Abstract

Optical cooling of a YLF:Yb single crystal to 87 K, well below the minimum achievable temperature predicted from existing theory, has been observed. This discrepancy between theory and data has motivated us to revisit the current model of optical refrigeration, in particular the critical role of parasitic background absorption. Challenging experiments that measured the cooling efficiency as a function of temperature reveal that the background absorption coefficient decreases with temperature, resulting in a significant enhancement of the cooling efficiency at cryogenic temperatures. These discoveries emphasize the high sensitivity of optical cooling to impurity-mediated processes and show the necessity of formulating a cooling model that includes the temperature dependence of the background absorption. To properly characterize the cooling properties of any sample, it is necessary to measure its low-temperature performance.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cryogenic optical refrigeration

Denis V. Seletskiy, Markus P. Hehlen, Richard I. Epstein, and Mansoor Sheik-Bahae
Adv. Opt. Photon. 4(1) 78-107 (2012)

Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K

Seth Melgaard, Denis Seletskiy, Victor Polyak, Yemane Asmerom, and Mansoor Sheik-Bahae
Opt. Express 22(7) 7756-7764 (2014)

Efficient optical refrigeration in Yb3+:YLiF4 at cryogenic temperatures via pulsed excitation

Guang-Zong Dong, Kai-Shun Zou, and Jun-Cheng Liu
J. Opt. Soc. Am. B 35(7) 1570-1577 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Pringsheim, “Zwei Bemerkungen uber den Unterschied von Lumineszenz- und Temperaturstrahlung,” Eur. Phys. J. A 57(11-12), 739–746 (1929).
    [Crossref]
  2. N. Djeu and W. T. Whitney, “Laser cooling by spontaneous anti-stokes scattering,” Phys. Rev. Lett. 46(4), 236–239 (1981).
    [Crossref]
  3. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
    [Crossref]
  4. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
    [Crossref]
  5. S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
    [Crossref]
  6. S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6(1), 20380–7 (2016).
    [Crossref]
  7. A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56(1), 011110 (2016).
    [Crossref]
  8. M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
    [Crossref]
  9. J. Meng, A. R. Albrecht, A. Gragossian, E. R. Lee, A. Volpi, M. Ghasemkhani, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Realization of an all-solid-state cryocooler using optical refrigeration,” Proc. SPIE 10626, 106260B (2018).
    [Crossref]
  10. M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
    [Crossref]
  11. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1-2), 67–84 (2009).
    [Crossref]
  12. M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, M. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
    [Crossref]
  13. M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+ -doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
    [Crossref]
  14. S. D. Melgaard, D. V. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K,” Opt. Express 22(7), 7756–7764 (2014).
    [Crossref]
  15. S. D. Melgaard, “Cryogenic optical refrigeration: Laser cooling of solids below 123 K,” Diss. Univ. New Mex. (2013).
  16. M. P. Hehlen, W. L. Boncher, S. D. Melgaard, M. W. Blair, R. A. Jackson, T. E. Littleford, and S. P. Love, “Preparation of high-purity LiF, YF3, and YbF3 for laser refrigeration,” Proc. SPIE 9000, 900004 (2014).
    [Crossref]
  17. A. Gragossian, M. Ghasemkhani, J. Meng, A. R. Albrecht, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration inches toward liquid-nitrogen temperatures,” SPIE Newsroom2–4 (2017).
    [Crossref]
  18. A. Volpi, A. Di Lieto, and M. Tonelli, “Novel approach for solid state cryocoolers,” Opt. Express 23(7), 8216–8226 (2015).
    [Crossref]
  19. A. Volpi, A. Di Lieto, and M. Tonelli, “Crystal growth of fluoride single crystals for optical refrigeration,” in Laser cooling: Fundamental Properties and Applications Nemova, (Pan Stanford Publishing, 2016).
  20. D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [Crossref]
  21. L. D. DeLoach, S. A. Payne, L. K. Smith, W. L. Kway, L. L. Chase, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
    [Crossref]
  22. G. Cittadino, A. Volpi, A. Di Lieto, and M. Tonelli, “Co-doping of LiYF 4 crystal: a virtuous effect of cooling efficiency,” J. Phys. D: Appl. Phys. 51(14), 145302 (2018).
    [Crossref]
  23. W. Patterson, E. Soto, M. Fleharty, and M. Sheik-Bahae, “Differential luminescence thermometry in laser cooling of solids,” Proc. SPIE 6461, 64610B (2007).
    [Crossref]
  24. J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth 393, 28–31 (2014).
    [Crossref]
  25. B. Henderson and G. F. Imbush, Optical Spectroscopy of Inorganic Solids, (Oxford University Press, 2006).
  26. J. Ferguson, D. L. Wood, and K. Knox, “Crystal-Field Spectra of d3, d7 Ions. II. KCoF3, CoCl2, CoBr2, and CoWO4,” J. Chem. Phys. 39(4), 881–889 (1963).
    [Crossref]

