Abstract

It has been proved that the detection of laser-induced breakdown spectroscopy (LIBS) could be improved by the flame. In this work, we applied flame enhanced LIBS for the detection of elements in water, while the flame was generated from the mixture of alcohol and aqueous solution. In the measurements, the flame is functioned as an assistance to enhance the LIBS detection, and also worked as a sampling way for the solution. The obtained results indicate that the detection of manganese, calcium, lithium and magnesium were significantly improved by the proposed method. It is found that the flame actually forms an environment for the laser-induced plasma to have higher temperature and lower electron density, as comparing with the plasma underwater. With the method, the quantitative analysis was tried out for the element of manganese, and the internal reference of calcium was used. It is interesting to find that, when mixing with the calcium, the minimum detectable concentration of manganese could be lowered and the intensity was greatly increased. According to the result, it is suggested that the proposed method might be a practical way for liquid detection of LIBS because of the simplicity and the effectiveness.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy

X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng
Opt. Express 24(12) 13410-13417 (2016)

Analytical-performance improvement of aqueous solution by chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy

Xinyan Yang, Xiangyou Li, Zhifeng Cui, Zhongqi Hao, Yongfeng Lu, Jingchun Huang, Guanxin Yao, and Xiaoli Wang
Appl. Opt. 57(25) 7135-7139 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Fawell and M. J. Nieuwenhuijsen, “Contaminants in drinking waterEnvironmental pollution and health,” Br. Med. Bull. 68(1), 199–208 (2003).
    [Crossref]
  2. J. P. Singh and S. N. Thakur, “Laser-induced breakdown spectroscopy,” Elsevier (2007).
  3. G. Galbacs, “A critical review of recent progress in analytical laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 407(25), 7537–7562 (2015).
    [Crossref]
  4. L. St-Onge, E. Kwong, M. Sabsabi, and E.B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36(2), 277–284 (2004).
    [Crossref]
  5. A. Sarkar, D. Alamelu, and S. K. Aggarwal, “Determination of thorium and uranium in solution by laser-induced breakdown spectrometry,” Appl. Opt. 47(31), G58–G64 (2008).
    [Crossref]
  6. L. Guo, X. Li, W. Xiong, X. Zeng, and Y. Lu, “Recent technological progress in Asia from the first Asian symposium on laser-induced breakdown spectroscopy,” Front. Phys. 11(6), 115208 (2016).
    [Crossref]
  7. C. W. Ng, W. F. Ho, and N. H. Cheung, “Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength on plasma properties,” Appl. Spectrosc. 51(7), 976–983 (1997).
    [Crossref]
  8. J. S. Huang and K. C. Lin, “Laser-induced breakdown spectroscopy of liquid droplets: correlation analysis with plasma-induced current versus continuum background,” J. Anal. At. Spectrom. 20(1), 53–59 (2005).
    [Crossref]
  9. S. L. Zhong, Y. Lu, W. J. Kong, K. Cheng, and R. Zheng, “Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy,” Front. Phys. 11(4), 114202 (2016).
    [Crossref]
  10. B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55(10), 1312–1319 (2001).
    [Crossref]
  11. J. O. Cáceres, J. T. López, H. H. Telle, and A. G. Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 56(6), 831–838 (2001).
    [Crossref]
  12. G. Bilge, B. Sezer, I. H. Boyaci, K. E. Eseller, and H. Berberoglu, “Performance evaluation of laser induced breakdown spectroscopy in the measurement of liquid and solid samples,” Spectrochim. Acta, Part B 145, 115–121 (2018).
