Abstract

We propose and experimentally demonstrated a light-panel and image sensor based visible light communication (VLC) system using machine learning (ML) algorithm. The ML algorithm is compared with the traditional demodulation scheme and the experimental results show that even at very high noise-ratio (NR) light-panel display content, the proposed ML algorithm shows significant bit error rate (BER) improvement.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications

Chia-Wei Chen, Chi-Wai Chow, Yang Liu, and Chien-Hung Yeh
Opt. Express 25(20) 24362-24367 (2017)

Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication

Chi-Wai Chow, Ruei-Jie Shiu, Yen-Chun Liu, Xin-Lan Liao, Kun-Hsien Lin, Yi-Chang Wang, and Yi-Yuan Chen
Opt. Express 26(10) 12530-12535 (2018)

Mitigation of performance degradation due to dynamic display contents in visible light communication using TV backlight and CMOS image sensor

Chi-Wai Chow, Ruei-Jie Shiu, Yen-Chun Liu, Wei-Chung Wang, Xin-Lan Liao, Kun-Hsien Lin, Yi-Chang Wang, and Yi-Yuan Chen
Opt. Express 26(17) 22342-22347 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M. Asaduzzaman, “Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future,” IEEE Access 7, 46317–46350 (2019).
    [Crossref]
  2. H. Haas, “Visible light communication,” Proc. OFC, 1–72 (2015).
  3. C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).
  4. Z. Wang, C. Yu, W. D. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
    [Crossref] [PubMed]
  5. R. Deng, J. He, and G. K. Chang, “Enhancement of signal performance in bidirectional RSE-based CVLC system employing NPM modulation scheme,” Opt. Commun. 432, 97–100 (2019).
    [Crossref]
  6. H. H. Lu, Y. P. Lin, P. Y. Wu, C. Y. Chen, M. C. Chen, and T. W. Jhang, “A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators,” Opt. Express 22(3), 3468–3474 (2014).
    [Crossref] [PubMed]
  7. B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
    [Crossref] [PubMed]
  8. C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
    [Crossref] [PubMed]
  9. C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
    [Crossref]
  10. C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
    [Crossref] [PubMed]
  11. P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 7904242 (2015).
    [Crossref]
  12. C. W. Chow, R. J. Shiu, Y. C. Liu, Y. Liu, and C. H. Yeh, “Non-flickering 100 m RGB visible light communication transmission based on a CMOS image sensor,” Opt. Express 26(6), 7079–7084 (2018).
    [Crossref] [PubMed]
  13. I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
    [Crossref]
  14. C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. OWC2012, 1244–1248.
    [Crossref]
  15. C. W. Chow, C. Y. Chen, and S. H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23(20), 26080–26085 (2015).
    [Crossref] [PubMed]
  16. K. Liang, C. W. Chow, and Y. Liu, “Mobile-phone based visible light communication using region-grow light source tracking for unstable light source,” Opt. Express 24(15), 17505–17510 (2016).
    [Crossref] [PubMed]
  17. C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).
  18. C. W. Chen, C. W. Chow, Y. Liu, and C. H. Yeh, “Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications,” Opt. Express 25(20), 24362–24367 (2017).
    [Crossref] [PubMed]

2019 (2)

S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M. Asaduzzaman, “Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future,” IEEE Access 7, 46317–46350 (2019).
[Crossref]

R. Deng, J. He, and G. K. Chang, “Enhancement of signal performance in bidirectional RSE-based CVLC system employing NPM modulation scheme,” Opt. Commun. 432, 97–100 (2019).
[Crossref]

2018 (3)

2017 (1)

2016 (1)

2015 (4)

2014 (1)

2013 (1)

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

2012 (2)

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).

Z. Wang, C. Yu, W. D. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
[Crossref] [PubMed]

Afgani, M.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. OWC2012, 1244–1248.
[Crossref]

Andoh, M.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Asaduzzaman, M.

S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M. Asaduzzaman, “Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future,” IEEE Access 7, 46317–46350 (2019).
[Crossref]

Cantore, M.