2018 (3)

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

J. Meng, A. R. Albrecht, A. Gragossian, E. R. Lee, A. Volpi, M. Ghasemkhani, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Realization of an all-solid-state cryocooler using optical refrigeration,” Proc. SPIE 10626, 106260B (2018).
[Crossref]

G. Cittadino, A. Volpi, A. Di Lieto, and M. Tonelli, “Co-doping of LiYF 4 crystal: a virtuous effect of cooling efficiency,” J. Phys. D: Appl. Phys. 51(14), 145302 (2018).
[Crossref]

2016 (2)

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6(1), 20380–7 (2016).
[Crossref]

A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56(1), 011110 (2016).
[Crossref]

2015 (1)

2014 (3)

S. D. Melgaard, D. V. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K,” Opt. Express 22(7), 7756–7764 (2014).
[Crossref]

M. P. Hehlen, W. L. Boncher, S. D. Melgaard, M. W. Blair, R. A. Jackson, T. E. Littleford, and S. P. Love, “Preparation of high-purity LiF, YF3, and YbF3 for laser refrigeration,” Proc. SPIE 9000, 900004 (2014).
[Crossref]

J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth 393, 28–31 (2014).
[Crossref]

2013 (2)

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, M. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
[Crossref]

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
[Crossref]

2010 (1)

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[Crossref]

2009 (1)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1-2), 67–84 (2009).
[Crossref]

2007 (3)

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+ -doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[Crossref]

W. Patterson, E. Soto, M. Fleharty, and M. Sheik-Bahae, “Differential luminescence thermometry in laser cooling of solids,” Proc. SPIE 6461, 64610B (2007).
[Crossref]

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

1993 (1)

L. D. DeLoach, S. A. Payne, L. K. Smith, W. L. Kway, L. L. Chase, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

1981 (1)

N. Djeu and W. T. Whitney, “Laser cooling by spontaneous anti-stokes scattering,” Phys. Rev. Lett. 46(4), 236–239 (1981).
[Crossref]

1964 (1)

D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

1963 (1)

J. Ferguson, D. L. Wood, and K. Knox, “Crystal-Field Spectra of d3, d7 Ions. II. KCoF3, CoCl2, CoBr2, and CoWO4,” J. Chem. Phys. 39(4), 881–889 (1963).
[Crossref]

1929 (1)

P. Pringsheim, “Zwei Bemerkungen uber den Unterschied von Lumineszenz- und Temperaturstrahlung,” Eur. Phys. J. A 57(11-12), 739–746 (1929).
[Crossref]

Albrecht, A. R.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

J. Meng, A. R. Albrecht, A. Gragossian, E. R. Lee, A. Volpi, M. Ghasemkhani, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Realization of an all-solid-state cryocooler using optical refrigeration,” Proc. SPIE 10626, 106260B (2018).
[Crossref]

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6(1), 20380–7 (2016).
[Crossref]

A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56(1), 011110 (2016).
[Crossref]

J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth 393, 28–31 (2014).
[Crossref]

A. Gragossian, M. Ghasemkhani, J. Meng, A. R. Albrecht, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration inches toward liquid-nitrogen temperatures,” SPIE Newsroom2–4 (2017).
[Crossref]

Asmerom, Y.

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[Crossref]

Blair, M. W.

M. P. Hehlen, W. L. Boncher, S. D. Melgaard, M. W. Blair, R. A. Jackson, T. E. Littleford, and S. P. Love, “Preparation of high-purity LiF, YF3, and YbF3 for laser refrigeration,” Proc. SPIE 9000, 900004 (2014).
[Crossref]

Boncher, W. L.

M. P. Hehlen, W. L. Boncher, S. D. Melgaard, M. W. Blair, R. A. Jackson, T. E. Littleford, and S. P. Love, “Preparation of high-purity LiF, YF3, and YbF3 for laser refrigeration,” Proc. SPIE 9000, 900004 (2014).
[Crossref]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Cederberg, J. G.

