat. Commun. 4(1), 2380 (2013).
[Crossref]

He, L.

C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, and L. M. Duan, “Experimental realization of universal geometric quantum gates with solid-state spins,” Nature (London) 514(7520), 72–75 (2014).
[Crossref]

He, L. J.

Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, “Quantum state characterization of a fast tunable superconducting resonator,” Appl. Phys. Lett. 102(16), 163503 (2013).
[Crossref]

Hogan, S. D.

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving Rydberg-Rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

Hu, L.

Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, “Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit,” Phys. Rev. Lett. 121(11), 110501 (2018).
[Crossref]

Hu, Y.

J. Zhou, Y. Hu, Z. Q. Yin, Z. D. Wang, S. L. Zhu, and Z. Y. Xue, “High fidelity quantum state transfer in electromechanical systems with intermediate coupling,” Sci. Rep. 4(1), 6237 (2015).
[Crossref]

Huang, K.

T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
[Crossref]

Huang, W.

Z. T. Liang, X. X. Yue, Q. X. Lv, Y. X. Du, W. Huang, H. Yan, and S. L. Zhu, “Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers,” Phys. Rev. A 93(4), 040305 (2016).
[Crossref]

Y. X. Du, Z. T. Liang, Y. C. Li, X. X. Yue, Q. X. Lv, W. Huang, X. Chen, H. Yan, and S. L. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7(1), 12479 (2016).
[Crossref]

Hufnagel, C.

D. Yu, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Charge-qubit-atom hybrid,” Phys. Rev. A 93(4), 042329 (2016).
[Crossref]

D. Yu, A. Landra, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime,” Phys. Rev. A 94(6), 062301 (2016).
[Crossref]

F. Shimizu, C. Hufnagel, and T. Mukai, “Stable neutral atom trap with a thin superconducting disc,” Phys. Rev. Lett. 103(25), 253002 (2009).
[Crossref]

Hunger, D.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature (London) 450(7167), 272–276 (2007).
[Crossref]

Isaacs, J. A.

M. A. Beck, J. A. Isaacs, D. Booth, J. D. Pritchard, M. Saffman, and R. McDermott, “Optimized coplanar waveguide resonators for a superconductor-atom interface,” Appl. Phys. Lett. 109(9), 092602 (2016).
[Crossref]

J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89(1), 010301 (2014).
[Crossref]

Isoya, J.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Jacques, V.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Jaksch, D.

J. Han, T. Vogt, C. Gross, D. Jaksch, M. Kiffner, and W. Li, “Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms,” Phys. Rev. Lett. 120(9), 093201 (2018).
[Crossref]

Jessen, F.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortágh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nat. Commun. 4(1), 2380 (2013).
[Crossref]

Johansson, G.

M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, “Tuning the field in a microwave resonator faster than the photon lifetime,” Appl. Phys. Lett. 92(20), 203501 (2008).
[Crossref]

Johansson, J. R.

L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, “Controllable coherent population transfers in superconducting qubits for quantum computing,” Phys. Rev. Lett. 100(11), 113601 (2008).
[Crossref]

Jones, J. A.

J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum computation using nuclear magnetic resonance,” Nature (London) 403(6772), 869–871 (2000).
[Crossref]

Keiffer, P.

Kelly, J.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Kemmler, M.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortágh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nat. Commun. 4(1), 2380 (2013).
[Crossref]

Khitrova, G.

Kiffner, M.

J. Han, T. Vogt, C. Gross, D. Jaksch, M. Kiffner, and W. Li, “Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms,” Phys. Rev. Lett. 120(9), 093201 (2018).
[Crossref]

Kleiner, R.

H. Hattermann, D. Bothner, L. Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sàrkàny, R. Kleiner, D. Koelle, and J. Fortágh, “Coupling ultracold atoms to a superconducting coplanar waveguide resonator,” Nat. Commun. 8(1), 2254 (2017).
[Crossref]

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortágh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nat. Commun. 4(1), 2380 (2013).
[Crossref]

Knufinke, M.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortágh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nat. Commun. 4(1), 2380 (2013).
[Crossref]

Koelle, D.

H. Hattermann, D. Bothner, L. Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sàrkàny, R. Kleiner, D. Koelle, and J. Fortágh, “Coupling ultracold atoms to a superconducting coplanar waveguide resonator,” Nat. Commun. 8(1), 2254 (2017).
[Crossref]

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortágh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nat. Commun. 4(1), 2380 (2013).
[Crossref]

Koller, C.

J. Verdú, H. Zoubi, C. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103(4), 043603 (2009).
[Crossref]

Kubo, Y.

M. Stern, G. Catelani, Y. Kubo, C. Grezes, A. Bienfait, D. Vion, D. Esteve, and P. Bertet, “Flux qubits with long coherence times for hybrid quantum circuits,” Phys. Rev. Lett. 113(12), 123601 (2014).
[Crossref]

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Kurizki, G.

D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, and J. Schmiedmayer, “Reversible state transfer between superconducting qubits and atomic ensembles,” Phys. Rev. A 79(4), 040304 (2009).
[Crossref]

Kwek, L. C.

D. Yu, A. Landra, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime,” Phys. Rev. A 94(6), 062301 (2016).
[Crossref]

D. Yu, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Charge-qubit-atom hybrid,” Phys. Rev. A 93(4), 042329 (2016).
[Crossref]

Landra, A.

