Abstract

Orbital angular momentum (OAM) light is nowadays an intriguing resource in classical and quantum optics due to the richness of physical properties it shows in interaction with matter. A key ingredient needed to exploit the full potential of OAM light is the control of quantum interference, a crucial resource in fields like quantum communication and quantum optics. Here, we study the vortex four-wave mixing (FWM) via multi-photon quantum interference in an ultraslow propagation regime. We find that the structured information can be manipulated via two-photon detuning and three photon detuning, which manifests itself as a spatial modulation. The detailed explanations based on the dispersion relation are given, which are in good agreement with our simulations. Furthermore, in order to clearly show the modulated mechanism, we perform the interference between the FWM field and a same-frequency Gaussian beam. It is found that the interference patterns are also manipulated by adjusting the multi-photon detunings. This work may have some potential applications in quantum control based on OAM light.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference

Ying Wu, M. G. Payne, E. W. Hagley, and L. Deng
Opt. Lett. 29(19) 2294-2296 (2004)

Quantum interference in atomic vapor observed by four-wave mixing with incoherent light

J. Ferraz, D. Felinto, L. H. Acioli, and S. S. Vianna
Opt. Lett. 30(14) 1876-1878 (2005)

Polarization interference in six-wave mixing in a Doppler-broadened N-type four-level system

Jinyan Niu, Ruquan Wang, Ling-An Wu, and Panming Fu
J. Opt. Soc. Am. B 26(12) 2268-2274 (2009)

References

  • View by:
  • |
  • |
  • |

  1. L. Deng and M. G. Payne, “Three-photon destructive interference in ultraslow-propagation-enhanced four-wave mixing,” Phys. Rev. A 68(5), 051801 (2003).
    [Crossref]
  2. L. Deng and M. G. Payne, “Inhibiting the Onset of the Three-Photon Destructive Interference in Ultraslow Propagation-Enhanced Four-Wave Mixing with Dual Induced Transparency,” Phys. Rev. Lett. 91(24), 243902 (2003).
    [Crossref]
  3. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).
    [Crossref]
  4. Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71(4), 043819 (2005).
    [Crossref]
  5. Y. Zhang, A. W. Brown, and M. Xiao, “Observation of interference between four-wave mixing and six-wave mixing,” Opt. Lett. 32(9), 1120–1122 (2007).
    [Crossref]
  6. H. Li and G. Huang, “Highly efficient four-wave mixing in a coherent six-level system in ultraslow propagation regime,” Phys. Rev. A 76(4), 043809 (2007).
    [Crossref]
  7. Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77(6), 061801 (2008).
    [Crossref]
  8. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
    [Crossref]
  9. G. S. Agarwal and S. P. Tewari, “Large enhancements in nonlinear generation by external electromagnetic fields,” Phys. Rev. Lett. 70(10), 1417–1420 (1993).
    [Crossref]
  10. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear Optical Processes Using Electromagnetically Induced Transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
    [Crossref]
  11. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  12. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  13. L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).
    [Crossref]
  14. Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).
    [Crossref]
  15. Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
    [Crossref]
  16. L. Allen, M. J. Padgett, and M. Babiker, “IV The Orbital Angular Momentum of Light,” Prog. Opt. 39, 291–372 (1999).
    [Crossref]
  17. R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
    [Crossref]
  18. E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).
    [Crossref]
  19. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161 (2011).
    [Crossref]
  20. X. Cai, J. Wang, and M. J. Strain, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
    [Crossref]
  21. A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
    [Crossref]
  22. D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
    [Crossref]
  23. Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, and B. S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
    [Crossref]
  24. R. A. de Oliveira, G. C. Borba, W. S. Martins, S. Barreiro, D. Felinto, and J. W. R. Tabosa, “Nonlinear optical memory for manipulation of orbital angular momentum of light,” Opt. Lett. 40(21), 4939–4942 (2015).
    [Crossref]
  25. W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).
    [Crossref]
  26. S. Barreiro, J. W. R. Tabosa, J. P. Torres, Y. Deyanova, and L. Torner, “Four-wave mixing of light beams with engineered orbital angular momentum in cold cesium atoms,” Opt. Lett. 29(13), 1515 (2004).
    [Crossref]
  27. W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74(4), 043811 (2006).
    [Crossref]
  28. A. M. Akulshin, R. J. McLean, E. E. Mikhailov, and I. Novikova, “Distinguishing nonlinear processes in atomic media via orbital angular momentum transfer,” Opt. Lett. 40(6), 1109 (2015).
    [Crossref]
  29. W. Zhang, D. Ding, Y. Jiang, B. Shi, and G. Guo, “Indirect precise angular control using four-wave mixing,” Appl. Phys. Lett. 104(17), 171103 (2014).
    [Crossref]
  30. A. M. Akulshin, I. Novikova, E. E. Mikhailov, S. A. Suslov, and R. J. McLean, “Arithmetic with optical topological charges in stepwise-excited Rb vapour,” Opt. Lett. 41(6), 1146 (2016).
    [Crossref]
  31. A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapour,” Phys. Rev. A 97(6), 063806 (2018).
    [Crossref]
  32. R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
    [Crossref]
  33. L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).
    [Crossref]
  34. A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
    [Crossref]
  35. G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
    [Crossref]
  36. Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42(6), 1059–1062 (2017).
    [Crossref]
  37. D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42(16), 3097–3100 (2017).
    [Crossref]
  38. Z. Wang, J. Yang, Y. Sun, and Y. Zhang, “Interference patterns of vortex beams based on photonic band gap structure,” Opt. Lett. 43(18), 4354–4357 (2018).
    [Crossref]
  39. P. Thoumany, T. Hänsch, G. Stania, L. Urbonas, and Th. Becker, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 34(11), 1621–1623 (2009).
    [Crossref]
  40. H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98(1), 013840 (2018).
    [Crossref]
  41. Y. Wu and X. Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70(5), 053818 (2004).
    [Crossref]
  42. D. Xu, C. Hang, and G. Huang, “Improvement of the memory quality of optical pulse pairs in atomic systems via four-wave mixing,” Phys. Rev. A 98(4), 043848 (2018).
    [Crossref]
  43. G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77(6), 1039–1042 (1996).
    [Crossref]
  44. J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
    [Crossref]
  45. A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002).
    [Crossref]
  46. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
    [Crossref]
  47. E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).
    [Crossref]
  48. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  49. J. Ruseckas, A. Mekys, and G. Juzeliunas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83(2), 023812 (2011).
    [Crossref]
  50. E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
    [Crossref]
  51. N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).
    [Crossref]
  52. S. Sharma and T. N. Dey, “Phase-induced transparency-mediated structured-beam generation in a closed-loop tripod configuration,” Phys. Rev. A 96(3), 033811 (2017).
    [Crossref]
  53. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  54. V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, and F. Sciarrino, “Tunable Two-Photon Quantum Interference of Structured Light,” Phys. Rev. Lett. 122(1), 013601 (2019).
    [Crossref]
  55. M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
    [Crossref]
  56. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref]
  57. E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66(1), 015802 (2002).
    [Crossref]
  58. T. Shui, W.-X. Yang, L. Li, and X. Wang, “Lop-sided Raman-Nath diffraction in PT-antisymmetric atomic lattices,” Opt. Lett. 44(8), 2089 (2019).
    [Crossref]
  59. N. Prajapati, N. Super, N. R. Lanning, J. P. Dowling, and I. Novikova, “Optical angular momentum manipulations in a four-wave mixing process,” Opt. Lett. 44(4), 739–742 (2019).
    [Crossref]
  60. X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
    [Crossref]
  61. T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).
    [Crossref]

