V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, and F. Sciarrino, “Tunable Two-Photon Quantum Interference of Structured Light,” Phys. Rev. Lett. 122(1), 013601 (2019).

[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).

[Crossref]

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).

[Crossref]

N. Prajapati, N. Super, N. R. Lanning, J. P. Dowling, and I. Novikova, “Optical angular momentum manipulations in a four-wave mixing process,” Opt. Lett. 44(4), 739–742 (2019).

[Crossref]

T. Shui, W.-X. Yang, L. Li, and X. Wang, “Lop-sided Raman-Nath diffraction in PT-antisymmetric atomic lattices,” Opt. Lett. 44(8), 2089 (2019).

[Crossref]

Z. Wang, J. Yang, Y. Sun, and Y. Zhang, “Interference patterns of vortex beams based on photonic band gap structure,” Opt. Lett. 43(18), 4354–4357 (2018).

[Crossref]

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapour,” Phys. Rev. A 97(6), 063806 (2018).

[Crossref]

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).

[Crossref]

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).

[Crossref]

H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98(1), 013840 (2018).

[Crossref]

D. Xu, C. Hang, and G. Huang, “Improvement of the memory quality of optical pulse pairs in atomic systems via four-wave mixing,” Phys. Rev. A 98(4), 043848 (2018).

[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).

[Crossref]

Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42(6), 1059–1062 (2017).

[Crossref]

D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42(16), 3097–3100 (2017).

[Crossref]

S. Sharma and T. N. Dey, “Phase-induced transparency-mediated structured-beam generation in a closed-loop tripod configuration,” Phys. Rev. A 96(3), 033811 (2017).

[Crossref]

A. M. Akulshin, R. J. McLean, E. E. Mikhailov, and I. Novikova, “Distinguishing nonlinear processes in atomic media via orbital angular momentum transfer,” Opt. Lett. 40(6), 1109 (2015).

[Crossref]

R. A. de Oliveira, G. C. Borba, W. S. Martins, S. Barreiro, D. Felinto, and J. W. R. Tabosa, “Nonlinear optical memory for manipulation of orbital angular momentum of light,” Opt. Lett. 40(21), 4939–4942 (2015).

[Crossref]

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).

[Crossref]

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).

[Crossref]

W. Zhang, D. Ding, Y. Jiang, B. Shi, and G. Guo, “Indirect precise angular control using four-wave mixing,” Appl. Phys. Lett. 104(17), 171103 (2014).

[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, and B. S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).

[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).

[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).

[Crossref]

X. Cai, J. Wang, and M. J. Strain, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).

[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

[Crossref]

J. Ruseckas, A. Mekys, and G. Juzeliunas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83(2), 023812 (2011).

[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161 (2011).

[Crossref]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).

[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).

[Crossref]

P. Thoumany, T. Hänsch, G. Stania, L. Urbonas, and Th. Becker, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 34(11), 1621–1623 (2009).

[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).

[Crossref]

Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77(6), 061801 (2008).

[Crossref]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).

[Crossref]

H. Li and G. Huang, “Highly efficient four-wave mixing in a coherent six-level system in ultraslow propagation regime,” Phys. Rev. A 76(4), 043809 (2007).

[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).

[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).

[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Observation of interference between four-wave mixing and six-wave mixing,” Opt. Lett. 32(9), 1120–1122 (2007).

[Crossref]

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74(4), 043811 (2006).

[Crossref]

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71(4), 043819 (2005).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).

[Crossref]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70(5), 053818 (2004).

[Crossref]

S. Barreiro, J. W. R. Tabosa, J. P. Torres, Y. Deyanova, and L. Torner, “Four-wave mixing of light beams with engineered orbital angular momentum in cold cesium atoms,” Opt. Lett. 29(13), 1515 (2004).

[Crossref]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).

[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).

[Crossref]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).

[Crossref]

L. Deng and M. G. Payne, “Three-photon destructive interference in ultraslow-propagation-enhanced four-wave mixing,” Phys. Rev. A 68(5), 051801 (2003).

[Crossref]

L. Deng and M. G. Payne, “Inhibiting the Onset of the Three-Photon Destructive Interference in Ultraslow Propagation-Enhanced Four-Wave Mixing with Dual Induced Transparency,” Phys. Rev. Lett. 91(24), 243902 (2003).

