Abstract

We demonstrate experimentally a superluminal ring laser based on optically pumped Raman gain, and a self-pumped Raman depletion for producing anomalous dispersion, employing two isotopes of rubidium. By fitting the experiment data with the theoretical model, we infer that the spectral sensitivity of the superluminal Raman laser to cavity length change is enhanced by a factor of more than a thousand, compared to a conventional laser.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser

Joshua Yablon, Zifan Zhou, Minchuan Zhou, Ye Wang, S. Tseng, and M. S. Shahriar
Opt. Express 24(24) 27444-27456 (2016)

Phase correlation during two-photon resonance process in an active cavity

Zifan Zhou, Nicholas J. Condon, Devin J. Hileman, Shih C. Tseng, and Selim M. Shahriar
Appl. Opt. 59(3) 866-872 (2020)

Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor

G.S. Pati, M. Salit, K. Salit, and M.S. Shahriar
Opt. Express 17(11) 8775-8780 (2009)

References

  • View by:
  • |
  • |
  • |

  1. H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658 (2010).
    [Crossref]
  2. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At., Mol., Opt. Phys. 75(5), 053807 (2007).
    [Crossref]
  3. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281(19), 4931–4935 (2008).
    [Crossref]
  4. D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A: At., Mol., Opt. Phys. 78(5), 053824 (2008).
    [Crossref]
  5. J. Scheuer and S. M. Shahriar, “Lasing dynamics of super and sub luminal lasers,” Opt. Express 23(25), 32350 (2015).doi
    [Crossref]
  6. O. Kotlicki, J. Scheuer, and M. S. Shahriar, “Theoretical study on Brillouin fiber laser sensor based on white light cavity,” Opt. Express 20(27), 28234 (2012).
    [Crossref]
  7. H. N. Yum and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” J. Opt. 12(10), 104018 (2010).
    [Crossref]
  8. J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444 (2016).
    [Crossref]
  9. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
    [Crossref]
  10. M. S. Shahriar and M. Salit, “Application of fast-light in gravitational wave detection with interferometers and resonators,” J. Mod. Opt. 55(19-20), 3133–3147 (2008).
    [Crossref]
  11. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775 (2009).
    [Crossref]
  12. D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A: At., Mol., Opt. Phys. 80(1), 011809 (2009).
    [Crossref]
  13. D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A: At., Mol., Opt. Phys. 89(5), 053804 (2014).
    [Crossref]
  14. K. Myneni, D. D. Smith, H. Chang, and H. A. Luckay, “Temperature sensitivity of the cavity scale factor enhancement for a Gaussian absorption resonance,” Phys. Rev. A: At., Mol., Opt. Phys. 92(5), 053845 (2015).
    [Crossref]
  15. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
    [Crossref]
  16. P. Kumar and J. H. Shapiro, “Observation of Raman-shifted oscillation near the sodium D lines,” Opt. Lett. 10(5), 226 (1985).
    [Crossref]
  17. M. Poelker and P. Kumar, “Sodium Raman laser: direct measurements of the narrow-band Raman gain,” Opt. Lett. 17(6), 399 (1992).
    [Crossref]
  18. M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N -level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).
    [Crossref]
  19. Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultra-stable subluminal laser,” Opt. Commun. 358, 6–19 (2016).
    [Crossref]

2016 (2)

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444 (2016).
[Crossref]

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultra-stable subluminal laser,” Opt. Commun. 358, 6–19 (2016).
[Crossref]

2015 (2)

J. Scheuer and S. M. Shahriar, “Lasing dynamics of super and sub luminal lasers,” Opt. Express 23(25), 32350 (2015).doi
[Crossref]

K. Myneni, D. D. Smith, H. Chang, and H. A. Luckay, “Temperature sensitivity of the cavity scale factor enhancement for a Gaussian absorption resonance,” Phys. Rev. A: At., Mol., Opt. Phys. 92(5), 053845 (2015).
[Crossref]

2014 (2)

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N -level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A: At., Mol., Opt. Phys. 89(5), 053804 (2014).
[Crossref]

2012 (1)

2010 (2)