2019 (5)

V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, and F. Sciarrino, “Tunable Two-Photon Quantum Interference of Structured Light,” Phys. Rev. Lett. 122(1), 013601 (2019).
[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).
[Crossref]

N. Prajapati, N. Super, N. R. Lanning, J. P. Dowling, and I. Novikova, “Optical angular momentum manipulations in a four-wave mixing process,” Opt. Lett. 44(4), 739–742 (2019).
[Crossref]

T. Shui, W.-X. Yang, L. Li, and X. Wang, “Lop-sided Raman-Nath diffraction in PT-antisymmetric atomic lattices,” Opt. Lett. 44(8), 2089 (2019).
[Crossref]

2018 (6)

Z. Wang, J. Yang, Y. Sun, and Y. Zhang, “Interference patterns of vortex beams based on photonic band gap structure,” Opt. Lett. 43(18), 4354–4357 (2018).
[Crossref]

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapour,” Phys. Rev. A 97(6), 063806 (2018).
[Crossref]

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
[Crossref]

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).
[Crossref]

H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98(1), 013840 (2018).
[Crossref]

D. Xu, C. Hang, and G. Huang, “Improvement of the memory quality of optical pulse pairs in atomic systems via four-wave mixing,” Phys. Rev. A 98(4), 043848 (2018).
[Crossref]

2017 (4)

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).
[Crossref]

Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42(6), 1059–1062 (2017).
[Crossref]

D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42(16), 3097–3100 (2017).
[Crossref]

S. Sharma and T. N. Dey, “Phase-induced transparency-mediated structured-beam generation in a closed-loop tripod configuration,” Phys. Rev. A 96(3), 033811 (2017).
[Crossref]