J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth 393, 28–31 (2014).
[Crossref]

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. K. Smith, W. L. Kway, L. L. Chase, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Cittadino, G.

G. Cittadino, A. Volpi, A. Di Lieto, and M. Tonelli, “Co-doping of LiYF 4 crystal: a virtuous effect of cooling efficiency,” J. Phys. D: Appl. Phys. 51(14), 145302 (2018).
[Crossref]

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. K. Smith, W. L. Kway, L. L. Chase, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Di Lieto, A.

G. Cittadino, A. Volpi, A. Di Lieto, and M. Tonelli, “Co-doping of LiYF 4 crystal: a virtuous effect of cooling efficiency,” J. Phys. D: Appl. Phys. 51(14), 145302 (2018).
[Crossref]

A. Volpi, A. Di Lieto, and M. Tonelli, “Novel approach for solid state cryocoolers,” Opt. Express 23(7), 8216–8226 (2015).
[Crossref]

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[Crossref]

A. Volpi, A. Di Lieto, and M. Tonelli, “Crystal growth of fluoride single crystals for optical refrigeration,” in Laser cooling: Fundamental Properties and Applications Nemova, (Pan Stanford Publishing, 2016).

Djeu, N.

N. Djeu and W. T. Whitney, “Laser cooling by spontaneous anti-stokes scattering,” Phys. Rev. Lett. 46(4), 236–239 (1981).
[Crossref]

Edwards, B. C.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Epstein, R. I.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

J. Meng, A. R. Albrecht, A. Gragossian, E. R. Lee, A. Volpi, M. Ghasemkhani, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Realization of an all-solid-state cryocooler using optical refrigeration,” Proc. SPIE 10626, 106260B (2018).
[Crossref]

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, M. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1-2), 67–84 (2009).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[Crossref]

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+ -doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Ferguson, J.

J. Ferguson, D. L. Wood, and K. Knox, “Crystal-Field Spectra of d3, d7 Ions. II. KCoF3, CoCl2, CoBr2, and CoWO4,” J. Chem. Phys. 39(4), 881–889 (1963).
[Crossref]

Fleharty, M.

W. Patterson, E. Soto, M. Fleharty, and M. Sheik-Bahae, “Differential luminescence thermometry in laser cooling of solids,” Proc. SPIE 6461, 64610B (2007).
[Crossref]

Ghasemkhani, M.

J. Meng, A. R. Albrecht, A. Gragossian, E. R. Lee, A. Volpi, M. Ghasemkhani, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Realization of an all-solid-state cryocooler using optical refrigeration,” Proc. SPIE 10626, 106260B (2018).
[Crossref]

A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56(1), 011110 (2016).
[Crossref]

J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth 393, 28–31 (2014).
[Crossref]

A. Gragossian, M. Ghasemkhani, J. Meng, A. R. Albrecht, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration inches toward liquid-nitrogen temperatures,” SPIE Newsroom2–4 (2017).
[Crossref]

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Gragossian, A.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

J. Meng, A. R. Albrecht, A. Gragossian, E. R. Lee, A. Volpi, M. Ghasemkhani, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Realization of an all-solid-state cryocooler using optical refrigeration,” Proc. SPIE 10626, 106260B (2018).
[Crossref]

A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56(1), 011110 (2016).
[Crossref]

A. Gragossian, M. Ghasemkhani, J. Meng, A. R. Albrecht, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration inches toward liquid-nitrogen temperatures,” SPIE Newsroom2–4 (2017).
[Crossref]

Hamilton, C. E.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

Hehlen, M. P.

J. Meng, A. R. Albrecht, A. Gragossian, E. R. Lee, A. Volpi, M. Ghasemkhani, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Realization of an all-solid-state cryocooler using optical refrigeration,” Proc. SPIE 10626, 106260B (2018).
[Crossref]

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6(1), 20380–7 (2016).
[Crossref]

M. P. Hehlen, W. L. Boncher, S. D. Melgaard, M. W. Blair, R. A. Jackson, T. E. Littleford, and S. P. Love, “Preparation of high-purity LiF, YF3, and YbF3 for laser refrigeration,” Proc. SPIE 9000, 900004 (2014).
[Crossref]

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, M. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
[Crossref]

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+ -doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

Henderson, B.

B. Henderson and G. F. Imbush, Optical Spectroscopy of Inorganic Solids, (Oxford University Press, 2006).

Imbush, G. F.