    [Crossref]
  13. Y. Lu, Y. Li, F. Qi, and R. Zheng, “Concentration determination of copper in aqueous solution using deposition-assisted laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 69(12), 1412–1416 (2015).
    [Crossref]
  14. X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy,” Opt. Express 24(12), 13410–13417 (2016).
    [Crossref]
  15. S. Ma, Y. Tang, Y. Ma, Y. Chu, F. Chen, Z. Hu, Z. Zhu, L. Guo, X. Zeng, and Y. Lu, “Determination of trace heavy metal elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy,” Opt. Express 27(10), 15091–15099 (2019).
    [Crossref]
  16. V. Contreras, R. Valencia, J. Peralta, H. Sobral, M. A. Meneses-Nava, and H. Martinez, “Chemical elemental analysis of single acoustic-levitated water droplets by laser-induced breakdown spectroscopy,” Opt. Lett. 43(10), 2260–2263 (2018).
    [Crossref]
  17. D. C. Zhang, Z. Q. Hu, Y. B. Su, B. Hai, X. L. Zhu, J. F. Zhu, and X. Ma, “Simple method for liquid analysis by laser-induced breakdown spectroscopy (LIBS),” Opt. Express 26(14), 18794–18802 (2018).
    [Crossref]
  18. M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, “Dispersive liquid–liquid microextraction for metals enrichment: A useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis,” Talanta 131, 348–353 (2015).
    [Crossref]
  19. A. E. Majd, A. S. Arabanian, R. Massudi, and M. Nazeri, “Spatially resolved laser-induced breakdown spectroscopy in methane—air diffusion flames,” Appl. Spectrosc. 65(1), 36–42 (2011).
    [Crossref]
  20. J. Viljanen, H. Zhao, Z. Zhang, J. Toivonen, and Z. T. Alwahabi, “Real-time release of Na, K and Ca during thermal conversion of biomass using quantitative microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 149, 76–83 (2018).
    [Crossref]
  21. Z. Tian, M. Dong, S. Li, and J. Lu, “Spatially resolved laser-induced breakdown spectroscopy in laminar premixed methane–air flames,” Spectrochim. Acta, Part B 136, 8–15 (2017).
    [Crossref]
  22. X. Li, B. W. Smith, and N. Omenetto, “Laser spark ignition of premixed methane–air mixtures: parameter measurements and determination of key factors for ultimate ignition results,” Appl. Spectrosc. 68(9), 975–991 (2014).
    [Crossref]
  23. M. S. Mansour, H. Imam, K. A. Elsayed, and W. Abbass, “Local equivalence ratio measurements in turbulent partially premixed flames using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64(10), 1079–1084 (2009).
    [Crossref]
  24. S. Li, M. Dong, J. Lu, Z. Tian, Z. Hou, W. Lin, B. Yu, Q. Lai, S. Chen, and J. Qiu, “Study on the alkali release from the combustion products of a single coal particle by laser ignition,” Energy Fuels 31(4), 4452–4460 (2017).
    [Crossref]
  25. L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22(7), 7686–7693 (2014).
    [Crossref]
  26. L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-induced breakdown spectroscopy enhanced by a micro torch,” Opt. Express 23(11), 15047–15056 (2015).
    [Crossref]
  27. L. J. Hsu, Z. T. Alwahabi, G. J. Nathan, Y. Li, Z. S. Li, and M. Aldén, “Sodium and potassium released from burning particles of brown coal and pine wood in a laminar premixed methane flame using quantitative laser-induced breakdown spectroscopy,” Appl. Spectrosc. 65(6), 684–691 (2011).
    [Crossref]
  28. J. Song, J. Guo, Y. Tian, B. Xue, Y. Lu, and R. Zheng, “Investigation of laser-induced plasma characteristics in bulk water under different focusing arrangements,” Appl. Opt. 57(7), 1640–1644 (2018).
    [Crossref]
  29. X. He, W. Hu, C. Li, L. Guo, and Y. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
    [Crossref]