Chang, G. K.

R. Deng, J. He, and G. K. Chang, “Enhancement of signal performance in bidirectional RSE-based CVLC system employing NPM modulation scheme,” Opt. Commun. 432, 97–100 (2019).
[Crossref]

Chen, C. W.

Chen, C. Y.

Chen, J.

Chen, M. C.

Chen, S. H.

Chen, W.

Chen, Y. Y.

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
[Crossref] [PubMed]

Chi, Y. C.

Chow, C. W.

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
[Crossref] [PubMed]

C. W. Chow, R. J. Shiu, Y. C. Liu, Y. Liu, and C. H. Yeh, “Non-flickering 100 m RGB visible light communication transmission based on a CMOS image sensor,” Opt. Express 26(6), 7079–7084 (2018).
[Crossref] [PubMed]

C. W. Chen, C. W. Chow, Y. Liu, and C. H. Yeh, “Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications,” Opt. Express 25(20), 24362–24367 (2017).
[Crossref] [PubMed]

K. Liang, C. W. Chow, and Y. Liu, “Mobile-phone based visible light communication using region-grow light source tracking for unstable light source,” Opt. Express 24(15), 17505–17510 (2016).
[Crossref] [PubMed]

C. W. Chow, C. Y. Chen, and S. H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23(20), 26080–26085 (2015).
[Crossref] [PubMed]

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).

Danakis, C.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. OWC2012, 1244–1248.
[Crossref]

DenBaars, S. P.

Deng, R.

R. Deng, J. He, and G. K. Chang, “Enhancement of signal performance in bidirectional RSE-based CVLC system employing NPM modulation scheme,” Opt. Commun. 432, 97–100 (2019).
[Crossref]

Durán Retamal, J. R.

El-Desouki, M. M.

Farrell, R. M.

Ghassemlooy, Z.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 7904242 (2015).
[Crossref]

Haas, H.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. OWC2012, 1244–1248.
[Crossref]

H. Haas, “Visible light communication,” Proc. OFC, 1–72 (2015).

Han, D.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 7904242 (2015).
[Crossref]

He, J.

R. Deng, J. He, and G. K. Chang, “Enhancement of signal performance in bidirectional RSE-based CVLC system employing NPM modulation scheme,” Opt. Commun. 432, 97–100 (2019).
[Crossref]

He, J. H.

Ito, S.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Janjua, B.

Jhang, T. W.

Kagawa, K.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Kawahito, S.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Kuo, H. C.

Lee, C.

Liang, K.

Liao, X. L.

C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
[Crossref] [PubMed]

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

Lin, G. R.

Lin, K. H.

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
[Crossref] [PubMed]

Lin, Y. P.

Liu, Y.

Liu, Y. C.

Liu, Y. F.

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).

Lu, H. H.

Luo, P.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 7904242 (2015).
[Crossref]

Minh, H. L.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 7904242 (2015).
[Crossref]

Nakamura, S.

Nawaz, S. J.

S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M. Asaduzzaman, “Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future,” IEEE Access 7, 46317–46350 (2019).
[Crossref]

Ng, T. K.

Ooi, B. S.

Oubei, H. M.

Patwary, M. N.

S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M. Asaduzzaman, “Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future,” IEEE Access 7, 46317–46350 (2019).
[Crossref]

Png, L. C.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 7904242 (2015).
[Crossref]

Povey, G.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. OWC2012, 1244–1248.
[Crossref]

Sharma, S. K.

S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M. Asaduzzaman, “Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future,” IEEE Access 7, 46317–46350 (2019).
[Crossref]

Shen, C.

Shiu, R. J.

Speck, J. S.

Takai, I.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Tang, X.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 7904242 (2015).
[Crossref]

Tsai, C. T.

Tsai, H. M.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 7904242 (2015).
[Crossref]

Underwood, I.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. OWC2012, 1244–1248.
[Crossref]

Wang, H. Y.

Wang, Y. C.

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
[Crossref] [PubMed]

Wang, Z.