B. Henderson and G. F. Imbush, Optical Spectroscopy of Inorganic Solids, (Oxford University Press, 2006).

Inoue, H.

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+ -doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

Jackson, R. A.

M. P. Hehlen, W. L. Boncher, S. D. Melgaard, M. W. Blair, R. A. Jackson, T. E. Littleford, and S. P. Love, “Preparation of high-purity LiF, YF3, and YbF3 for laser refrigeration,” Proc. SPIE 9000, 900004 (2014).
[Crossref]

Knox, K.

J. Ferguson, D. L. Wood, and K. Knox, “Crystal-Field Spectra of d3, d7 Ions. II. KCoF3, CoCl2, CoBr2, and CoWO4,” J. Chem. Phys. 39(4), 881–889 (1963).
[Crossref]

Krupke, W. F.

L. D. DeLoach, S. A. Payne, L. K. Smith, W. L. Kway, L. L. Chase, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. K. Smith, W. L. Kway, L. L. Chase, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Lee, E. R.

J. Meng, A. R. Albrecht, A. Gragossian, E. R. Lee, A. Volpi, M. Ghasemkhani, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Realization of an all-solid-state cryocooler using optical refrigeration,” Proc. SPIE 10626, 106260B (2018).
[Crossref]

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

Littleford, T. E.

M. P. Hehlen, W. L. Boncher, S. D. Melgaard, M. W. Blair, R. A. Jackson, T. E. Littleford, and S. P. Love, “Preparation of high-purity LiF, YF3, and YbF3 for laser refrigeration,” Proc. SPIE 9000, 900004 (2014).
[Crossref]

Love, S. P.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

M. P. Hehlen, W. L. Boncher, S. D. Melgaard, M. W. Blair, R. A. Jackson, T. E. Littleford, and S. P. Love, “Preparation of high-purity LiF, YF3, and YbF3 for laser refrigeration,” Proc. SPIE 9000, 900004 (2014).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Melgaard, M. D.

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, M. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
[Crossref]

Melgaard, S. D.

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6(1), 20380–7 (2016).
[Crossref]

M. P. Hehlen, W. L. Boncher, S. D. Melgaard, M. W. Blair, R. A. Jackson, T. E. Littleford, and S. P. Love, “Preparation of high-purity LiF, YF3, and YbF3 for laser refrigeration,” Proc. SPIE 9000, 900004 (2014).
[Crossref]

S. D. Melgaard, D. V. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K,” Opt. Express 22(7), 7756–7764 (2014).
[Crossref]

J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth 393, 28–31 (2014).
[Crossref]

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[Crossref]

S. D. Melgaard, “Cryogenic optical refrigeration: Laser cooling of solids below 123 K,” Diss. Univ. New Mex. (2013).

Meng, J.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

J. Meng, A. R. Albrecht, A. Gragossian, E. R. Lee, A. Volpi, M. Ghasemkhani, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Realization of an all-solid-state cryocooler using optical refrigeration,” Proc. SPIE 10626, 106260B (2018).
[Crossref]

A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56(1), 011110 (2016).
[Crossref]

A. Gragossian, M. Ghasemkhani, J. Meng, A. R. Albrecht, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration inches toward liquid-nitrogen temperatures,” SPIE Newsroom2–4 (2017).
[Crossref]

Mungan, C. E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Patterson, W.

W. Patterson, E. Soto, M. Fleharty, and M. Sheik-Bahae, “Differential luminescence thermometry in laser cooling of solids,” Proc. SPIE 6461, 64610B (2007).
[Crossref]

Payne, S. A.

L. D. DeLoach, S. A. Payne, L. K. Smith, W. L. Kway, L. L. Chase, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Polyak, V.

Pringsheim, P.

P. Pringsheim, “Zwei Bemerkungen uber den Unterschied von Lumineszenz- und Temperaturstrahlung,” Eur. Phys. J. A 57(11-12), 739–746 (1929).
[Crossref]

Seletskiy, D. V.

S. D. Melgaard, D. V. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K,” Opt. Express 22(7), 7756–7764 (2014).
[Crossref]

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
[Crossref]

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, M. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[Crossref]

Sheik-Bahae, M.