D. Yu, A. Landra, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime,” Phys. Rev. A 94(6), 062301 (2016).
[Crossref]

Ley, L. Y.

H. Hattermann, D. Bothner, L. Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sàrkàny, R. Kleiner, D. Koelle, and J. Fortágh, “Coupling ultracold atoms to a superconducting coplanar waveguide resonator,” Nat. Commun. 8(1), 2254 (2017).
[Crossref]

Li, W.

J. Han, T. Vogt, C. Gross, D. Jaksch, M. Kiffner, and W. Li, “Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms,” Phys. Rev. Lett. 120(9), 093201 (2018).
[Crossref]

Li, Y. C.

Y. X. Du, Z. T. Liang, Y. C. Li, X. X. Yue, Q. X. Lv, W. Huang, X. Chen, H. Yan, and S. L. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7(1), 12479 (2016).
[Crossref]

Liang, Z. T.

Y. X. Du, Z. T. Liang, H. Yan, and S. L. Zhu, “Geometric quantum computation with shortcuts to adiabaticity,” Adv. Quantum Technol. 2(9), 1900013 (2019).
[Crossref]

Y. X. Du, Z. T. Liang, Y. C. Li, X. X. Yue, Q. X. Lv, W. Huang, X. Chen, H. Yan, and S. L. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7(1), 12479 (2016).
[Crossref]

Z. T. Liang, X. X. Yue, Q. X. Lv, Y. X. Du, W. Huang, H. Yan, and S. L. Zhu, “Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers,” Phys. Rev. A 93(4), 040305 (2016).
[Crossref]

Lim, M. J.

M. Siercke, K. S. Chan, B. Zhang, M. Beian, M. J. Lim, and R. Dumke, “Reconfigurable self-sufficient traps for ultracold atoms based on a superconducting square,” Phys. Rev. A 85(4), 041403 (2012).
[Crossref]

Linke, F.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature (London) 450(7167), 272–276 (2007).
[Crossref]

Liu, B.

T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
[Crossref]

Liu, S.

T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
[Crossref]

Liu, T.

Lizuain, I.

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guery-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105(12), 123003 (2010).
[Crossref]

Lucero, E.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Lukin, M. D.

A. S. Sørensen, C. H. van der Wal, L. I. Childress, and M. D. Lukin, “Capacitive coupling of atomic systems to mesoscopic conductors,” Phys. Rev. Lett. 92(6), 063601 (2004).
[Crossref]

Lv, Q. X.

Y. X. Du, Z. T. Liang, Y. C. Li, X. X. Yue, Q. X. Lv, W. Huang, X. Chen, H. Yan, and S. L. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7(1), 12479 (2016).
[Crossref]

Z. T. Liang, X. X. Yue, Q. X. Lv, Y. X. Du, W. Huang, H. Yan, and S. L. Zhu, “Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers,” Phys. Rev. A 93(4), 040305 (2016).
[Crossref]

Ma, Y.

Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, “Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit,” Phys. Rev. Lett. 121(11), 110501 (2018).
[Crossref]

Majer, J.

D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, and J. Schmiedmayer, “Reversible state transfer between superconducting qubits and atomic ensembles,” Phys. Rev. A 79(4), 040304 (2009).
[Crossref]

J. Verdú, H. Zoubi, C. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103(4), 043603 (2009).
[Crossref]

Mariantoni, M.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Martin, J. D. D.

J. D. Carter and J. D. D. Martin, “Coherent manipulation of cold Rydberg atoms near the surface of an atom chip,” Phys. Rev. A 88(4), 043429 (2013).
[Crossref]

Martinis, J. M.

Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, “Quantum state characterization of a fast tunable superconducting resonator,” Appl. Phys. Lett. 102(16), 163503 (2013).
[Crossref]

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Mazets, I.

D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, and J. Schmiedmayer, “Reversible state transfer between superconducting qubits and atomic ensembles,” Phys. Rev. A 79(4), 040304 (2009).
[Crossref]

McDermott, R.

M. A. Beck, J. A. Isaacs, D. Booth, J. D. Pritchard, M. Saffman, and R. McDermott, “Optimized coplanar waveguide resonators for a superconductor-atom interface,” Appl. Phys. Lett. 109(9), 092602 (2016).
[Crossref]

J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89(1), 010301 (2014).
[Crossref]

Megrant, A.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Merkt, F.

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving Rydberg-Rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

Mølmer, K.

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
[Crossref]

Morishita, N.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Mu, X.

Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, “Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit,” Phys. Rev. Lett. 121(11), 110501 (2018).
[Crossref]

Muga, J. G.

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guery-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105(12), 123003 (2010).
[Crossref]

Mukai, T.

F. Shimizu, C. Hufnagel, and T. Mukai, “Stable neutral atom trap with a thin superconducting disc,” Phys. Rev. Lett. 103(25), 253002 (2009).
[Crossref]

Neill, C.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Nirrengarten, T.

T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Realization of a superconducting atom chip,” Phys. Rev. Lett. 97(20), 200405 (2006).
[Crossref]

Nogues, G.

T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Realization of a superconducting atom chip,” Phys. Rev. Lett. 97(20), 200405 (2006).
[Crossref]

Nori, F.

Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85(2), 623–653 (2013).
[Crossref]

L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, “Controllable coherent population transfers in superconducting qubits for quantum computing,” Phys. Rev. Lett. 100(11), 113601 (2008).
[Crossref]

O’Malley, P. J. J.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Ohshima, T.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Onoda, S.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Palmstrøm, C. J.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Patton, K. R.

K. R. Patton and U. R. Fischer, “Ultrafast quantum random access memory utilizing single Rydberg atoms in a Bose-Einstein condensate,” Phys. Rev. Lett. 111(24), 240504 (2013).
[Crossref]

Persson, F.

M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, “Tuning the field in a microwave resonator faster than the photon lifetime,” Appl. Phys. Lett. 92(20), 203501 (2008).
[Crossref]

Petrosyan, D.

D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, and J. Schmiedmayer, “Reversible state transfer between superconducting qubits and atomic ensembles,” Phys. Rev. A 79(4), 040304 (2009).
[Crossref]

Pritchard, J. D.

M. A. Beck, J. A. Isaacs, D. Booth, J. D. Pritchard, M. Saffman, and R. McDermott, “Optimized coplanar waveguide resonators for a superconductor-atom interface,” Appl. Phys. Lett. 109(9), 092602 (2016).
[Crossref]

J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89(1), 010301 (2014).
[Crossref]

Qarry, A.

T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Realization of a superconducting atom chip,” Phys. Rev. Lett. 97(20), 200405 (2006).
[Crossref]

Qiu, Y.

Y. Qiu, W. Xiong, L. Tian, and J. Q. You, “Coupling spin ensembles via superconducting flux qubits,” Phys. Rev. A 89(4), 042321 (2014).
[Crossref]

Raimond, J. M.

T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Realization of a superconducting atom chip,” Phys. Rev. Lett. 97(20), 200405 (2006).
[Crossref]

Reichel, J.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature (London) 450(7167), 272–276 (2007).
[Crossref]

Rice, S. A.

M. Demirplak and S. A. Rice, “Assisted adiabatic passage revisited,” J. Phys. Chem. B 109(14), 6838–6844 (2005).
[Crossref]

M. Demirplak and S. A. Rice, “Adiabatic population transfer with control fields,” J. Phys. Chem. A 107(46), 9937–9945 (2003).
[Crossref]

Ritsch, H.

J. Verdú, H. Zoubi, C. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103(4), 043603 (2009).
[Crossref]

Roch, J. F.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Rong, H.

T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
[Crossref]

Roux, C.

T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Realization of a superconducting atom chip,” Phys. Rev. Lett. 97(20), 200405 (2006).
[Crossref]

Ruschhaupt, A.

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guery-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105(12), 123003 (2010).
[Crossref]

Saffman, M.

M. A. Beck, J. A. Isaacs, D. Booth, J. D. Pritchard, M. Saffman, and R. McDermott, “Optimized coplanar waveguide resonators for a superconductor-atom interface,” Appl. Phys. Lett. 109(9), 092602 (2016).
[Crossref]

J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89(1), 010301 (2014).
[Crossref]

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
[Crossref]

Sandberg, M.

M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, “Tuning the field in a microwave resonator faster than the photon lifetime,” Appl. Phys. Lett. 92(20), 203501 (2008).
[Crossref]

Sank, D.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Sàrkàny, L.

H. Hattermann, D. Bothner, L. Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sàrkàny, R. Kleiner, D. Koelle, and J. Fortágh, “Coupling ultracold atoms to a superconducting coplanar waveguide resonator,” Nat. Commun. 8(1), 2254 (2017).
[Crossref]

Schmiedmayer, J.

J. Verdú, H. Zoubi, C. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103(4), 043603 (2009).
[Crossref]

D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, and J. Schmiedmayer, “Reversible state transfer between superconducting qubits and atomic ensembles,” Phys. Rev. A 79(4), 040304 (2009).
[Crossref]

Sears, J.

Shimizu, F.

F. Shimizu, C. Hufnagel, and T. Mukai, “Stable neutral atom trap with a thin superconducting disc,” Phys. Rev. Lett. 103(25), 253002 (2009).
[Crossref]

Shumeiko, V.

M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, “Tuning the field in a microwave resonator faster than the photon lifetime,” Appl. Phys. Lett. 92(20), 203501 (2008).
[Crossref]

Siercke, M.

M. Siercke, K. S. Chan, B. Zhang, M. Beian, M. J. Lim, and R. Dumke, “Reconfigurable self-sufficient traps for ultracold atoms based on a superconducting square,” Phys. Rev. A 85(4), 041403 (2012).
[Crossref]

Singh, M.

Sjoqvist, E.

E. Sjoqvist, “A new phase in quantum computation,” Physics 1, 35 (2008).
[Crossref]

Song, C.

T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
[Crossref]

Song, Y. P.

Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, “Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit,” Phys. Rev. Lett. 121(11), 110501 (2018).
[Crossref]

Sørensen, A. S.

A. S. Sørensen, C. H. van der Wal, L. I. Childress, and M. D. Lukin, “Capacitive coupling of atomic systems to mesoscopic conductors,” Phys. Rev. Lett. 92(6), 063601 (2004).
[Crossref]

Steinmetz, T.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature (London) 450(7167), 272–276 (2007).
[Crossref]

Stern, M.