2016 (1)

2015 (3)

2014 (4)

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

W. Zhang, D. Ding, Y. Jiang, B. Shi, and G. Guo, “Indirect precise angular control using four-wave mixing,” Appl. Phys. Lett. 104(17), 171103 (2014).
[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, and B. S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

2013 (1)

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

2012 (3)

X. Cai, J. Wang, and M. J. Strain, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

2011 (3)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

J. Ruseckas, A. Mekys, and G. Juzeliunas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83(2), 023812 (2011).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161 (2011).
[Crossref]

2009 (4)

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).
[Crossref]

P. Thoumany, T. Hänsch, G. Stania, L. Urbonas, and Th. Becker, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 34(11), 1621–1623 (2009).
[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).
[Crossref]

2008 (2)

Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77(6), 061801 (2008).
[Crossref]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

2007 (4)

H. Li and G. Huang, “Highly efficient four-wave mixing in a coherent six-level system in ultraslow propagation regime,” Phys. Rev. A 76(4), 043809 (2007).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Observation of interference between four-wave mixing and six-wave mixing,” Opt. Lett. 32(9), 1120–1122 (2007).
[Crossref]

2006 (1)

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74(4), 043811 (2006).
[Crossref]

2005 (2)

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71(4), 043819 (2005).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

2004 (4)

2003 (3)

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).
[Crossref]

L. Deng and M. G. Payne, “Three-photon destructive interference in ultraslow-propagation-enhanced four-wave mixing,” Phys. Rev. A 68(5), 051801 (2003).
[Crossref]

L. Deng and M. G. Payne, “Inhibiting the Onset of the Three-Photon Destructive Interference in Ultraslow Propagation-Enhanced Four-Wave Mixing with Dual Induced Transparency,” Phys. Rev. Lett. 91(24), 243902 (2003).
[Crossref]

2002 (3)

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).
[Crossref]

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002).
[Crossref]

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66(1), 015802 (2002).
[Crossref]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

2000 (1)

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[Crossref]

1999 (1)

L. Allen, M. J. Padgett, and M. Babiker, “IV The Orbital Angular Momentum of Light,” Prog. Opt. 39, 291–372 (1999).
[Crossref]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

1996 (1)

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77(6), 1039–1042 (1996).
[Crossref]

1995 (1)

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref]

1993 (1)

G. S. Agarwal and S. P. Tewari, “Large enhancements in nonlinear generation by external electromagnetic fields,” Phys. Rev. Lett. 70(10), 1417–1420 (1993).
[Crossref]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear Optical Processes Using Electromagnetically Induced Transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Agarwal, G. S.

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77(6), 1039–1042 (1996).
[Crossref]

G. S. Agarwal and S. P. Tewari, “Large enhancements in nonlinear generation by external electromagnetic fields,” Phys. Rev. Lett. 70(10), 1417–1420 (1993).
[Crossref]

Agresti, I.

V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, and F. Sciarrino, “Tunable Two-Photon Quantum Interference of Structured Light,” Phys. Rev. Lett. 122(1), 013601 (2019).
[Crossref]

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Akulshin, A. M.

Allen, L.

L. Allen, M. J. Padgett, and M. Babiker, “IV The Orbital Angular Momentum of Light,” Prog. Opt. 39, 291–372 (1999).
[Crossref]

Anderson, B.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref]

Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77(6), 061801 (2008).
[Crossref]

Arnold, A. S.

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

Babiker, M.

L. Allen, M. J. Padgett, and M. Babiker, “IV The Orbital Angular Momentum of Light,” Prog. Opt. 39, 291–372 (1999).
[Crossref]

Barnett, S. M.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).
[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[Crossref]

Barreiro, S.

Becker, Th.

Borba, G. C.

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Boyd, R. W.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

Boyer, V.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

Brown, A. W.

Y. Zhang, A. W. Brown, and M. Xiao, “Observation of interference between four-wave mixing and six-wave mixing,” Opt. Lett. 32(9), 1120–1122 (2007).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref]

Cai, X.

X. Cai, J. Wang, and M. J. Strain, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Cao, M.

Carvacho, G.

V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, and F. Sciarrino, “Tunable Two-Photon Quantum Interference of Structured Light,” Phys. Rev. Lett. 122(1), 013601 (2019).
[Crossref]

Chen, K.-X.

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[Crossref]

Chen, Q.-F.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74(4), 043811 (2006).
[Crossref]

Cheng, L.

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).
[Crossref]

Chopinaud, A.

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapour,” Phys. Rev. A 97(6), 063806 (2018).
[Crossref]

Clark, T. W.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).
[Crossref]

Courtial, J.