H. N. Yum and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” J. Opt. 12(10), 104018 (2010).
[Crossref]

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658 (2010).
[Crossref]

2009 (2)

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775 (2009).
[Crossref]

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A: At., Mol., Opt. Phys. 80(1), 011809 (2009).
[Crossref]

2008 (3)

M. S. Shahriar and M. Salit, “Application of fast-light in gravitational wave detection with interferometers and resonators,” J. Mod. Opt. 55(19-20), 3133–3147 (2008).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281(19), 4931–4935 (2008).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A: At., Mol., Opt. Phys. 78(5), 053824 (2008).
[Crossref]

2007 (2)

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At., Mol., Opt. Phys. 75(5), 053807 (2007).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[Crossref]

2000 (1)

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref]

1992 (1)

1985 (1)

Arissian, L.

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A: At., Mol., Opt. Phys. 78(5), 053824 (2008).
[Crossref]

Chang, H.

K. Myneni, D. D. Smith, H. Chang, and H. A. Luckay, “Temperature sensitivity of the cavity scale factor enhancement for a Gaussian absorption resonance,” Phys. Rev. A: At., Mol., Opt. Phys. 92(5), 053845 (2015).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A: At., Mol., Opt. Phys. 89(5), 053804 (2014).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A: At., Mol., Opt. Phys. 78(5), 053824 (2008).
[Crossref]

Diels, J. C.

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A: At., Mol., Opt. Phys. 80(1), 011809 (2009).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A: At., Mol., Opt. Phys. 78(5), 053824 (2008).
[Crossref]

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref]

Gopal, V.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At., Mol., Opt. Phys. 75(5), 053807 (2007).
[Crossref]

Heifetz, A.

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultra-stable subluminal laser,” Opt. Commun. 358, 6–19 (2016).
[Crossref]

Kotlicki, O.

Krishnamurthy, S.

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N -level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).
[Crossref]

Kumar, P.

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref]

Luckay, H. A.

K. Myneni, D. D. Smith, H. Chang, and H. A. Luckay, “Temperature sensitivity of the cavity scale factor enhancement for a Gaussian absorption resonance,” Phys. Rev. A: At., Mol., Opt. Phys. 92(5), 053845 (2015).
[Crossref]

Messall, M.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At., Mol., Opt. Phys. 75(5), 053807 (2007).
[Crossref]

Myneni, K.

K. Myneni, D. D. Smith, H. Chang, and H. A. Luckay, “Temperature sensitivity of the cavity scale factor enhancement for a Gaussian absorption resonance,” Phys. Rev. A: At., Mol., Opt. Phys. 92(5), 053845 (2015).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A: At., Mol., Opt. Phys. 89(5), 053804 (2014).
[Crossref]

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A: At., Mol., Opt. Phys. 80(1), 011809 (2009).
[Crossref]

Odutola, J. A.

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A: At., Mol., Opt. Phys. 80(1), 011809 (2009).
[Crossref]

Pati, G. S.

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N -level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775 (2009).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281(19), 4931–4935 (2008).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At., Mol., Opt. Phys. 75(5), 053807 (2007).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[Crossref]

Poelker, M.

Rosenberger, A. T.

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A: At., Mol., Opt. Phys. 89(5), 053804 (2014).
[Crossref]

Salit, K.

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658 (2010).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775 (2009).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281(19), 4931–4935 (2008).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At., Mol., Opt. Phys. 75(5), 053807 (2007).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[Crossref]

Salit, M.

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658 (2010).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775 (2009).
[Crossref]

M. S. Shahriar and M. Salit, “Application of fast-light in gravitational wave detection with interferometers and resonators,” J. Mod. Opt. 55(19-20), 3133–3147 (2008).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281(19), 4931–4935 (2008).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[Crossref]

Scheuer, J.

Shahriar, M. S.