[Crossref]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).

[Crossref]

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002).

[Crossref]

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66(1), 015802 (2002).

[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).

[Crossref]

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).

[Crossref]

L. Allen, M. J. Padgett, and M. Babiker, “IV The Orbital Angular Momentum of Light,” Prog. Opt. 39, 291–372 (1999).

[Crossref]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).

[Crossref]

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77(6), 1039–1042 (1996).

[Crossref]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).

[Crossref]

G. S. Agarwal and S. P. Tewari, “Large enhancements in nonlinear generation by external electromagnetic fields,” Phys. Rev. Lett. 70(10), 1417–1420 (1993).

[Crossref]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear Optical Processes Using Electromagnetically Induced Transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).

[Crossref]

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77(6), 1039–1042 (1996).

[Crossref]

G. S. Agarwal and S. P. Tewari, “Large enhancements in nonlinear generation by external electromagnetic fields,” Phys. Rev. Lett. 70(10), 1417–1420 (1993).

[Crossref]

V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, and F. Sciarrino, “Tunable Two-Photon Quantum Interference of Structured Light,” Phys. Rev. Lett. 122(1), 013601 (2019).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

A. M. Akulshin, I. Novikova, E. E. Mikhailov, S. A. Suslov, and R. J. McLean, “Arithmetic with optical topological charges in stepwise-excited Rb vapour,” Opt. Lett. 41(6), 1146 (2016).

[Crossref]

A. M. Akulshin, R. J. McLean, E. E. Mikhailov, and I. Novikova, “Distinguishing nonlinear processes in atomic media via orbital angular momentum transfer,” Opt. Lett. 40(6), 1109 (2015).

[Crossref]

L. Allen, M. J. Padgett, and M. Babiker, “IV The Orbital Angular Momentum of Light,” Prog. Opt. 39, 291–372 (1999).

[Crossref]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).

[Crossref]

Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77(6), 061801 (2008).

[Crossref]

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).

[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).

[Crossref]

L. Allen, M. J. Padgett, and M. Babiker, “IV The Orbital Angular Momentum of Light,” Prog. Opt. 39, 291–372 (1999).

[Crossref]

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).

[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).

[Crossref]

R. A. de Oliveira, G. C. Borba, W. S. Martins, S. Barreiro, D. Felinto, and J. W. R. Tabosa, “Nonlinear optical memory for manipulation of orbital angular momentum of light,” Opt. Lett. 40(21), 4939–4942 (2015).

[Crossref]

S. Barreiro, J. W. R. Tabosa, J. P. Torres, Y. Deyanova, and L. Torner, “Four-wave mixing of light beams with engineered orbital angular momentum in cold cesium atoms,” Opt. Lett. 29(13), 1515 (2004).

[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

[Crossref]

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).

[Crossref]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).

[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Observation of interference between four-wave mixing and six-wave mixing,” Opt. Lett. 32(9), 1120–1122 (2007).

[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).

[Crossref]

X. Cai, J. Wang, and M. J. Strain, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).

[Crossref]

V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, and F. Sciarrino, “Tunable Two-Photon Quantum Interference of Structured Light,” Phys. Rev. Lett. 122(1), 013601 (2019).

[Crossref]

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).

[Crossref]

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74(4), 043811 (2006).

[Crossref]

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).

[Crossref]

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapour,” Phys. Rev. A 97(6), 063806 (2018).

[Crossref]

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).

[Crossref]

V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, and F. Sciarrino, “Tunable Two-Photon Quantum Interference of Structured Light,” Phys. Rev. Lett. 122(1), 013601 (2019).

[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).

[Crossref]

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapour,” Phys. Rev. A 97(6), 063806 (2018).

[Crossref]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).

[Crossref]

L. Deng and M. G. Payne, “Three-photon destructive interference in ultraslow-propagation-enhanced four-wave mixing,” Phys. Rev. A 68(5), 051801 (2003).