D’Ambrosio, V.

V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, and F. Sciarrino, “Tunable Two-Photon Quantum Interference of Structured Light,” Phys. Rev. Lett. 122(1), 013601 (2019).
[Crossref]

Davidson, N.

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
[Crossref]

de Lesegno, B. V.

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapour,” Phys. Rev. A 97(6), 063806 (2018).
[Crossref]

De Martini, F.

de Oliveira, R. A.

Deng, L.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).
[Crossref]

L. Deng and M. G. Payne, “Three-photon destructive interference in ultraslow-propagation-enhanced four-wave mixing,” Phys. Rev. A 68(5), 051801 (2003).
[Crossref]

L. Deng and M. G. Payne, “Inhibiting the Onset of the Three-Photon Destructive Interference in Ultraslow Propagation-Enhanced Four-Wave Mixing with Dual Induced Transparency,” Phys. Rev. Lett. 91(24), 243902 (2003).
[Crossref]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).
[Crossref]

Dey, T. N.

S. Sharma and T. N. Dey, “Phase-induced transparency-mediated structured-beam generation in a closed-loop tripod configuration,” Phys. Rev. A 96(3), 033811 (2017).
[Crossref]

Deyanova, Y.

Ding, D.

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).
[Crossref]

W. Zhang, D. Ding, Y. Jiang, B. Shi, and G. Guo, “Indirect precise angular control using four-wave mixing,” Appl. Phys. Lett. 104(17), 171103 (2014).
[Crossref]

Ding, D. S.

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, and B. S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dowling, J. P.

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Felinto, D.

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear Optical Processes Using Electromagnetically Induced Transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Firstenberg, O.

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Franke-Arnold, S.

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
[Crossref]

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).
[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[Crossref]

Gao, J.-Y.

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[Crossref]

Gea-Banacloche, J.

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref]

Giacobino, E.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Gibson, G.

Giner, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Gong, S.

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71(4), 043819 (2005).
[Crossref]

Guo, G.

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).
[Crossref]

W. Zhang, D. Ding, Y. Jiang, B. Shi, and G. Guo, “Indirect precise angular control using four-wave mixing,” Appl. Phys. Lett. 104(17), 171103 (2014).
[Crossref]

Guo, G. C.

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

Guo, G.-C.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74(4), 043811 (2006).
[Crossref]

Guo, X.-Z.

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[Crossref]

Hagley, E. W.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).
[Crossref]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).
[Crossref]

Hamedi, H.

H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98(1), 013840 (2018).
[Crossref]

Hang, C.

D. Xu, C. Hang, and G. Huang, “Improvement of the memory quality of optical pulse pairs in atomic systems via four-wave mixing,” Phys. Rev. A 98(4), 043848 (2018).
[Crossref]

Hänsch, T.

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear Optical Processes Using Electromagnetically Induced Transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Harshawardhan, W.

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77(6), 1039–1042 (1996).
[Crossref]

Huang, G.

D. Xu, C. Hang, and G. Huang, “Improvement of the memory quality of optical pulse pairs in atomic systems via four-wave mixing,” Phys. Rev. A 98(4), 043848 (2018).
[Crossref]

H. Li and G. Huang, “Highly efficient four-wave mixing in a coherent six-level system in ultraslow propagation regime,” Phys. Rev. A 76(4), 043809 (2007).
[Crossref]

Huang, H.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ihn, Y. S.

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear Optical Processes Using Electromagnetically Induced Transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Jacquey, M.

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapour,” Phys. Rev. A 97(6), 063806 (2018).
[Crossref]

Jiang, W.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74(4), 043811 (2006).
[Crossref]

Jiang, Y.

W. Zhang, D. Ding, Y. Jiang, B. Shi, and G. Guo, “Indirect precise angular control using four-wave mixing,” Appl. Phys. Lett. 104(17), 171103 (2014).
[Crossref]

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[Crossref]

Jin, S.-Z.

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref]

Jing, J.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Jones, K. M.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

Juzeliunas, G.

H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98(1), 013840 (2018).
[Crossref]

J. Ruseckas, A. Mekys, and G. Juzeliunas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83(2), 023812 (2011).
[Crossref]

Karimi, E.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).
[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).
[Crossref]

Khadka, U.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref]

Kim, Y.-H.

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).
[Crossref]

Knight, P. L.

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66(1), 015802 (2002).
[Crossref]

Kozuma, M.

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).
[Crossref]

Lanning, N. R.

Laurat, J.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Lemons, K.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

Leon, I. D.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

Lett, P. D.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

Li, H.