M. Stern, G. Catelani, Y. Kubo, C. Grezes, A. Bienfait, D. Vion, D. Esteve, and P. Bertet, “Flux qubits with long coherence times for hybrid quantum circuits,” Phys. Rev. Lett. 113(12), 123601 (2014).
[Crossref]

Sumiya, H.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Sun, L.

Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, “Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit,” Phys. Rev. Lett. 121(11), 110501 (2018).
[Crossref]

Tan, X.

X. Tan, D. W. Zhang, Z. Zhang, Y. Yu, S. Han, and S. L. Zhu, “Demonstration of geometric Landau-Zener interferometry in a superconducting qubit,” Phys. Rev. Lett. 112(2), 027001 (2014).
[Crossref]

Thiele, T.

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving Rydberg-Rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

Tian, L.

Y. Qiu, W. Xiong, L. Tian, and J. Q. You, “Coupling spin ensembles via superconducting flux qubits,” Phys. Rev. A 89(4), 042321 (2014).
[Crossref]

Umeda, T.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Vainsencher, A.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Valado, M. M.

D. Yu, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Charge-qubit-atom hybrid,” Phys. Rev. A 93(4), 042329 (2016).
[Crossref]

D. Yu, A. Landra, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime,” Phys. Rev. A 94(6), 062301 (2016).
[Crossref]

van der Wal, C. H.

A. S. Sørensen, C. H. van der Wal, L. I. Childress, and M. D. Lukin, “Capacitive coupling of atomic systems to mesoscopic conductors,” Phys. Rev. Lett. 92(6), 063601 (2004).
[Crossref]

Vedral, V.

J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum computation using nuclear magnetic resonance,” Nature (London) 403(6772), 869–871 (2000).
[Crossref]

Verdú, J.

J. Verdú, H. Zoubi, C. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103(4), 043603 (2009).
[Crossref]

Vion, D.

M. Stern, G. Catelani, Y. Kubo, C. Grezes, A. Bienfait, D. Vion, D. Esteve, and P. Bertet, “Flux qubits with long coherence times for hybrid quantum circuits,” Phys. Rev. Lett. 113(12), 123601 (2014).
[Crossref]

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

Vogt, T.

J. Han, T. Vogt, C. Gross, D. Jaksch, M. Kiffner, and W. Li, “Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms,” Phys. Rev. Lett. 120(9), 093201 (2018).
[Crossref]

Walker, T. G.

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
[Crossref]

Wallraff, A.

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving Rydberg-Rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

Wang, D. M.

Wang, F.

C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, and L. M. Duan, “Experimental realization of universal geometric quantum gates with solid-state spins,” Nature (London) 514(7520), 72–75 (2014).
[Crossref]

Wang, H.

Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, “Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit,” Phys. Rev. Lett. 121(11), 110501 (2018).
[Crossref]

Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, “Quantum state characterization of a fast tunable superconducting resonator,” Appl. Phys. Lett. 102(16), 163503 (2013).
[Crossref]

Wang, W. B.

C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, and L. M. Duan, “Experimental realization of universal geometric quantum gates with solid-state spins,” Nature (London) 514(7520), 72–75 (2014).
[Crossref]

Wang, Z. D.

J. Zhou, Y. Hu, Z. Q. Yin, Z. D. Wang, S. L. Zhu, and Z. Y. Xue, “High fidelity quantum state transfer in electromechanical systems with intermediate coupling,” Sci. Rep. 4(1), 6237 (2015).
[Crossref]

S. L. Zhu and Z. D. Wang, “Unconventional geometric quantum computation,” Phys. Rev. Lett. 91(18), 187902 (2003).
[Crossref]

S. L. Zhu and Z. D. Wang, “Implementation of universal quantum gates based on nonadiabatic geometric phases,” Phys. Rev. Lett. 89(9), 097902 (2002).
[Crossref]

Wang, Z. L.

Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, “Quantum state characterization of a fast tunable superconducting resonator,” Appl. Phys. Lett. 102(16), 163503 (2013).
[Crossref]

Warren, W. S.

J. C. Davis and W. S. Warren, “Selective excitation of high vibrational states using Raman chirped adiabatic passage,” J. Chem. Phys. 110(9), 4229–4237 (1999).
[Crossref]

Wei, L. F.

L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, “Controllable coherent population transfers in superconducting qubits for quantum computing,” Phys. Rev. Lett. 100(11), 113601 (2008).
[Crossref]

Weiss, P.

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortágh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nat. Commun. 4(1), 2380 (2013).
[Crossref]

Wenner, J.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

White, T. C.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Wiedmaier, D.

H. Hattermann, D. Bothner, L. Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sàrkàny, R. Kleiner, D. Koelle, and J. Fortágh, “Coupling ultracold atoms to a superconducting coplanar waveguide resonator,” Nat. Commun. 8(1), 2254 (2017).
[Crossref]

Wilson, C. M.

M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, “Tuning the field in a microwave resonator faster than the photon lifetime,” Appl. Phys. Lett. 92(20), 203501 (2008).
[Crossref]

Xiang, Z. L.

Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85(2), 623–653 (2013).
[Crossref]

Xie, Q. W.

Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, “Quantum state characterization of a fast tunable superconducting resonator,” Appl. Phys. Lett. 102(16), 163503 (2013).
[Crossref]

Xiong, W.

Y. Qiu, W. Xiong, L. Tian, and J. Q. You, “Coupling spin ensembles via superconducting flux qubits,” Phys. Rev. A 89(4), 042321 (2014).
[Crossref]

Xu, H. S.

Xu, J. B.

Xu, K.

T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
[Crossref]

Xu, Y.

Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, “Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit,” Phys. Rev. Lett. 121(11), 110501 (2018).
[Crossref]

Xue, Z. Y.

Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, “Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit,” Phys. Rev. Lett. 121(11), 110501 (2018).
[Crossref]

J. Zhou, Y. Hu, Z. Q. Yin, Z. D. Wang, S. L. Zhu, and Z. Y. Xue, “High fidelity quantum state transfer in electromechanical systems with intermediate coupling,” Sci. Rep. 4(1), 6237 (2015).
[Crossref]

Yan, H.

Y. X. Du, Z. T. Liang, H. Yan, and S. L. Zhu, “Geometric quantum computation with shortcuts to adiabaticity,” Adv. Quantum Technol. 2(9), 1900013 (2019).
[Crossref]

Y. X. Du, Z. T. Liang, Y. C. Li, X. X. Yue, Q. X. Lv, W. Huang, X. Chen, H. Yan, and S. L. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7(1), 12479 (2016).
[Crossref]

Z. T. Liang, X. X. Yue, Q. X. Lv, Y. X. Du, W. Huang, H. Yan, and S. L. Zhu, “Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers,” Phys. Rev. A 93(4), 040305 (2016).
[Crossref]

Yan, T.

T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
[Crossref]

Yan, Z.

T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
[Crossref]

Yin, Y.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Yin, Z.

Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, “Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit,” Phys. Rev. Lett. 121(11), 110501 (2018).
[Crossref]

Yin, Z. Q.

J. Zhou, Y. Hu, Z. Q. Yin, Z. D. Wang, S. L. Zhu, and Z. Y. Xue, “High fidelity quantum state transfer in electromechanical systems with intermediate coupling,” Sci. Rep. 4(1), 6237 (2015).
[Crossref]

You, J. Q.

Y. Qiu, W. Xiong, L. Tian, and J. Q. You, “Coupling spin ensembles via superconducting flux qubits,” Phys. Rev. A 89(4), 042321 (2014).
[Crossref]

Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85(2), 623–653 (2013).
[Crossref]

Yu, C. S.

Yu, D.

T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
[Crossref]

D. Yu, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Charge-qubit-atom hybrid,” Phys. Rev. A 93(4), 042329 (2016).
[Crossref]

D. Yu, A. Landra, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime,” Phys. Rev. A 94(6), 062301 (2016).
[Crossref]

Yu, Y.

X. Tan, D. W. Zhang, Z. Zhang, Y. Yu, S. Han, and S. L. Zhu, “Demonstration of geometric Landau-Zener interferometry in a superconducting qubit,” Phys. Rev. Lett. 112(2), 027001 (2014).
[Crossref]

Yu, Y. H.

Yue, X. X.

Y. X. Du, Z. T. Liang, Y. C. Li, X. X. Yue, Q. X. Lv, W. Huang, X. Chen, H. Yan, and S. L. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7(1), 12479 (2016).
[Crossref]

Z. T. Liang, X. X. Yue, Q. X. Lv, Y. X. Du, W. Huang, H. Yan, and S. L. Zhu, “Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers,” Phys. Rev. A 93(4), 040305 (2016).
[Crossref]

Yung, M.

T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
[Crossref]

Zandbergen, S.

Zhang, B.

M. Siercke, K. S. Chan, B. Zhang, M. Beian, M. J. Lim, and R. Dumke, “Reconfigurable self-sufficient traps for ultracold atoms based on a superconducting square,” Phys. Rev. A 85(4), 041403 (2012).
[Crossref]

Zhang, D. W.

X. Tan, D. W. Zhang, Z. Zhang, Y. Yu, S. Han, and S. L. Zhu, “Demonstration of geometric Landau-Zener interferometry in a superconducting qubit,” Phys. Rev. Lett. 112(2), 027001 (2014).
[Crossref]

Zhang, W. G.

C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, and L. M. Duan, “Experimental realization of universal geometric quantum gates with solid-state spins,” Nature (London) 514(7520), 72–75 (2014).
[Crossref]

Zhang, W. N.

Zhang, Z.

T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
[Crossref]

X. Tan, D. W. Zhang, Z. Zhang, Y. Yu, S. Han, and S. L. Zhu, “Demonstration of geometric Landau-Zener interferometry in a superconducting qubit,” Phys. Rev. Lett. 112(2), 027001 (2014).
[Crossref]

Zhao, J.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

Zhong, Y. P.

Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, “Quantum state characterization of a fast tunable superconducting resonator,” Appl. Phys. Lett. 102(16), 163503 (2013).
[Crossref]

Zhou, J.

J. Zhou, Y. Hu, Z. Q. Yin, Z. D. Wang, S. L. Zhu, and Z. Y. Xue, “High fidelity quantum state transfer in electromechanical systems with intermediate coupling,” Sci. Rep. 4(1), 6237 (2015).
[Crossref]

Zhu, S. L.