[Crossref]

L. Deng and M. G. Payne, “Inhibiting the Onset of the Three-Photon Destructive Interference in Ultraslow Propagation-Enhanced Four-Wave Mixing with Dual Induced Transparency,” Phys. Rev. Lett. 91(24), 243902 (2003).

[Crossref]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).

[Crossref]

S. Sharma and T. N. Dey, “Phase-induced transparency-mediated structured-beam generation in a closed-loop tripod configuration,” Phys. Rev. A 96(3), 033811 (2017).

[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).

[Crossref]

W. Zhang, D. Ding, Y. Jiang, B. Shi, and G. Guo, “Indirect precise angular control using four-wave mixing,” Appl. Phys. Lett. 104(17), 171103 (2014).

[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, and B. S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).

[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear Optical Processes Using Electromagnetically Induced Transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).

[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).

[Crossref]

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).

[Crossref]

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).

[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).

[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).

[Crossref]

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).

[Crossref]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).

[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).

[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).

[Crossref]

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71(4), 043819 (2005).

[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).

[Crossref]

W. Zhang, D. Ding, Y. Jiang, B. Shi, and G. Guo, “Indirect precise angular control using four-wave mixing,” Appl. Phys. Lett. 104(17), 171103 (2014).

[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).

[Crossref]

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74(4), 043811 (2006).

[Crossref]

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).

[Crossref]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).

[Crossref]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).

[Crossref]

H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98(1), 013840 (2018).

[Crossref]

D. Xu, C. Hang, and G. Huang, “Improvement of the memory quality of optical pulse pairs in atomic systems via four-wave mixing,” Phys. Rev. A 98(4), 043848 (2018).

[Crossref]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).

[Crossref]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear Optical Processes Using Electromagnetically Induced Transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).

[Crossref]

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77(6), 1039–1042 (1996).

[Crossref]

D. Xu, C. Hang, and G. Huang, “Improvement of the memory quality of optical pulse pairs in atomic systems via four-wave mixing,” Phys. Rev. A 98(4), 043848 (2018).

[Crossref]

H. Li and G. Huang, “Highly efficient four-wave mixing in a coherent six-level system in ultraslow propagation regime,” Phys. Rev. A 76(4), 043809 (2007).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).

[Crossref]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear Optical Processes Using Electromagnetically Induced Transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).

[Crossref]

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapour,” Phys. Rev. A 97(6), 063806 (2018).

[Crossref]

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74(4), 043811 (2006).

[Crossref]

W. Zhang, D. Ding, Y. Jiang, B. Shi, and G. Guo, “Indirect precise angular control using four-wave mixing,” Appl. Phys. Lett. 104(17), 171103 (2014).

[Crossref]

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).

[Crossref]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).

[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).

[Crossref]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).

[Crossref]

H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98(1), 013840 (2018).

[Crossref]

J. Ruseckas, A. Mekys, and G. Juzeliunas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83(2), 023812 (2011).

[Crossref]

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).

[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).

[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).

[Crossref]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).

[Crossref]

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).

[Crossref]

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66(1), 015802 (2002).

[Crossref]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).

[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).

[Crossref]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).

[Crossref]

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).

[Crossref]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).

[Crossref]

H. Li and G. Huang, “Highly efficient four-wave mixing in a coherent six-level system in ultraslow propagation regime,” Phys. Rev. A 76(4), 043809 (2007).

[Crossref]

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71(4), 043819 (2005).

[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).

[Crossref]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).

[Crossref]

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).

[Crossref]

D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42(16), 3097–3100 (2017).

[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).

[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).

[Crossref]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).

[Crossref]

V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, and F. Sciarrino, “Tunable Two-Photon Quantum Interference of Structured Light,” Phys. Rev. Lett. 122(1), 013601 (2019).

[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).

[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).

[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).

[Crossref]

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002).

[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).

[Crossref]

A. M. Akulshin, I. Novikova, E. E. Mikhailov, S. A. Suslov, and R. J. McLean, “Arithmetic with optical topological charges in stepwise-excited Rb vapour,” Opt. Lett. 41(6), 1146 (2016).

[Crossref]

A. M. Akulshin, R. J. McLean, E. E. Mikhailov, and I. Novikova, “Distinguishing nonlinear processes in atomic media via orbital angular momentum transfer,” Opt. Lett. 40(6), 1109 (2015).