J. Meng, A. R. Albrecht, A. Gragossian, E. R. Lee, A. Volpi, M. Ghasemkhani, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Realization of an all-solid-state cryocooler using optical refrigeration,” Proc. SPIE 10626, 106260B (2018).
[Crossref]

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6(1), 20380–7 (2016).
[Crossref]

A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56(1), 011110 (2016).
[Crossref]

S. D. Melgaard, D. V. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K,” Opt. Express 22(7), 7756–7764 (2014).
[Crossref]

J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth 393, 28–31 (2014).
[Crossref]

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
[Crossref]

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, M. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1-2), 67–84 (2009).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[Crossref]

W. Patterson, E. Soto, M. Fleharty, and M. Sheik-Bahae, “Differential luminescence thermometry in laser cooling of solids,” Proc. SPIE 6461, 64610B (2007).
[Crossref]

A. Gragossian, M. Ghasemkhani, J. Meng, A. R. Albrecht, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration inches toward liquid-nitrogen temperatures,” SPIE Newsroom2–4 (2017).
[Crossref]

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. K. Smith, W. L. Kway, L. L. Chase, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Soto, E.

W. Patterson, E. Soto, M. Fleharty, and M. Sheik-Bahae, “Differential luminescence thermometry in laser cooling of solids,” Proc. SPIE 6461, 64610B (2007).
[Crossref]

Tonelli, M.

G. Cittadino, A. Volpi, A. Di Lieto, and M. Tonelli, “Co-doping of LiYF 4 crystal: a virtuous effect of cooling efficiency,” J. Phys. D: Appl. Phys. 51(14), 145302 (2018).
[Crossref]

A. Volpi, A. Di Lieto, and M. Tonelli, “Novel approach for solid state cryocoolers,” Opt. Express 23(7), 8216–8226 (2015).
[Crossref]

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[Crossref]

A. Gragossian, M. Ghasemkhani, J. Meng, A. R. Albrecht, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration inches toward liquid-nitrogen temperatures,” SPIE Newsroom2–4 (2017).
[Crossref]

A. Volpi, A. Di Lieto, and M. Tonelli, “Crystal growth of fluoride single crystals for optical refrigeration,” in Laser cooling: Fundamental Properties and Applications Nemova, (Pan Stanford Publishing, 2016).

Volpi, A.

J. Meng, A. R. Albrecht, A. Gragossian, E. R. Lee, A. Volpi, M. Ghasemkhani, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Realization of an all-solid-state cryocooler using optical refrigeration,” Proc. SPIE 10626, 106260B (2018).
[Crossref]

G. Cittadino, A. Volpi, A. Di Lieto, and M. Tonelli, “Co-doping of LiYF 4 crystal: a virtuous effect of cooling efficiency,” J. Phys. D: Appl. Phys. 51(14), 145302 (2018).
[Crossref]

A. Volpi, A. Di Lieto, and M. Tonelli, “Novel approach for solid state cryocoolers,” Opt. Express 23(7), 8216–8226 (2015).
[Crossref]

A. Volpi, A. Di Lieto, and M. Tonelli, “Crystal growth of fluoride single crystals for optical refrigeration,” in Laser cooling: Fundamental Properties and Applications Nemova, (Pan Stanford Publishing, 2016).

Whitney, W. T.

N. Djeu and W. T. Whitney, “Laser cooling by spontaneous anti-stokes scattering,” Phys. Rev. Lett. 46(4), 236–239 (1981).
[Crossref]

Wood, D. L.

J. Ferguson, D. L. Wood, and K. Knox, “Crystal-Field Spectra of d3, d7 Ions. II. KCoF3, CoCl2, CoBr2, and CoWO4,” J. Chem. Phys. 39(4), 881–889 (1963).
[Crossref]

Eur. Phys. J. A (1)

P. Pringsheim, “Zwei Bemerkungen uber den Unterschied von Lumineszenz- und Temperaturstrahlung,” Eur. Phys. J. A 57(11-12), 739–746 (1929).
[Crossref]

IEEE J. Quantum Electron. (1)

L. D. DeLoach, S. A. Payne, L. K. Smith, W. L. Kway, L. L. Chase, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

J. Chem. Phys. (1)

J. Ferguson, D. L. Wood, and K. Knox, “Crystal-Field Spectra of d3, d7 Ions. II. KCoF3, CoCl2, CoBr2, and CoWO4,” J. Chem. Phys. 39(4), 881–889 (1963).
[Crossref]

J. Cryst. Growth (1)

J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth 393, 28–31 (2014).
[Crossref]

J. Mater. Chem. C (1)

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, M. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
[Crossref]