Y. X. Du, Z. T. Liang, H. Yan, and S. L. Zhu, “Geometric quantum computation with shortcuts to adiabaticity,” Adv. Quantum Technol. 2(9), 1900013 (2019).
[Crossref]

Y. X. Du, Z. T. Liang, Y. C. Li, X. X. Yue, Q. X. Lv, W. Huang, X. Chen, H. Yan, and S. L. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7(1), 12479 (2016).
[Crossref]

Z. T. Liang, X. X. Yue, Q. X. Lv, Y. X. Du, W. Huang, H. Yan, and S. L. Zhu, “Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers,” Phys. Rev. A 93(4), 040305 (2016).
[Crossref]

J. Zhou, Y. Hu, Z. Q. Yin, Z. D. Wang, S. L. Zhu, and Z. Y. Xue, “High fidelity quantum state transfer in electromechanical systems with intermediate coupling,” Sci. Rep. 4(1), 6237 (2015).
[Crossref]

X. Tan, D. W. Zhang, Z. Zhang, Y. Yu, S. Han, and S. L. Zhu, “Demonstration of geometric Landau-Zener interferometry in a superconducting qubit,” Phys. Rev. Lett. 112(2), 027001 (2014).
[Crossref]

S. L. Zhu and Z. D. Wang, “Unconventional geometric quantum computation,” Phys. Rev. Lett. 91(18), 187902 (2003).
[Crossref]

S. L. Zhu and Z. D. Wang, “Implementation of universal quantum gates based on nonadiabatic geometric phases,” Phys. Rev. Lett. 89(9), 097902 (2002).
[Crossref]

Zoller, P.

L. M. Duan, J. I. Cirac, and P. Zoller, “Geometric manipulation of trapped ions for quantum computation,” Science 292(5522), 1695–1697 (2001).
[Crossref]

Zoubi, H.

J. Verdú, H. Zoubi, C. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103(4), 043603 (2009).
[Crossref]

Zu, C.

C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, and L. M. Duan, “Experimental realization of universal geometric quantum gates with solid-state spins,” Nature (London) 514(7520), 72–75 (2014).
[Crossref]

Adv. Quantum Technol. (1)

Y. X. Du, Z. T. Liang, H. Yan, and S. L. Zhu, “Geometric quantum computation with shortcuts to adiabaticity,” Adv. Quantum Technol. 2(9), 1900013 (2019).
[Crossref]

Annu. Rev. Condens. Matter Phys. (1)

N. Daniilidis and H. Haffner, “Quantum interfaces between atomic and solid-state systems,” Annu. Rev. Condens. Matter Phys. 4(1), 83–112 (2013).
[Crossref]

Appl. Phys. Lett. (4)

M. A. Beck, J. A. Isaacs, D. Booth, J. D. Pritchard, M. Saffman, and R. McDermott, “Optimized coplanar waveguide resonators for a superconductor-atom interface,” Appl. Phys. Lett. 109(9), 092602 (2016).
[Crossref]

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100(11), 113510 (2012).
[Crossref]

M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, “Tuning the field in a microwave resonator faster than the photon lifetime,” Appl. Phys. Lett. 92(20), 203501 (2008).
[Crossref]

Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, “Quantum state characterization of a fast tunable superconducting resonator,” Appl. Phys. Lett. 102(16), 163503 (2013).
[Crossref]

J. Chem. Phys. (1)

J. C. Davis and W. S. Warren, “Selective excitation of high vibrational states using Raman chirped adiabatic passage,” J. Chem. Phys. 110(9), 4229–4237 (1999).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. A: Math. Theor. (1)

M. V. Berry, “Transitionless quantum driving,” J. Phys. A: Math. Theor. 42(36), 365303 (2009).
[Crossref]

J. Phys. Chem. A (1)

M. Demirplak and S. A. Rice, “Adiabatic population transfer with control fields,” J. Phys. Chem. A 107(46), 9937–9945 (2003).
[Crossref]

J. Phys. Chem. B (1)

M. Demirplak and S. A. Rice, “Assisted adiabatic passage revisited,” J. Phys. Chem. B 109(14), 6838–6844 (2005).
[Crossref]

J. Raman Spectrosc. (1)

S. Chelkowski A. D. Bandrauk, “Raman chirped adiabatic passage: a new method for selective excitation of high vibrational states,” J. Raman Spectrosc. 28(6), 459–466 (1997).
[Crossref]

Nat. Commun. (3)

Y. X. Du, Z. T. Liang, Y. C. Li, X. X. Yue, Q. X. Lv, W. Huang, X. Chen, H. Yan, and S. L. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7(1), 12479 (2016).
[Crossref]

S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, and J. Fortágh, “Manipulation and coherence of ultra-cold atoms on a superconducting atom chip,” Nat. Commun. 4(1), 2380 (2013).
[Crossref]

H. Hattermann, D. Bothner, L. Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sàrkàny, R. Kleiner, D. Koelle, and J. Fortágh, “Coupling ultracold atoms to a superconducting coplanar waveguide resonator,” Nat. Commun. 8(1), 2254 (2017).
[Crossref]

Nature (London) (3)