[Crossref]

J. Ruseckas, A. Mekys, and G. Juzeliunas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83(2), 023812 (2011).

[Crossref]

A. M. Akulshin, I. Novikova, E. E. Mikhailov, S. A. Suslov, and R. J. McLean, “Arithmetic with optical topological charges in stepwise-excited Rb vapour,” Opt. Lett. 41(6), 1146 (2016).

[Crossref]

A. M. Akulshin, R. J. McLean, E. E. Mikhailov, and I. Novikova, “Distinguishing nonlinear processes in atomic media via orbital angular momentum transfer,” Opt. Lett. 40(6), 1109 (2015).

[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).

[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).

[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).

[Crossref]

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71(4), 043819 (2005).

[Crossref]

N. Prajapati, N. Super, N. R. Lanning, J. P. Dowling, and I. Novikova, “Optical angular momentum manipulations in a four-wave mixing process,” Opt. Lett. 44(4), 739–742 (2019).

[Crossref]

A. M. Akulshin, I. Novikova, E. E. Mikhailov, S. A. Suslov, and R. J. McLean, “Arithmetic with optical topological charges in stepwise-excited Rb vapour,” Opt. Lett. 41(6), 1146 (2016).

[Crossref]

A. M. Akulshin, R. J. McLean, E. E. Mikhailov, and I. Novikova, “Distinguishing nonlinear processes in atomic media via orbital angular momentum transfer,” Opt. Lett. 40(6), 1109 (2015).

[Crossref]

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).

[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161 (2011).

[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).

[Crossref]

L. Allen, M. J. Padgett, and M. Babiker, “IV The Orbital Angular Momentum of Light,” Prog. Opt. 39, 291–372 (1999).

[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).

[Crossref]

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66(1), 015802 (2002).

[Crossref]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).

[Crossref]

L. Deng and M. G. Payne, “Three-photon destructive interference in ultraslow-propagation-enhanced four-wave mixing,” Phys. Rev. A 68(5), 051801 (2003).

[Crossref]

L. Deng and M. G. Payne, “Inhibiting the Onset of the Three-Photon Destructive Interference in Ultraslow Propagation-Enhanced Four-Wave Mixing with Dual Induced Transparency,” Phys. Rev. Lett. 91(24), 243902 (2003).

[Crossref]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).

[Crossref]

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).

[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).

[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).

[Crossref]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).

[Crossref]

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapour,” Phys. Rev. A 97(6), 063806 (2018).

[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).

[Crossref]

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).

[Crossref]

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).

[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).

[Crossref]

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002).

[Crossref]

H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98(1), 013840 (2018).

[Crossref]

J. Ruseckas, A. Mekys, and G. Juzeliunas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83(2), 023812 (2011).

[Crossref]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).

[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).

[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).

[Crossref]

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).

[Crossref]

V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, and F. Sciarrino, “Tunable Two-Photon Quantum Interference of Structured Light,” Phys. Rev. Lett. 122(1), 013601 (2019).

[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).

[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).

[Crossref]

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002).

[Crossref]

S. Sharma and T. N. Dey, “Phase-induced transparency-mediated structured-beam generation in a closed-loop tripod configuration,” Phys. Rev. A 96(3), 033811 (2017).

[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).

[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).

[Crossref]

W. Zhang, D. Ding, Y. Jiang, B. Shi, and G. Guo, “Indirect precise angular control using four-wave mixing,” Appl. Phys. Lett. 104(17), 171103 (2014).

[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, and B. S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).

[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).

[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).

[Crossref]

X. Cai, J. Wang, and M. J. Strain, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).

[Crossref]

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).

[Crossref]

Z. Wang, J. Yang, Y. Sun, and Y. Zhang, “Interference patterns of vortex beams based on photonic band gap structure,” Opt. Lett. 43(18), 4354–4357 (2018).

[Crossref]

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).

[Crossref]

R. A. de Oliveira, G. C. Borba, W. S. Martins, S. Barreiro, D. Felinto, and J. W. R. Tabosa, “Nonlinear optical memory for manipulation of orbital angular momentum of light,” Opt. Lett. 40(21), 4939–4942 (2015).