H. Li and G. Huang, “Highly efficient four-wave mixing in a coherent six-level system in ultraslow propagation regime,” Phys. Rev. A 76(4), 043809 (2007).
[Crossref]

Li, L.

Li, R.

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71(4), 043819 (2005).
[Crossref]

Li, S.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Li, X.

Li, Y.

Li, Y.-Q.

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref]

Liu, X.

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).
[Crossref]

D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42(16), 3097–3100 (2017).
[Crossref]

Lv, S.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Ma, D.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Marino, A. M.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

Marrucci, L.

V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, and F. Sciarrino, “Tunable Two-Photon Quantum Interference of Structured Light,” Phys. Rev. Lett. 122(1), 013601 (2019).
[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).
[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).
[Crossref]

Martini, F. D.

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).
[Crossref]

Martins, W. S.

Matsko, A. B.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002).
[Crossref]

Maxein, D.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

McLean, R. J.

Mekys, A.

J. Ruseckas, A. Mekys, and G. Juzeliunas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83(2), 023812 (2011).
[Crossref]

Mikhailov, E. E.

Nagali, E.

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).
[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).
[Crossref]

Nicolas, A.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Niu, Y.

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71(4), 043819 (2005).
[Crossref]

Novikova, I.

Offer, R. F.

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
[Crossref]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161 (2011).
[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[Crossref]

L. Allen, M. J. Padgett, and M. Babiker, “IV The Orbital Angular Momentum of Light,” Prog. Opt. 39, 291–372 (1999).
[Crossref]

Pan, X.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Pas’ko, V.

Paspalakis, E.

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66(1), 015802 (2002).
[Crossref]

Payne, M. G.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).
[Crossref]

L. Deng and M. G. Payne, “Three-photon destructive interference in ultraslow-propagation-enhanced four-wave mixing,” Phys. Rev. A 68(5), 051801 (2003).
[Crossref]

L. Deng and M. G. Payne, “Inhibiting the Onset of the Three-Photon Destructive Interference in Ultraslow Propagation-Enhanced Four-Wave Mixing with Dual Induced Transparency,” Phys. Rev. Lett. 91(24), 243902 (2003).
[Crossref]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).
[Crossref]

Piccirillo, B.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).
[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).
[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).
[Crossref]

Pooser, R. C.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

Prajapati, N.

Pruvost, L.

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapour,” Phys. Rev. A 97(6), 063806 (2018).
[Crossref]

Pugatch, R.

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
[Crossref]

Qassim, H.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

Radwell, N.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).
[Crossref]

Ren, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Riis, E.

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
[Crossref]

Ron, A.

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
[Crossref]

Rostovsev, Y. V.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002).
[Crossref]

Ruseckas, J.

H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98(1), 013840 (2018).
[Crossref]

J. Ruseckas, A. Mekys, and G. Juzeliunas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83(2), 023812 (2011).
[Crossref]

Saldana, J.

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).
[Crossref]

Santamato, E.

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).
[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).
[Crossref]

Schulz, S. A.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

Sciarrino, F.

V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, and F. Sciarrino, “Tunable Two-Photon Quantum Interference of Structured Light,” Phys. Rev. Lett. 122(1), 013601 (2019).
[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).
[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).
[Crossref]

Scully, M. O.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002).
[Crossref]

Sharma, S.

S. Sharma and T. N. Dey, “Phase-induced transparency-mediated structured-beam generation in a closed-loop tripod configuration,” Phys. Rev. A 96(3), 033811 (2017).
[Crossref]

Sheng, Y.

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).
[Crossref]

Shi, B.

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).
[Crossref]

W. Zhang, D. Ding, Y. Jiang, B. Shi, and G. Guo, “Indirect precise angular control using four-wave mixing,” Appl. Phys. Lett. 104(17), 171103 (2014).
[Crossref]

Shi, B. S.

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, and B. S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

Shi, S.

Shui, T.

Shuker, M.

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
[Crossref]

Stania, G.

Strain, M. J.

X. Cai, J. Wang, and M. J. Strain, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Stulga, D.

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
[Crossref]

Sun, Y.

Z. Wang, J. Yang, Y. Sun, and Y. Zhang, “Interference patterns of vortex beams based on photonic band gap structure,” Opt. Lett. 43(18), 4354–4357 (2018).
[Crossref]

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).
[Crossref]

Super, N.

Suslov, S. A.

Tabosa, J. W. R.

Tewari, S. P.

G. S. Agarwal and S. P. Tewari, “Large enhancements in nonlinear generation by external electromagnetic fields,” Phys. Rev. Lett. 70(10), 1417–1420 (1993).
[Crossref]

Thoumany, P.

Torner, L.