2019 (1)

2018 (5)

J. Song, J. Guo, Y. Tian, B. Xue, Y. Lu, and R. Zheng, “Investigation of laser-induced plasma characteristics in bulk water under different focusing arrangements,” Appl. Opt. 57(7), 1640–1644 (2018).
[Crossref]

V. Contreras, R. Valencia, J. Peralta, H. Sobral, M. A. Meneses-Nava, and H. Martinez, “Chemical elemental analysis of single acoustic-levitated water droplets by laser-induced breakdown spectroscopy,” Opt. Lett. 43(10), 2260–2263 (2018).
[Crossref]

D. C. Zhang, Z. Q. Hu, Y. B. Su, B. Hai, X. L. Zhu, J. F. Zhu, and X. Ma, “Simple method for liquid analysis by laser-induced breakdown spectroscopy (LIBS),” Opt. Express 26(14), 18794–18802 (2018).
[Crossref]

G. Bilge, B. Sezer, I. H. Boyaci, K. E. Eseller, and H. Berberoglu, “Performance evaluation of laser induced breakdown spectroscopy in the measurement of liquid and solid samples,” Spectrochim. Acta, Part B 145, 115–121 (2018).
[Crossref]

J. Viljanen, H. Zhao, Z. Zhang, J. Toivonen, and Z. T. Alwahabi, “Real-time release of Na, K and Ca during thermal conversion of biomass using quantitative microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 149, 76–83 (2018).
[Crossref]

2017 (2)

Z. Tian, M. Dong, S. Li, and J. Lu, “Spatially resolved laser-induced breakdown spectroscopy in laminar premixed methane–air flames,” Spectrochim. Acta, Part B 136, 8–15 (2017).
[Crossref]

S. Li, M. Dong, J. Lu, Z. Tian, Z. Hou, W. Lin, B. Yu, Q. Lai, S. Chen, and J. Qiu, “Study on the alkali release from the combustion products of a single coal particle by laser ignition,” Energy Fuels 31(4), 4452–4460 (2017).
[Crossref]

2016 (3)

S. L. Zhong, Y. Lu, W. J. Kong, K. Cheng, and R. Zheng, “Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy,” Front. Phys. 11(4), 114202 (2016).
[Crossref]

L. Guo, X. Li, W. Xiong, X. Zeng, and Y. Lu, “Recent technological progress in Asia from the first Asian symposium on laser-induced breakdown spectroscopy,” Front. Phys. 11(6), 115208 (2016).
[Crossref]

X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy,” Opt. Express 24(12), 13410–13417 (2016).
[Crossref]

2015 (4)

L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-induced breakdown spectroscopy enhanced by a micro torch,” Opt. Express 23(11), 15047–15056 (2015).
[Crossref]

Y. Lu, Y. Li, F. Qi, and R. Zheng, “Concentration determination of copper in aqueous solution using deposition-assisted laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 69(12), 1412–1416 (2015).
[Crossref]

G. Galbacs, “A critical review of recent progress in analytical laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 407(25), 7537–7562 (2015).
[Crossref]

M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, “Dispersive liquid–liquid microextraction for metals enrichment: A useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis,” Talanta 131, 348–353 (2015).
[Crossref]

2014 (2)

2011 (3)

2009 (1)

M. S. Mansour, H. Imam, K. A. Elsayed, and W. Abbass, “Local equivalence ratio measurements in turbulent partially premixed flames using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64(10), 1079–1084 (2009).
[Crossref]

2008 (1)

2005 (1)

J. S. Huang and K. C. Lin, “Laser-induced breakdown spectroscopy of liquid droplets: correlation analysis with plasma-induced current versus continuum background,” J. Anal. At. Spectrom. 20(1), 53–59 (2005).
[Crossref]

2004 (1)

L. St-Onge, E. Kwong, M. Sabsabi, and E.B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36(2), 277–284 (2004).
[Crossref]

2003 (1)

J. Fawell and M. J. Nieuwenhuijsen, “Contaminants in drinking waterEnvironmental pollution and health,” Br. Med. Bull. 68(1), 199–208 (2003).
[Crossref]

2001 (2)

B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55(10), 1312–1319 (2001).
[Crossref]

J. O. Cáceres, J. T. López, H. H. Telle, and A. G. Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 56(6), 831–838 (2001).
[Crossref]

1997 (1)

Abbass, W.

M. S. Mansour, H. Imam, K. A. Elsayed, and W. Abbass, “Local equivalence ratio measurements in turbulent partially premixed flames using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64(10), 1079–1084 (2009).
[Crossref]

Aggarwal, S. K.

Aguirre, M. A.

M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, “Dispersive liquid–liquid microextraction for metals enrichment: A useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis,” Talanta 131, 348–353 (2015).
[Crossref]

Alamelu, D.

Aldén, M.

Alwahabi, Z. T.

J. Viljanen, H. Zhao, Z. Zhang, J. Toivonen, and Z. T. Alwahabi, “Real-time release of Na, K and Ca during thermal conversion of biomass using quantitative microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 149, 76–83 (2018).
[Crossref]

L. J. Hsu, Z. T. Alwahabi, G. J. Nathan, Y. Li, Z. S. Li, and M. Aldén, “Sodium and potassium released from burning particles of brown coal and pine wood in a laminar premixed methane flame using quantitative laser-induced breakdown spectroscopy,” Appl. Spectrosc. 65(6), 684–691 (2011).
[Crossref]

Arabanian, A. S.

Berberoglu, H.