[Crossref]

S. Barreiro, J. W. R. Tabosa, J. P. Torres, Y. Deyanova, and L. Torner, “Four-wave mixing of light beams with engineered orbital angular momentum in cold cesium atoms,” Opt. Lett. 29(13), 1515 (2004).

[Crossref]

G. S. Agarwal and S. P. Tewari, “Large enhancements in nonlinear generation by external electromagnetic fields,” Phys. Rev. Lett. 70(10), 1417–1420 (1993).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).

[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).

[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).

[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).

[Crossref]

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).

[Crossref]

X. Cai, J. Wang, and M. J. Strain, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).

[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).

[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).

[Crossref]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).

[Crossref]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70(5), 053818 (2004).

[Crossref]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).

[Crossref]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).

[Crossref]

Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77(6), 061801 (2008).

[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).

[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Observation of interference between four-wave mixing and six-wave mixing,” Opt. Lett. 32(9), 1120–1122 (2007).

[Crossref]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).

[Crossref]

D. Xu, C. Hang, and G. Huang, “Improvement of the memory quality of optical pulse pairs in atomic systems via four-wave mixing,” Phys. Rev. A 98(4), 043848 (2018).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).

[Crossref]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70(5), 053818 (2004).

[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161 (2011).

[Crossref]

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002).

[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).

[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).

[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).

[Crossref]

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).

[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).

[Crossref]

W. Zhang, D. Ding, Y. Jiang, B. Shi, and G. Guo, “Indirect precise angular control using four-wave mixing,” Appl. Phys. Lett. 104(17), 171103 (2014).

[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, and B. S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).

[Crossref]

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).

[Crossref]

Z. Wang, J. Yang, Y. Sun, and Y. Zhang, “Interference patterns of vortex beams based on photonic band gap structure,” Opt. Lett. 43(18), 4354–4357 (2018).

[Crossref]

Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42(6), 1059–1062 (2017).

[Crossref]

Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42(6), 1059–1062 (2017).

[Crossref]

D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42(16), 3097–3100 (2017).

[Crossref]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).

[Crossref]

Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77(6), 061801 (2008).

[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).

[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Observation of interference between four-wave mixing and six-wave mixing,” Opt. Lett. 32(9), 1120–1122 (2007).

[Crossref]

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74(4), 043811 (2006).

[Crossref]

D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42(16), 3097–3100 (2017).

[Crossref]

Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42(6), 1059–1062 (2017).

[Crossref]

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).

[Crossref]

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).

[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).

[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).

[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, and B. S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).

[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).

[Crossref]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).

[Crossref]

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002).

[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161 (2011).

[Crossref]

W. Zhang, D. Ding, Y. Jiang, B. Shi, and G. Guo, “Indirect precise angular control using four-wave mixing,” Appl. Phys. Lett. 104(17), 171103 (2014).

[Crossref]

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).

[Crossref]

L. Cheng, X. Liu, Y. Sun, K. Wang, L. Zhang, and Y. Zhang, “Modulation of the High-Order Laguerre-Gaussian Beam in Dressing Four-Wave Mixing,” IEEE J. Quantum Electron. 54, 1 (2018).

[Crossref]

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).

[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).

[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).

[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).

[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).

[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745 (2009).

[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, and B. S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).

[Crossref]

A. M. Akulshin, R. J. McLean, E. E. Mikhailov, and I. Novikova, “Distinguishing nonlinear processes in atomic media via orbital angular momentum transfer,” Opt. Lett. 40(6), 1109 (2015).

[Crossref]

R. A. de Oliveira, G. C. Borba, W. S. Martins, S. Barreiro, D. Felinto, and J. W. R. Tabosa, “Nonlinear optical memory for manipulation of orbital angular momentum of light,” Opt. Lett. 40(21), 4939–4942 (2015).

[Crossref]

A. M. Akulshin, I. Novikova, E. E. Mikhailov, S. A. Suslov, and R. J. McLean, “Arithmetic with optical topological charges in stepwise-excited Rb vapour,” Opt. Lett. 41(6), 1146 (2016).

[Crossref]

Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42(6), 1059–1062 (2017).

[Crossref]

D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42(16), 3097–3100 (2017).