Torres, J. P.

Tur, M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Upham, J.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

Urbonas, L.

Vasnetsov, M.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

Veissier, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Walker, G.

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

Wang, D.

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[Crossref]

Wang, J.

X. Cai, J. Wang, and M. J. Strain, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, K.

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).
[Crossref]

Wang, W.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Wang, X.

Wang, Z.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

Wu, Y.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).
[Crossref]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70(5), 053818 (2004).
[Crossref]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).
[Crossref]

Xiao, M.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref]

Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77(6), 061801 (2008).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Observation of interference between four-wave mixing and six-wave mixing,” Opt. Lett. 32(9), 1120–1122 (2007).
[Crossref]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref]

Xu, D.

D. Xu, C. Hang, and G. Huang, “Improvement of the memory quality of optical pulse pairs in atomic systems via four-wave mixing,” Phys. Rev. A 98(4), 043848 (2018).
[Crossref]

Xu, Z.

Yan, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J.

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, L.

Yang, S.-H.

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[Crossref]

Yang, W.-X.

Yang, X.

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70(5), 053818 (2004).
[Crossref]

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161 (2011).
[Crossref]

Ye, C. Y.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002).
[Crossref]

Yu, S.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Yue, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

Zhang, D.

Zhang, K.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Zhang, L.

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).
[Crossref]

Zhang, W.

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).
[Crossref]

W. Zhang, D. Ding, Y. Jiang, B. Shi, and G. Guo, “Indirect precise angular control using four-wave mixing,” Appl. Phys. Lett. 104(17), 171103 (2014).
[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, and B. S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
[Crossref]

Zhang, Y.

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).
[Crossref]

Z. Wang, J. Yang, Y. Sun, and Y. Zhang, “Interference patterns of vortex beams based on photonic band gap structure,” Opt. Lett. 43(18), 4354–4357 (2018).
[Crossref]

Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42(6), 1059–1062 (2017).
[Crossref]

Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42(6), 1059–1062 (2017).
[Crossref]

D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42(16), 3097–3100 (2017).
[Crossref]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref]

Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77(6), 061801 (2008).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Observation of interference between four-wave mixing and six-wave mixing,” Opt. Lett. 32(9), 1120–1122 (2007).
[Crossref]

Zhang, Y.-S.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74(4), 043811 (2006).
[Crossref]

Zhang, Z.

Zhao, B.

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[Crossref]

Zhao, T.-M.

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).
[Crossref]

Zhou, L.

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).
[Crossref]

Zhou, Y.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Zhou, Z. Y.

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, and B. S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

Zhu, Y.

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).
[Crossref]

Zibrov, A. S.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002).
[Crossref]

Adv. Opt. Photonics (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161 (2011).
[Crossref]

Appl. Phys. Lett. (1)

W. Zhang, D. Ding, Y. Jiang, B. Shi, and G. Guo, “Indirect precise angular control using four-wave mixing,” Appl. Phys. Lett. 104(17), 171103 (2014).
[Crossref]

Commun. Phys. (1)

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).
[Crossref]

Light: Sci. Appl. (1)

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

Nat. Commun. (1)

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

Nat. Photonics (3)

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (13)

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, and B. S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
[Crossref]

A. M. Akulshin, R. J. McLean, E. E. Mikhailov, and I. Novikova, “Distinguishing nonlinear processes in atomic media via orbital angular momentum transfer,” Opt. Lett. 40(6), 1109 (2015).
[Crossref]

R. A. de Oliveira, G. C. Borba, W. S. Martins, S. Barreiro, D. Felinto, and J. W. R. Tabosa, “Nonlinear optical memory for manipulation of orbital angular momentum of light,” Opt. Lett. 40(21), 4939–4942 (2015).
[Crossref]

A. M. Akulshin, I. Novikova, E. E. Mikhailov, S. A. Suslov, and R. J. McLean, “Arithmetic with optical topological charges in stepwise-excited Rb vapour,” Opt. Lett. 41(6), 1146 (2016).
[Crossref]

Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42(6), 1059–1062 (2017).
[Crossref]

D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42(16), 3097–3100 (2017).
[Crossref]

Z. Wang, J. Yang, Y. Sun, and Y. Zhang, “Interference patterns of vortex beams based on photonic band gap structure,” Opt. Lett. 43(18), 4354–4357 (2018).
[Crossref]

N. Prajapati, N. Super, N. R. Lanning, J. P. Dowling, and I. Novikova, “Optical angular momentum manipulations in a four-wave mixing process,” Opt. Lett. 44(4), 739–742 (2019).
[Crossref]