G. Bilge, B. Sezer, I. H. Boyaci, K. E. Eseller, and H. Berberoglu, “Performance evaluation of laser induced breakdown spectroscopy in the measurement of liquid and solid samples,” Spectrochim. Acta, Part B 145, 115–121 (2018).
[Crossref]

Bilge, G.

G. Bilge, B. Sezer, I. H. Boyaci, K. E. Eseller, and H. Berberoglu, “Performance evaluation of laser induced breakdown spectroscopy in the measurement of liquid and solid samples,” Spectrochim. Acta, Part B 145, 115–121 (2018).
[Crossref]

Boyaci, I. H.

G. Bilge, B. Sezer, I. H. Boyaci, K. E. Eseller, and H. Berberoglu, “Performance evaluation of laser induced breakdown spectroscopy in the measurement of liquid and solid samples,” Spectrochim. Acta, Part B 145, 115–121 (2018).
[Crossref]

Buckley, S. G.

Cáceres, J. O.

J. O. Cáceres, J. T. López, H. H. Telle, and A. G. Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 56(6), 831–838 (2001).
[Crossref]

Canals, A.

M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, “Dispersive liquid–liquid microextraction for metals enrichment: A useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis,” Talanta 131, 348–353 (2015).
[Crossref]

Chen, F.

Chen, K.

Chen, S.

S. Li, M. Dong, J. Lu, Z. Tian, Z. Hou, W. Lin, B. Yu, Q. Lai, S. Chen, and J. Qiu, “Study on the alkali release from the combustion products of a single coal particle by laser ignition,” Energy Fuels 31(4), 4452–4460 (2017).
[Crossref]

Cheng, K.

S. L. Zhong, Y. Lu, W. J. Kong, K. Cheng, and R. Zheng, “Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy,” Front. Phys. 11(4), 114202 (2016).
[Crossref]

Cheung, N. H.

Chu, Y.

Contreras, V.

Dong, M.

S. Li, M. Dong, J. Lu, Z. Tian, Z. Hou, W. Lin, B. Yu, Q. Lai, S. Chen, and J. Qiu, “Study on the alkali release from the combustion products of a single coal particle by laser ignition,” Energy Fuels 31(4), 4452–4460 (2017).
[Crossref]

Z. Tian, M. Dong, S. Li, and J. Lu, “Spatially resolved laser-induced breakdown spectroscopy in laminar premixed methane–air flames,” Spectrochim. Acta, Part B 136, 8–15 (2017).
[Crossref]

Elsayed, K. A.

M. S. Mansour, H. Imam, K. A. Elsayed, and W. Abbass, “Local equivalence ratio measurements in turbulent partially premixed flames using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64(10), 1079–1084 (2009).
[Crossref]

Eseller, K. E.

G. Bilge, B. Sezer, I. H. Boyaci, K. E. Eseller, and H. Berberoglu, “Performance evaluation of laser induced breakdown spectroscopy in the measurement of liquid and solid samples,” Spectrochim. Acta, Part B 145, 115–121 (2018).
[Crossref]

Fan, L. S.

Fawell, J.

J. Fawell and M. J. Nieuwenhuijsen, “Contaminants in drinking waterEnvironmental pollution and health,” Br. Med. Bull. 68(1), 199–208 (2003).
[Crossref]

Fisher, B. T.

Galbacs, G.

G. Galbacs, “A critical review of recent progress in analytical laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 407(25), 7537–7562 (2015).
[Crossref]

Guo, J.

Guo, L.

Guo, L. B.

Hahn, D. W.

Hai, B.

Hao, Z. Q.

He, X.

He, X. N.

Hidalgo, M.

M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, “Dispersive liquid–liquid microextraction for metals enrichment: A useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis,” Talanta 131, 348–353 (2015).
[Crossref]

Ho, W. F.

Hou, Z.

S. Li, M. Dong, J. Lu, Z. Tian, Z. Hou, W. Lin, B. Yu, Q. Lai, S. Chen, and J. Qiu, “Study on the alkali release from the combustion products of a single coal particle by laser ignition,” Energy Fuels 31(4), 4452–4460 (2017).
[Crossref]

Hsu, L. J.

Hu, W.

Hu, Z.

Hu, Z. Q.

Huang, J. S.