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature (London) 450(7167), 272–276 (2007).
[Crossref]

J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum computation using nuclear magnetic resonance,” Nature (London) 403(6772), 869–871 (2000).
[Crossref]

C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, and L. M. Duan, “Experimental realization of universal geometric quantum gates with solid-state spins,” Nature (London) 514(7520), 72–75 (2014).
[Crossref]

Opt. Express (2)

Phys. Rev. A (8)

Y. Qiu, W. Xiong, L. Tian, and J. Q. You, “Coupling spin ensembles via superconducting flux qubits,” Phys. Rev. A 89(4), 042321 (2014).
[Crossref]

D. Yu, A. Landra, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime,” Phys. Rev. A 94(6), 062301 (2016).
[Crossref]

M. Siercke, K. S. Chan, B. Zhang, M. Beian, M. J. Lim, and R. Dumke, “Reconfigurable self-sufficient traps for ultracold atoms based on a superconducting square,” Phys. Rev. A 85(4), 041403 (2012).
[Crossref]

J. D. Carter and J. D. D. Martin, “Coherent manipulation of cold Rydberg atoms near the surface of an atom chip,” Phys. Rev. A 88(4), 043429 (2013).
[Crossref]

D. Yu, M. M. Valado, C. Hufnagel, L. C. Kwek, L. Amico, and R. Dumke, “Charge-qubit-atom hybrid,” Phys. Rev. A 93(4), 042329 (2016).
[Crossref]

D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, and J. Schmiedmayer, “Reversible state transfer between superconducting qubits and atomic ensembles,” Phys. Rev. A 79(4), 040304 (2009).
[Crossref]

J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89(1), 010301 (2014).
[Crossref]

Z. T. Liang, X. X. Yue, Q. X. Lv, Y. X. Du, W. Huang, H. Yan, and S. L. Zhu, “Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers,” Phys. Rev. A 93(4), 040305 (2016).
[Crossref]

Phys. Rev. Lett. (16)

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guery-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105(12), 123003 (2010).
[Crossref]

L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, “Controllable coherent population transfers in superconducting qubits for quantum computing,” Phys. Rev. Lett. 100(11), 113601 (2008).
[Crossref]

A. S. Sørensen, C. H. van der Wal, L. I. Childress, and M. D. Lukin, “Capacitive coupling of atomic systems to mesoscopic conductors,” Phys. Rev. Lett. 92(6), 063601 (2004).
[Crossref]

J. Han, T. Vogt, C. Gross, D. Jaksch, M. Kiffner, and W. Li, “Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms,” Phys. Rev. Lett. 120(9), 093201 (2018).
[Crossref]

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving Rydberg-Rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

X. Tan, D. W. Zhang, Z. Zhang, Y. Yu, S. Han, and S. L. Zhu, “Demonstration of geometric Landau-Zener interferometry in a superconducting qubit,” Phys. Rev. Lett. 112(2), 027001 (2014).
[Crossref]

Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, “Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit,” Phys. Rev. Lett. 121(11), 110501 (2018).
[Crossref]

T. Yan, B. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. Yung, Y. Chen, and D. Yu, “Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates,” Phys. Rev. Lett. 122(8), 080501 (2019).
[Crossref]

S. L. Zhu and Z. D. Wang, “Implementation of universal quantum gates based on nonadiabatic geometric phases,” Phys. Rev. Lett. 89(9), 097902 (2002).
[Crossref]

S. L. Zhu and Z. D. Wang, “Unconventional geometric quantum computation,” Phys. Rev. Lett. 91(18), 187902 (2003).
[Crossref]

T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Realization of a superconducting atom chip,” Phys. Rev. Lett. 97(20), 200405 (2006).
[Crossref]

F. Shimizu, C. Hufnagel, and T. Mukai, “Stable neutral atom trap with a thin superconducting disc,” Phys. Rev. Lett. 103(25), 253002 (2009).
[Crossref]

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Drèau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107(22), 220501 (2011).
[Crossref]

K. R. Patton and U. R. Fischer, “Ultrafast quantum random access memory utilizing single Rydberg atoms in a Bose-Einstein condensate,” Phys. Rev. Lett. 111(24), 240504 (2013).
[Crossref]

J. Verdú, H. Zoubi, C. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103(4), 043603 (2009).
[Crossref]

M. Stern, G. Catelani, Y. Kubo, C. Grezes, A. Bienfait, D. Vion, D. Esteve, and P. Bertet, “Flux qubits with long coherence times for hybrid quantum circuits,” Phys. Rev. Lett. 113(12), 123601 (2014).
[Crossref]

Physics (1)

E. Sjoqvist, “A new phase in quantum computation,” Physics 1, 35 (2008).
[Crossref]

Proc. R. Soc. London, Ser. A (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London, Ser. A 392(1802), 45–57 (1984).
[Crossref]

Rev. Mod. Phys. (2)

Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85(2), 623–653 (2013).
[Crossref]

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
[Crossref]

Sci. Rep. (1)

J. Zhou, Y. Hu, Z. Q. Yin, Z. D. Wang, S. L. Zhu, and Z. Y. Xue, “High fidelity quantum state transfer in electromechanical systems with intermediate coupling,” Sci. Rep. 4(1), 6237 (2015).
[Crossref]

Science (1)