J. Phys. D: Appl. Phys. (1)

G. Cittadino, A. Volpi, A. Di Lieto, and M. Tonelli, “Co-doping of LiYF 4 crystal: a virtuous effect of cooling efficiency,” J. Phys. D: Appl. Phys. 51(14), 145302 (2018).
[Crossref]

Laser Photonics Rev. (1)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1-2), 67–84 (2009).
[Crossref]

Light: Sci. Appl. (1)

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

Nat. Photonics (2)

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[Crossref]

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Opt. Eng. (1)

A. Gragossian, J. Meng, M. Ghasemkhani, A. R. Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56(1), 011110 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Phys. Rev. B (1)

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+ -doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

Phys. Rev. Lett. (1)

N. Djeu and W. T. Whitney, “Laser cooling by spontaneous anti-stokes scattering,” Phys. Rev. Lett. 46(4), 236–239 (1981).
[Crossref]

Proc. SPIE (3)

M. P. Hehlen, W. L. Boncher, S. D. Melgaard, M. W. Blair, R. A. Jackson, T. E. Littleford, and S. P. Love, “Preparation of high-purity LiF, YF3, and YbF3 for laser refrigeration,” Proc. SPIE 9000, 900004 (2014).
[Crossref]

J. Meng, A. R. Albrecht, A. Gragossian, E. R. Lee, A. Volpi, M. Ghasemkhani, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Realization of an all-solid-state cryocooler using optical refrigeration,” Proc. SPIE 10626, 106260B (2018).
[Crossref]

W. Patterson, E. Soto, M. Fleharty, and M. Sheik-Bahae, “Differential luminescence thermometry in laser cooling of solids,” Proc. SPIE 6461, 64610B (2007).
[Crossref]

Sci. Rep. (1)

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6(1), 20380–7 (2016).
[Crossref]

Other (4)

A. Gragossian, M. Ghasemkhani, J. Meng, A. R. Albrecht, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration inches toward liquid-nitrogen temperatures,” SPIE Newsroom2–4 (2017).
[Crossref]

A. Volpi, A. Di Lieto, and M. Tonelli, “Crystal growth of fluoride single crystals for optical refrigeration,” in Laser cooling: Fundamental Properties and Applications Nemova, (Pan Stanford Publishing, 2016).

S. D. Melgaard, “Cryogenic optical refrigeration: Laser cooling of solids below 123 K,” Diss. Univ. New Mex. (2013).

B. Henderson and G. F. Imbush, Optical Spectroscopy of Inorganic Solids, (Oxford University Press, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Temperature of the YLF:5%Yb,Tm sample as a function of time after turning on the multi-pass 1020 nm (∼50 W) excitation in astigmatic Herriot-cell [7,17]. The copper clamshell structure [8] surrounding the crystal was kept at 6 °C. (b) 2D plot of cooling efficiency vs. wavelength and temperature calculated in the approximation of constant ${\alpha _b}$ and ${\eta _{ext}}$ . The dashed lines indicate the predicted MAT of 110–120 K for a pump wavelength of 1020 nm
Fig. 2.
Fig. 2. (a) Sample mounting (schematic: top, and picture: bottom) for the temperature-dependent LITMoS tests. (b) Schematic of the complete setup (top), and the timing of the probe-pump excitation for the time-gated DLT (bottom).
Fig. 3.
Fig. 3. Low-temperature LITMoS results showing experimental data (symbols) and fits to Eq. (3) (solid lines) of the cooling efficiencies measured at 300, 170, and 110 K for the YLF:5%Yb,Tm sample. The dotted lines show a prediction of the cooling efficiency at 170 and 110 K in the original model that assumed a temperature independent ${\alpha _b}$.
Fig. 4.
Fig. 4. (a) Experimental data of background absorption vs sample temperature (red dots) with Boltzmann fit (black line). (b) Revised 2D plot of cooling efficiency vs $\lambda $ and T using the measured ${\alpha _b}(T )$ from Fig. 4a. A global MAT of $\sim 7$0 K is predicted. Previous results, shown in Fig. 1(b), have been re-evaluated with the new definition of cooling efficiency and no change in the value of the global-MAT, under the assumption of temperature-independent ${\alpha _b}$, is found.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η c ( λ , T ) = η e x t η a b s ( λ , T ) λ λ f ( T ) 1 ,
η c ( λ ) exp = K Δ T / P a b s ( λ )
η c ( λ , T ) = η e x t λ λ f ( T ) 1 η a b s ( λ , T )

Metrics