J. S. Huang and K. C. Lin, “Laser-induced breakdown spectroscopy of liquid droplets: correlation analysis with plasma-induced current versus continuum background,” J. Anal. At. Spectrom. 20(1), 53–59 (2005).
[Crossref]

Huang, X.

Imam, H.

M. S. Mansour, H. Imam, K. A. Elsayed, and W. Abbass, “Local equivalence ratio measurements in turbulent partially premixed flames using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64(10), 1079–1084 (2009).
[Crossref]

Jiang, L.

Johnsen, H. A.

Kong, W. J.

S. L. Zhong, Y. Lu, W. J. Kong, K. Cheng, and R. Zheng, “Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy,” Front. Phys. 11(4), 114202 (2016).
[Crossref]

Kwong, E.

L. St-Onge, E. Kwong, M. Sabsabi, and E.B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36(2), 277–284 (2004).
[Crossref]

Lai, Q.

S. Li, M. Dong, J. Lu, Z. Tian, Z. Hou, W. Lin, B. Yu, Q. Lai, S. Chen, and J. Qiu, “Study on the alkali release from the combustion products of a single coal particle by laser ignition,” Energy Fuels 31(4), 4452–4460 (2017).
[Crossref]

Li, C.

Li, C. M.

Li, J. M.

Li, K. H.

Li, S.

S. Li, M. Dong, J. Lu, Z. Tian, Z. Hou, W. Lin, B. Yu, Q. Lai, S. Chen, and J. Qiu, “Study on the alkali release from the combustion products of a single coal particle by laser ignition,” Energy Fuels 31(4), 4452–4460 (2017).
[Crossref]

Z. Tian, M. Dong, S. Li, and J. Lu, “Spatially resolved laser-induced breakdown spectroscopy in laminar premixed methane–air flames,” Spectrochim. Acta, Part B 136, 8–15 (2017).
[Crossref]

L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-induced breakdown spectroscopy enhanced by a micro torch,” Opt. Express 23(11), 15047–15056 (2015).
[Crossref]

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22(7), 7686–7693 (2014).
[Crossref]

Li, X.

L. Guo, X. Li, W. Xiong, X. Zeng, and Y. Lu, “Recent technological progress in Asia from the first Asian symposium on laser-induced breakdown spectroscopy,” Front. Phys. 11(6), 115208 (2016).
[Crossref]

X. Li, B. W. Smith, and N. Omenetto, “Laser spark ignition of premixed methane–air mixtures: parameter measurements and determination of key factors for ultimate ignition results,” Appl. Spectrosc. 68(9), 975–991 (2014).
[Crossref]

Li, X. Y.

Li, Y.

Li, Z. S.

Lin, K. C.

J. S. Huang and K. C. Lin, “Laser-induced breakdown spectroscopy of liquid droplets: correlation analysis with plasma-induced current versus continuum background,” J. Anal. At. Spectrom. 20(1), 53–59 (2005).
[Crossref]

Lin, W.

S. Li, M. Dong, J. Lu, Z. Tian, Z. Hou, W. Lin, B. Yu, Q. Lai, S. Chen, and J. Qiu, “Study on the alkali release from the combustion products of a single coal particle by laser ignition,” Energy Fuels 31(4), 4452–4460 (2017).
[Crossref]

Liu, L.

López, J. T.

J. O. Cáceres, J. T. López, H. H. Telle, and A. G. Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 56(6), 831–838 (2001).
[Crossref]

Lu, J.

Z. Tian, M. Dong, S. Li, and J. Lu, “Spatially resolved laser-induced breakdown spectroscopy in laminar premixed methane–air flames,” Spectrochim. Acta, Part B 136, 8–15 (2017).
[Crossref]

S. Li, M. Dong, J. Lu, Z. Tian, Z. Hou, W. Lin, B. Yu, Q. Lai, S. Chen, and J. Qiu, “Study on the alkali release from the combustion products of a single coal particle by laser ignition,” Energy Fuels 31(4), 4452–4460 (2017).
[Crossref]

Lu, Y.