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444 (2016).
[Crossref]

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultra-stable subluminal laser,” Opt. Commun. 358, 6–19 (2016).
[Crossref]

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N -level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).
[Crossref]

O. Kotlicki, J. Scheuer, and M. S. Shahriar, “Theoretical study on Brillouin fiber laser sensor based on white light cavity,” Opt. Express 20(27), 28234 (2012).
[Crossref]

H. N. Yum and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” J. Opt. 12(10), 104018 (2010).
[Crossref]

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658 (2010).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775 (2009).
[Crossref]

M. S. Shahriar and M. Salit, “Application of fast-light in gravitational wave detection with interferometers and resonators,” J. Mod. Opt. 55(19-20), 3133–3147 (2008).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281(19), 4931–4935 (2008).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At., Mol., Opt. Phys. 75(5), 053807 (2007).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[Crossref]

Shahriar, S. M.

Shapiro, J. H.

Smith, D. D.

K. Myneni, D. D. Smith, H. Chang, and H. A. Luckay, “Temperature sensitivity of the cavity scale factor enhancement for a Gaussian absorption resonance,” Phys. Rev. A: At., Mol., Opt. Phys. 92(5), 053845 (2015).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A: At., Mol., Opt. Phys. 89(5), 053804 (2014).
[Crossref]

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A: At., Mol., Opt. Phys. 80(1), 011809 (2009).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A: At., Mol., Opt. Phys. 78(5), 053824 (2008).
[Crossref]

Tripathi, R.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At., Mol., Opt. Phys. 75(5), 053807 (2007).
[Crossref]

Tseng, S.

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444 (2016).
[Crossref]

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N -level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).
[Crossref]

Tu, Y.

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N -level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).
[Crossref]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref]

Wang, Y.

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444 (2016).
[Crossref]

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultra-stable subluminal laser,” Opt. Commun. 358, 6–19 (2016).
[Crossref]

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N -level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).
[Crossref]

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658 (2010).
[Crossref]

Yablon, J.

Yum, H. N.

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658 (2010).
[Crossref]

H. N. Yum and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” J. Opt. 12(10), 104018 (2010).
[Crossref]

Zhou, M.

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444 (2016).
[Crossref]

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultra-stable subluminal laser,” Opt. Commun. 358, 6–19 (2016).
[Crossref]

Zhou, Z.

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultra-stable subluminal laser,” Opt. Commun. 358, 6–19 (2016).
[Crossref]

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444 (2016).
[Crossref]

J. Mod. Opt. (2)

M. S. Shahriar and M. Salit, “Application of fast-light in gravitational wave detection with interferometers and resonators,” J. Mod. Opt. 55(19-20), 3133–3147 (2008).
[Crossref]

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N -level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).
[Crossref]

J. Opt. (1)

H. N. Yum and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” J. Opt. 12(10), 104018 (2010).
[Crossref]

Nature (1)

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref]

Opt. Commun. (2)

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultra-stable subluminal laser,” Opt. Commun. 358, 6–19 (2016).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281(19), 4931–4935 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A: At., Mol., Opt. Phys. (5)

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A: At., Mol., Opt. Phys. 80(1), 011809 (2009).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A: At., Mol., Opt. Phys. 89(5), 053804 (2014).
[Crossref]

K. Myneni, D. D. Smith, H. Chang, and H. A. Luckay, “Temperature sensitivity of the cavity scale factor enhancement for a Gaussian absorption resonance,” Phys. Rev. A: At., Mol., Opt. Phys. 92(5), 053845 (2015).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At., Mol., Opt. Phys. 75(5), 053807 (2007).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A: At., Mol., Opt. Phys. 78(5), 053824 (2008).
[Crossref]

Phys. Rev. Lett. (1)

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Energy levels and optical fields in the gain medium and (b) the schematic of the experiment configuration.
Fig. 2.
Fig. 2. (a) Theoretical model of the superluminal Raman laser, and (b) the 3-level system for calculating the optical pumping rate between the hyperfine levels in the 5S1/2 manifold of 85Rb.
Fig. 3.
Fig. 3. (a) Experimental and theoretical results of the output power of the superluminal Raman laser as functions of the frequency difference between the two Raman pumps and (b) theoretical estimation of the enhancement of cavity length sensitivity at the two-photon resonance frequency in 87Rb.
Fig. 4.
Fig. 4. The asymmetric Raman depletion profiles on both sides of the resonance.

Metrics