[Crossref]

Z. Wang, J. Yang, Y. Sun, and Y. Zhang, “Interference patterns of vortex beams based on photonic band gap structure,” Opt. Lett. 43(18), 4354–4357 (2018).

[Crossref]

N. Prajapati, N. Super, N. R. Lanning, J. P. Dowling, and I. Novikova, “Optical angular momentum manipulations in a four-wave mixing process,” Opt. Lett. 44(4), 739–742 (2019).

[Crossref]

T. Shui, W.-X. Yang, L. Li, and X. Wang, “Lop-sided Raman-Nath diffraction in PT-antisymmetric atomic lattices,” Opt. Lett. 44(8), 2089 (2019).

[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Observation of interference between four-wave mixing and six-wave mixing,” Opt. Lett. 32(9), 1120–1122 (2007).

[Crossref]

P. Thoumany, T. Hänsch, G. Stania, L. Urbonas, and Th. Becker, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 34(11), 1621–1623 (2009).

[Crossref]

S. Barreiro, J. W. R. Tabosa, J. P. Torres, Y. Deyanova, and L. Torner, “Four-wave mixing of light beams with engineered orbital angular momentum in cold cesium atoms,” Opt. Lett. 29(13), 1515 (2004).

[Crossref]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).

[Crossref]

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66(1), 015802 (2002).

[Crossref]

S. Sharma and T. N. Dey, “Phase-induced transparency-mediated structured-beam generation in a closed-loop tripod configuration,” Phys. Rev. A 96(3), 033811 (2017).

[Crossref]

J. Ruseckas, A. Mekys, and G. Juzeliunas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83(2), 023812 (2011).

[Crossref]

J.-Y. Gao, S.-H. Yang, D. Wang, X.-Z. Guo, K.-X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).

[Crossref]

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002).

[Crossref]

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74(4), 043811 (2006).

[Crossref]

H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98(1), 013840 (2018).

[Crossref]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70(5), 053818 (2004).

[Crossref]

D. Xu, C. Hang, and G. Huang, “Improvement of the memory quality of optical pulse pairs in atomic systems via four-wave mixing,” Phys. Rev. A 98(4), 043848 (2018).

[Crossref]

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71(4), 043819 (2005).

[Crossref]

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapour,” Phys. Rev. A 97(6), 063806 (2018).

[Crossref]

L. Deng and M. G. Payne, “Three-photon destructive interference in ultraslow-propagation-enhanced four-wave mixing,” Phys. Rev. A 68(5), 051801 (2003).

[Crossref]

H. Li and G. Huang, “Highly efficient four-wave mixing in a coherent six-level system in ultraslow propagation regime,” Phys. Rev. A 76(4), 043809 (2007).

[Crossref]

Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77(6), 061801 (2008).

[Crossref]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).

[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).

[Crossref]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).

[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).

[Crossref]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).

[Crossref]

G. S. Agarwal and S. P. Tewari, “Large enhancements in nonlinear generation by external electromagnetic fields,” Phys. Rev. Lett. 70(10), 1417–1420 (1993).

[Crossref]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear Optical Processes Using Electromagnetically Induced Transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).

[Crossref]

L. Deng and M. G. Payne, “Inhibiting the Onset of the Three-Photon Destructive Interference in Ultraslow Propagation-Enhanced Four-Wave Mixing with Dual Induced Transparency,” Phys. Rev. Lett. 91(24), 243902 (2003).

[Crossref]

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77(6), 1039–1042 (1996).

[Crossref]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).

[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).

[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).

[Crossref]

E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett. 103(1), 013601 (2009).

[Crossref]

V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, and F. Sciarrino, “Tunable Two-Photon Quantum Interference of Structured Light,” Phys. Rev. Lett. 122(1), 013601 (2019).

[Crossref]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).

[Crossref]

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).

[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).

[Crossref]

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).

[Crossref]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).

[Crossref]

L. Allen, M. J. Padgett, and M. Babiker, “IV The Orbital Angular Momentum of Light,” Prog. Opt. 39, 291–372 (1999).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).

[Crossref]

X. Cai, J. Wang, and M. J. Strain, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).

[Crossref]