S. Ma, Y. Tang, Y. Ma, Y. Chu, F. Chen, Z. Hu, Z. Zhu, L. Guo, X. Zeng, and Y. Lu, “Determination of trace heavy metal elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy,” Opt. Express 27(10), 15091–15099 (2019).
[Crossref]

J. Song, J. Guo, Y. Tian, B. Xue, Y. Lu, and R. Zheng, “Investigation of laser-induced plasma characteristics in bulk water under different focusing arrangements,” Appl. Opt. 57(7), 1640–1644 (2018).
[Crossref]

S. L. Zhong, Y. Lu, W. J. Kong, K. Cheng, and R. Zheng, “Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy,” Front. Phys. 11(4), 114202 (2016).
[Crossref]

L. Guo, X. Li, W. Xiong, X. Zeng, and Y. Lu, “Recent technological progress in Asia from the first Asian symposium on laser-induced breakdown spectroscopy,” Front. Phys. 11(6), 115208 (2016).
[Crossref]

Y. Lu, Y. Li, F. Qi, and R. Zheng, “Concentration determination of copper in aqueous solution using deposition-assisted laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 69(12), 1412–1416 (2015).
[Crossref]

L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-induced breakdown spectroscopy enhanced by a micro torch,” Opt. Express 23(11), 15047–15056 (2015).
[Crossref]

X. He, W. Hu, C. Li, L. Guo, and Y. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[Crossref]

Lu, Y. F.

Ma, S.

Ma, X.

Ma, Y.

Majd, A. E.

Mansour, M. S.

M. S. Mansour, H. Imam, K. A. Elsayed, and W. Abbass, “Local equivalence ratio measurements in turbulent partially premixed flames using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64(10), 1079–1084 (2009).
[Crossref]

Martinez, H.

Massudi, R.

Meneses-Nava, M. A.

Nathan, G. J.

Nazeri, M.

Ng, C. W.

Nieuwenhuijsen, M. J.

J. Fawell and M. J. Nieuwenhuijsen, “Contaminants in drinking waterEnvironmental pollution and health,” Br. Med. Bull. 68(1), 199–208 (2003).
[Crossref]

Omenetto, N.

Peralta, J.

Qi, F.

Qiu, J.

S. Li, M. Dong, J. Lu, Z. Tian, Z. Hou, W. Lin, B. Yu, Q. Lai, S. Chen, and J. Qiu, “Study on the alkali release from the combustion products of a single coal particle by laser ignition,” Energy Fuels 31(4), 4452–4460 (2017).
[Crossref]

Sabsabi, M.

L. St-Onge, E. Kwong, M. Sabsabi, and E.B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36(2), 277–284 (2004).
[Crossref]

Sarkar, A.

Selva, E. J.

M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, “Dispersive liquid–liquid microextraction for metals enrichment: A useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis,” Talanta 131, 348–353 (2015).
[Crossref]

Sezer, B.

G. Bilge, B. Sezer, I. H. Boyaci, K. E. Eseller, and H. Berberoglu, “Performance evaluation of laser induced breakdown spectroscopy in the measurement of liquid and solid samples,” Spectrochim. Acta, Part B 145, 115–121 (2018).
[Crossref]

Shen, M.

Silvain, J. F.

Singh, J. P.

J. P. Singh and S. N. Thakur, “Laser-induced breakdown spectroscopy,” Elsevier (2007).

Smith, B. W.

Sobral, H.

Song, J.

St-Onge, L.

L. St-Onge, E. Kwong, M. Sabsabi, and E.B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36(2), 277–284 (2004).
[Crossref]

Su, Y. B.

Tang, Y.

Telle, H. H.

J. O. Cáceres, J. T. López, H. H. Telle, and A. G. Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 56(6), 831–838 (2001).
[Crossref]

Thakur, S. N.

J. P. Singh and S. N. Thakur, “Laser-induced breakdown spectroscopy,” Elsevier (2007).

Tian, Y.

Tian, Z.

S. Li, M. Dong, J. Lu, Z. Tian, Z. Hou, W. Lin, B. Yu, Q. Lai, S. Chen, and J. Qiu, “Study on the alkali release from the combustion products of a single coal particle by laser ignition,” Energy Fuels 31(4), 4452–4460 (2017).
[Crossref]

Z. Tian, M. Dong, S. Li, and J. Lu, “Spatially resolved laser-induced breakdown spectroscopy in laminar premixed methane–air flames,” Spectrochim. Acta, Part B 136, 8–15 (2017).
[Crossref]

Toivonen, J.

J. Viljanen, H. Zhao, Z. Zhang, J. Toivonen, and Z. T. Alwahabi, “Real-time release of Na, K and Ca during thermal conversion of biomass using quantitative microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 149, 76–83 (2018).
[Crossref]

Ureña, A. G.