T. Shui, W.-X. Yang, L. Li, and X. Wang, “Lop-sided Raman-Nath diffraction in PT-antisymmetric atomic lattices,” Opt. Lett. 44(8), 2089 (2019).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Observation of interference between four-wave mixing and six-wave mixing,” Opt. Lett. 32(9), 1120–1122 (2007).
[Crossref]

P. Thoumany, T. Hänsch, G. Stania, L. Urbonas, and Th. Becker, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 34(11), 1621–1623 (2009).
[Crossref]

S. Barreiro, J. W. R. Tabosa, J. P. Torres, Y. Deyanova, and L. Torner, “Four-wave mixing of light beams with engineered orbital angular momentum in cold cesium atoms,” Opt. Lett. 29(13), 1515 (2004).
[Crossref]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).
[Crossref]

Phys. Rev. A (15)

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66(1), 015802 (2002).
[Crossref]

S. Sharma and T. N. Dey, “Phase-induced transparency-mediated structured-beam generation in a closed-loop tripod configuration,” Phys. Rev. A 96(3), 033811 (2017).
[Crossref]

J. Ruseckas, A. Mekys, and G. Juzeliunas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83(2), 023812 (2011).
[Crossref]

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[Crossref]

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002).
[Crossref]

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74(4), 043811 (2006).
[Crossref]

H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98(1), 013840 (2018).
[Crossref]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70(5), 053818 (2004).
[Crossref]

D. Xu, C. Hang, and G. Huang, “Improvement of the memory quality of optical pulse pairs in atomic systems via four-wave mixing,” Phys. Rev. A 98(4), 043848 (2018).
[Crossref]

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71(4), 043819 (2005).
[Crossref]

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapour,” Phys. Rev. A 97(6), 063806 (2018).
[Crossref]

L. Deng and M. G. Payne, “Three-photon destructive interference in ultraslow-propagation-enhanced four-wave mixing,” Phys. Rev. A 68(5), 051801 (2003).
[Crossref]

H. Li and G. Huang, “Highly efficient four-wave mixing in a coherent six-level system in ultraslow propagation regime,” Phys. Rev. A 76(4), 043809 (2007).
[Crossref]

Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77(6), 061801 (2008).
[Crossref]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).
[Crossref]

Phys. Rev. Lett. (17)

Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).
[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
[Crossref]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref]

G. S. Agarwal and S. P. Tewari, “Large enhancements in nonlinear generation by external electromagnetic fields,” Phys. Rev. Lett. 70(10), 1417–1420 (1993).
[Crossref]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear Optical Processes Using Electromagnetically Induced Transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

L. Deng and M. G. Payne, “Inhibiting the Onset of the Three-Photon Destructive Interference in Ultraslow Propagation-Enhanced Four-Wave Mixing with Dual Induced Transparency,” Phys. Rev. Lett. 91(24), 243902 (2003).
[Crossref]

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77(6), 1039–1042 (1996).
[Crossref]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).
[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).
[Crossref]

V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, and F. Sciarrino, “Tunable Two-Photon Quantum Interference of Structured Light,” Phys. Rev. Lett. 122(1), 013601 (2019).
[Crossref]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref]

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).
[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).
[Crossref]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Prog. Opt. (1)

L. Allen, M. J. Padgett, and M. Babiker, “IV The Orbital Angular Momentum of Light,” Prog. Opt. 39, 291–372 (1999).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Science (1)