L. M. Duan, J. I. Cirac, and P. Zoller, “Geometric manipulation of trapped ions for quantum computation,” Science 292(5522), 1695–1697 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) An ensemble of ultracold atoms trapped near the antinode of the standing-wave field in the superconducting CPW cavity. (b) Raman chirped adiabatic passage scheme for hybrid atom-photon gate. CPW resonator photons are coupled to the atomic transition between two close-lying Rydberg states. $\Omega$: laser field; $\eta _{ac}$: CPW field; $\Delta$: single-photon detuning; $\delta$: two-photon detuning. (c) Evolution paths of cyclic state $\left | {{\lambda _ + }} \right \rangle$ (red solid line) on the Bloch sphere to realize geometric operation in the basis $\{ \left | G, 1 \right \rangle ,\left | R, 0 \right \rangle \}$. Cyclic state initialized in state $\left | G, 1 \right \rangle$ will evolve along the path A-B-C-D-A driven by the effective magnetic field $B_{0}$ (blue dashed line) and pick up a geometric phase $\gamma$.
Fig. 2.
Fig. 2. (a) The Rabi frequency $\sqrt {N}\Omega$ and two-photon detuning $\delta$ for conditional CZ gate according to Eqs. (5) and (6). (b) The modified Rabi frequency $\sqrt {N}\tilde {\Omega }$ and two-photon detuning $\tilde {\delta }$ for conditional CZ gate according to Eq. (8). (c) The population dynamics of the single Rydberg excitation state driven by RCAP (black solid line) and RCSAP (red solid line) in the “orange slice” scheme , respectively. Not that the adiabatic condition is not fulfilled here. At the time $t=\tau$, RCAP cannot realize perfect transfer to a single Rydberg excitation state. However, after eliminating the non-adiabatic effect, RCSAP can make the collective state transfer perfectly, meanwhile a microwave photon is stored in atoms.
Fig. 3.
Fig. 3. The fidelities ${F}$ versus the deviations of vacuum coupling strength $\beta \eta _{ac}$ and two-photon detuning $\varepsilon \delta _0$ from the target state with the realistic decoherence. (a) The state transfer to single Rydberg excitation driven by RCSAP with the operation time ${T_{sa}} = 2.5\mu s$, (b) RCAP with operation time ${T_{a}} = 25\mu s$, (c) Raman pulse with operation time ${T_{r}} = 2.5\mu s$, respectively. (d) The Bell state $\left | {{\Psi ^ + }} \right \rangle$ preparation using the hybrid quantum gate driven by RCSAP with operation time ${T'_{sa}} = 5\mu s$, (e) RCAP with operation time ${T'_{a}} = 50\mu s$, (f) Raman pulse with operation time ${T'_{r}} = 5\mu s$, respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

H a c = ( Δ i ^ i ^ + δ r ^ r ^ ) 2 ( Ω e i φ i ^ g ^ + η a c r ^ i ^ a ^ + H . c . ) ,
H I = δ eff r ^ r ^ + 2 ( η eff r ^ g ^ a ^ + H . c . ) ,
H eff = 2 ( Δ eff Ω eff e i φ Ω eff e i φ Δ eff ) ,
| λ = sin θ 2 e i φ | G , 1 + cos θ 2 | R , 0 , | λ + = cos θ 2 | G , 1 + sin θ 2 e i φ | R , 0 ,
Ω ( t ) = { Ω 0 sin ( π t τ ) , ( 0 t < τ ) Ω 0 sin ( π ( t τ ) τ ) , ( τ t 2 τ ) ,
δ ( t ) = { δ 0 cos ( π t τ ) + 1 4 Δ 0 [ η a c 2 N Ω 0 2 sin 2 ( π t τ ) ] , ( 0 t < τ ) δ 0 cos ( π ( t τ ) τ ) + 1 4 Δ 0 [ η a c 2 N Ω 0 2 sin 2 ( π ( t τ ) τ ) ] , ( τ t 2 τ )
H cd ( t ) = 2 ( 0 Ω a ( t ) e i φ a Ω a ( t ) e i φ a 0 )
Ω ~ ( t ) = 2 Δ 0 Ω ~ eff ( t ) N η a c , δ ~ ( t ) = Δ ~ eff ( t ) + η a c 2 4 Δ 0 Δ 0 Ω ~ eff 2 ( t ) η a c 2 ,
L a j ρ ^ = Γ i 2 ( 2 σ ^ g i ( j ) ρ ^ σ ^ i g ( j ) σ ^ i i ( j ) ρ ^ ρ ^ σ ^ i i ( j ) ) + Γ r 2 ( 2 σ ^ g r ( j ) ρ ^ σ ^ r g ( j ) σ ^ r r ( j ) ρ ^ ρ ^ σ ^ r r ( j ) )
L c ρ ^ = κ 2 ( 2 a ^ ρ ^ a ^ a ^ a ^ ρ ^ ρ ^ a ^ a ^ ) .
ρ ˙ = i [ H a c , ρ ] + j L a j ρ ^ + L c ρ ^ .
H ~ a c = 2 [ 2 Δ | I I | + 2 δ | 0 0 | | R R | + ( N Ω e i φ | I G | + η a c | 0 1 | | R I | + H . c . ) ] .

Metrics