J. O. Cáceres, J. T. López, H. H. Telle, and A. G. Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 56(6), 831–838 (2001).
[Crossref]

Vadas, E.B.

L. St-Onge, E. Kwong, M. Sabsabi, and E.B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36(2), 277–284 (2004).
[Crossref]

Valencia, R.

Viljanen, J.

J. Viljanen, H. Zhao, Z. Zhang, J. Toivonen, and Z. T. Alwahabi, “Real-time release of Na, K and Ca during thermal conversion of biomass using quantitative microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 149, 76–83 (2018).
[Crossref]

Wang, M. X.

Xiong, W.

L. Guo, X. Li, W. Xiong, X. Zeng, and Y. Lu, “Recent technological progress in Asia from the first Asian symposium on laser-induced breakdown spectroscopy,” Front. Phys. 11(6), 115208 (2016).
[Crossref]

Xue, B.

Yang, X. Y.

Yi, R. X.

Yu, B.

S. Li, M. Dong, J. Lu, Z. Tian, Z. Hou, W. Lin, B. Yu, Q. Lai, S. Chen, and J. Qiu, “Study on the alkali release from the combustion products of a single coal particle by laser ignition,” Energy Fuels 31(4), 4452–4460 (2017).
[Crossref]

Zeng, X.

S. Ma, Y. Tang, Y. Ma, Y. Chu, F. Chen, Z. Hu, Z. Zhu, L. Guo, X. Zeng, and Y. Lu, “Determination of trace heavy metal elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy,” Opt. Express 27(10), 15091–15099 (2019).
[Crossref]

L. Guo, X. Li, W. Xiong, X. Zeng, and Y. Lu, “Recent technological progress in Asia from the first Asian symposium on laser-induced breakdown spectroscopy,” Front. Phys. 11(6), 115208 (2016).
[Crossref]

Zeng, X. Y.

Zhang, C. F.

Zhang, D. C.

Zhang, Z.

J. Viljanen, H. Zhao, Z. Zhang, J. Toivonen, and Z. T. Alwahabi, “Real-time release of Na, K and Ca during thermal conversion of biomass using quantitative microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 149, 76–83 (2018).
[Crossref]

Zhao, H.

J. Viljanen, H. Zhao, Z. Zhang, J. Toivonen, and Z. T. Alwahabi, “Real-time release of Na, K and Ca during thermal conversion of biomass using quantitative microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 149, 76–83 (2018).
[Crossref]

Zheng, R.

Zhong, S. L.

S. L. Zhong, Y. Lu, W. J. Kong, K. Cheng, and R. Zheng, “Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy,” Front. Phys. 11(4), 114202 (2016).
[Crossref]

Zhou, Y. S.

Zhu, J. F.

Zhu, X. L.

Zhu, Z.

Anal. Bioanal. Chem. (1)

G. Galbacs, “A critical review of recent progress in analytical laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 407(25), 7537–7562 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Spectrosc. (6)

Br. Med. Bull. (1)

J. Fawell and M. J. Nieuwenhuijsen, “Contaminants in drinking waterEnvironmental pollution and health,” Br. Med. Bull. 68(1), 199–208 (2003).
[Crossref]

Energy Fuels (1)

S. Li, M. Dong, J. Lu, Z. Tian, Z. Hou, W. Lin, B. Yu, Q. Lai, S. Chen, and J. Qiu, “Study on the alkali release from the combustion products of a single coal particle by laser ignition,” Energy Fuels 31(4), 4452–4460 (2017).
[Crossref]

Front. Phys. (2)

L. Guo, X. Li, W. Xiong, X. Zeng, and Y. Lu, “Recent technological progress in Asia from the first Asian symposium on laser-induced breakdown spectroscopy,” Front. Phys. 11(6), 115208 (2016).
[Crossref]

S. L. Zhong, Y. Lu, W. J. Kong, K. Cheng, and R. Zheng, “Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy,” Front. Phys. 11(4), 114202 (2016).
[Crossref]

J. Anal. At. Spectrom. (1)

J. S. Huang and K. C. Lin, “Laser-induced breakdown spectroscopy of liquid droplets: correlation analysis with plasma-induced current versus continuum background,” J. Anal. At. Spectrom. 20(1), 53–59 (2005).
[Crossref]