X. Cai, J. Wang, and M. J. Strain, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic representation of the four-level ladder-type atomic system. (b) A simple block diagram of the model system.
Fig. 2.
Fig. 2. (a1), (a2), and (a3) are normalized intensity patterns of the FWM field for different two-photon detuning $\Delta _{2}$. (b1), (b2), and (b3) are the corresponding phase patterns. The imaginary part [(c1), (c2), (c3)] and real part [(d1), (d2), (d3)] of dispersion relation versus radial distance $r$ for different two-photon detuning. The other parameters are $\omega _{0}=0.18\,$ mm, $\omega _{sp}=4\omega _{0}$, $z=10\,$ mm, $p=0$, $l=2$, $\gamma _{1}=5.97\,$MHz, $\gamma _{2}=0.66\,$MHz, $\gamma _{3}=0.01\,$MHz, $\Omega _{v0}=3\,$MHz, $\Omega _{1}=25\,$MHz, $\Omega _{p0}=1\,$MHz, $\Delta _{1}=\Delta _{3}=0$, $\kappa _{01}=100\,$MHz/mm, $\kappa _{03}=0.01\kappa _{01}$.
Fig. 3.
Fig. 3. (a1), (a2), and (a3) are normalized intensity patterns of the FWM field for different three-photon detuning $\Delta _{3}$. (b1), (b2), and (b3) are the corresponding phase patterns. The imaginary part [(c1), (c2), (c3)] and real part [(d1), (d2), (d3)] of dispersion relation versus radial distance $r$ for different three-photon detuning. The other parameters are the same as Fig. 2 except for $\Delta _{2}=0$.
Fig. 4.
Fig. 4. (a1), (a2), and (a3) are normalized intensity patterns of the FWM field for different two-photon detuning $\Delta _{2}$. (b1), (b2), and (b3) are the corresponding phase patterns. The imaginary part [(c1), (c2), (c3)] and real part [(d1), (d2), (d3)] of dispersion relation versus radial distance $r$ for different two-photon detuning. The other parameters are the same as Fig. 2 except for $p=1$.
Fig. 5.
Fig. 5. (a1), (a2), and (a3) are normalized intensity patterns of the FWM field for different three-photon detuning $\Delta _{3}$. (b1), (b2), and (b3) are the corresponding phase patterns. The imaginary part [(c1), (c2), (c3)] and real part [(d1), (d2), (d3)] of dispersion relation versus radial distance $r$ for different three-photon detuning. The other parameters are the same as Fig. 2 except for $\Delta _{2}=0$ and $p=1$.
Fig. 6.
Fig. 6. (a1)-(a8) are the normalized interference intensity patterns between the FWM field and a same-frequency Gaussian beam $\Omega _{G}=0.01\exp [-(x^{2}+y^{2})/16\omega _{0}^{2}]$ for different two-photon detuning $\Delta _{2}$ and three-photon detuning $\Delta _{3}$ when the mode of the input LG field is $LG_{p=0}^{l=2}$; (b1)-(b8) are the corresponding phase patterns. The other parameters are the same as Fig. 2.
Fig. 7.
Fig. 7. (a1)-(a8) are the normalized interference intensity patterns between the FWM field and a same-frequency Gaussian beam $\Omega _{G}=0.01\exp [-(x^{2}+y^{2})/16\omega _{0}^{2}]$ for different two-photon detuning $\Delta _{2}$ and three-photon detuning $\Delta _{3}$ when the mode of the input LG field is $LG_{p=1}^{l=2}$; (b1)-(b8) are the corresponding phase patterns. The other parameters are the same as Fig. 2.
Fig. 8.
Fig. 8. The relative group velocity $v_{g}/c$ versus two-photon detuning $\Delta _{2}$ and three-photon detuning $\Delta _{3}$ for different mode of the input LG field $\Omega _{v}$. (a1)-(a8) $LG_{p=0}^{l=2}$; (b1)-(b8) $LG_{p=1}^{l=2}$. The other parameters are the same as Fig. 2 .

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Ω v = Ω v 0 ( r / ω 0 ) | l | e ( r / ω 0 ) 2 L p l ( 2 r 2 ω 0 2 ) e i l ϕ ,
( t + γ 1 i Δ 1 ) a 1 = i Ω p a 0 + i Ω 1 a 2 ,
( t + γ 2 i Δ 2 ) a 2 = i Ω v a 3 + i Ω 1 a 1 ,
( t + γ 3 i Δ 3 ) a 3 = i Ω v a 2 + i Ω m a 0 ,
Ω p ( m ) z + 1 c Ω p ( m ) t = i 2 k p ( m ) 2 Ω p ( m ) + i κ 01 ( 03 ) a 1 ( 3 ) a 0 ,
β 1 A 1 + Ω 1 A 2 + F p = 0 ,
β 2 A 2 + Ω 1 A 1 + i Ω v A 3 = 0 ,
β 3 A 3 + Ω v A 2 + F m = 0 ,
( z i ω c ) F p ( m ) = i 2 k p ( m ) 2 F p ( m ) + i κ 01 ( 03 ) A 1 ( 3 ) ,
F m ( z , ω ) = F p ( z = 0 , ω ) M + M ( e i z K e i z K + ) M + M ,
K ± = ω / c + ( κ 03 E 3 + κ 01 E 1 ± G ) / 2 E 2 , M ± = ( κ 03 E 3 κ 01 E 1 ± G ) / 2 κ 01 Ω v Ω 1 , E 1 = β 2 β 3 | Ω v | 2 E 2 = | Ω 1 | 2 β 3 + | Ω v | 2 β 1 β 1 β 2 β 3 , E 3 = β 1 β 2 | Ω 1 | 2 , G = ( κ 03 E 3 κ 01 E 1 ) 2 + 4 κ 01 κ 03 | Ω v | 2 | Ω 1 | 2 .
F m ( z , ω ) = F p ( z = 0 , ω ) M + M M M + e i z K ( ω ) ,

Metrics