Wu, P. Y.

Wyne, S.

S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M. Asaduzzaman, “Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future,” IEEE Access 7, 46317–46350 (2019).
[Crossref]

Yasutomi, K.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Yeh, C. H.

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, Y. Liu, and C. H. Yeh, “Non-flickering 100 m RGB visible light communication transmission based on a CMOS image sensor,” Opt. Express 26(6), 7079–7084 (2018).
[Crossref] [PubMed]

C. W. Chen, C. W. Chow, Y. Liu, and C. H. Yeh, “Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications,” Opt. Express 25(20), 24362–24367 (2017).
[Crossref] [PubMed]

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).

Yu, C.

Zhang, M.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 7904242 (2015).
[Crossref]

Zhong, W. D.

IEEE Access (1)

S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M. Asaduzzaman, “Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future,” IEEE Access 7, 46317–46350 (2019).
[Crossref]

IEEE Photon. Soc. Newslett. (1)

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).

IEEE Photonics J. (3)

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 7904242 (2015).
[Crossref]

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Opt. Commun. (1)

R. Deng, J. He, and G. K. Chang, “Enhancement of signal performance in bidirectional RSE-based CVLC system employing NPM modulation scheme,” Opt. Commun. 432, 97–100 (2019).
[Crossref]

Opt. Express (9)

H. H. Lu, Y. P. Lin, P. Y. Wu, C. Y. Chen, M. C. Chen, and T. W. Jhang, “A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators,” Opt. Express 22(3), 3468–3474 (2014).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
[Crossref] [PubMed]

Z. Wang, C. Yu, W. D. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
[Crossref] [PubMed]

C. W. Chow, C. Y. Chen, and S. H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23(20), 26080–26085 (2015).
[Crossref] [PubMed]

K. Liang, C. W. Chow, and Y. Liu, “Mobile-phone based visible light communication using region-grow light source tracking for unstable light source,” Opt. Express 24(15), 17505–17510 (2016).
[Crossref] [PubMed]

C. W. Chow, R. J. Shiu, Y. C. Liu, Y. Liu, and C. H. Yeh, “Non-flickering 100 m RGB visible light communication transmission based on a CMOS image sensor,” Opt. Express 26(6), 7079–7084 (2018).
[Crossref] [PubMed]

C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
[Crossref] [PubMed]

C. W. Chen, C. W. Chow, Y. Liu, and C. H. Yeh, “Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications,” Opt. Express 25(20), 24362–24367 (2017).
[Crossref] [PubMed]

Other (3)

C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. OWC2012, 1244–1248.
[Crossref]

H. Haas, “Visible light communication,” Proc. OFC, 1–72 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) VLC system using light-panel and smart-phone CMOS image sensor. (b) flow diagram of the ML algorithm implementation to improve the VLC performance.
Fig. 2
Fig. 2 Implementation of the traditional light-panel based VLC system (top) and the proposed VLC system based on ML algorithm (bottom).
Fig. 3
Fig. 3 Display contents of light-panel with different NR values and at different data rates.
Fig. 4
Fig. 4 Measured BER curves using traditional demodulation and the proposed ML algorithm when the (a) NR = 0%, (b) NR = 39.56% and (c) NR = 70.21% respectively.
Fig. 5
Fig. 5 (a) Measured pixel per bit at different data rates, and (b) illuminance at different NRs.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P n = σ ( z n ) , a n d z n = w x n T + b = w r x r ( n ) + w g x g ( n ) + w b x b ( n ) + b .
w = ( w r , w g , w b ) , a n d x n = ( x r ( n ) , x g ( n ) , x b ( n ) ) ,
x r ( n ) , x g ( n ) , x b ( n )
w r , w g , w b
E ( w , b ) = n = 1 N E n = n = 1 N [ t n ln P n + ( 1 t n ) ln ( 1 P n ) ] .
w τ + 1 = w τ η E w , a n d b τ + 1 = b τ η E b .
L o g i c = { 1 , P n 0.5 0 , P n < 0.5 .

Metrics