J. Pharm. Biomed. Anal. (1)

L. St-Onge, E. Kwong, M. Sabsabi, and E.B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36(2), 277–284 (2004).
[Crossref]

Opt. Express (6)

X. He, W. Hu, C. Li, L. Guo, and Y. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[Crossref]

L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-induced breakdown spectroscopy enhanced by a micro torch,” Opt. Express 23(11), 15047–15056 (2015).
[Crossref]

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22(7), 7686–7693 (2014).
[Crossref]

X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy,” Opt. Express 24(12), 13410–13417 (2016).
[Crossref]

D. C. Zhang, Z. Q. Hu, Y. B. Su, B. Hai, X. L. Zhu, J. F. Zhu, and X. Ma, “Simple method for liquid analysis by laser-induced breakdown spectroscopy (LIBS),” Opt. Express 26(14), 18794–18802 (2018).
[Crossref]

S. Ma, Y. Tang, Y. Ma, Y. Chu, F. Chen, Z. Hu, Z. Zhu, L. Guo, X. Zeng, and Y. Lu, “Determination of trace heavy metal elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy,” Opt. Express 27(10), 15091–15099 (2019).
[Crossref]

Opt. Lett. (1)

Spectrochim. Acta, Part B (5)

M. S. Mansour, H. Imam, K. A. Elsayed, and W. Abbass, “Local equivalence ratio measurements in turbulent partially premixed flames using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64(10), 1079–1084 (2009).
[Crossref]

J. Viljanen, H. Zhao, Z. Zhang, J. Toivonen, and Z. T. Alwahabi, “Real-time release of Na, K and Ca during thermal conversion of biomass using quantitative microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 149, 76–83 (2018).
[Crossref]

Z. Tian, M. Dong, S. Li, and J. Lu, “Spatially resolved laser-induced breakdown spectroscopy in laminar premixed methane–air flames,” Spectrochim. Acta, Part B 136, 8–15 (2017).
[Crossref]

J. O. Cáceres, J. T. López, H. H. Telle, and A. G. Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 56(6), 831–838 (2001).
[Crossref]

G. Bilge, B. Sezer, I. H. Boyaci, K. E. Eseller, and H. Berberoglu, “Performance evaluation of laser induced breakdown spectroscopy in the measurement of liquid and solid samples,” Spectrochim. Acta, Part B 145, 115–121 (2018).
[Crossref]

Talanta (1)

M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, “Dispersive liquid–liquid microextraction for metals enrichment: A useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis,” Talanta 131, 348–353 (2015).
[Crossref]

Other (1)

J. P. Singh and S. N. Thakur, “Laser-induced breakdown spectroscopy,” Elsevier (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagram of flame-enhanced LIBS experimental setup.
Fig. 2.
Fig. 2. Typical detection results after using the flame-enhanced LIBS: (a) Li, (b) Ca, (c) Mn, (d) Mg, (e) Sr, and the alcohol-flame emission (f). Each spectra was obtained under the detection delay of 2.5 µs and integration time of 1.05 ms.
Fig. 3.
Fig. 3. Typical detection result of copper after using the flame enhancement. Each spectra was obtained under the detection delay of 2.5 µs and integration time of 1.05 ms.
Fig. 4.
Fig. 4. The flame images under different alcohol ratios (a), and the detection probability along the flame longitudinal direction as a function of detection delay for Ca I 422.7 nm (b), Ca II 393.4 nm (c). Each detection probability is the statistical result of 1000 individual measurements.
Fig. 5.
Fig. 5. Plasma temperature, thermal temperature, electron density in the flame and underwater. Each data point was averaged by 50 individual measurements, and the shadow area indicates the standard deviation of averaged value (dash line) for plasma property underwater.
Fig. 6.
Fig. 6. Detection probability of Mn (I) 403 nm in the flame as a function of detection delay. Each detection probability is the statistical result of 1000 individual measurements.
Fig. 7.
Fig. 7. Calibration curve of Mn: (a) without internal reference; (b) with internal reference of Ca. Each data point is averaged by 100 individual measurements.
Fig. 8.
Fig. 8. The improved detection of Mn after mixing CaCl2 solution, and the dash line is indicating the detection probability of 10%.

Tables (2)

Tables Icon

Table 1. The specification of chosen elements.

Tables Icon

Table 2. Relative standard deviation of the detection after using different methods.

Metrics