Abstract

Source-free all optical sampling, based on the convolution of the signal spectrum with a frequency comb in an electronic-photonic, co-integrated silicon device will be presented for the first time, to the best of our knowledge. The method has the potential to achieve very high precision, requires only low power and can be fully tunable in the electrical domain. Sampling rates of three and four times the RF bandwidths of the photonics and electronics can be achieved. Thus, the presented method might lead to low-footprint, fully-integrated, precise, electrically tunable, photonic ADCs with very high-analog bandwidths for the digital infrastructure of tomorrow.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic ADC: overcoming the bottleneck of electronic jitter

Anatol Khilo, Steven J. Spector, Matthew E. Grein, Amir H. Nejadmalayeri, Charles W. Holzwarth, Michelle Y. Sander, Marcus S. Dahlem, Michael Y. Peng, Michael W. Geis, Nicole A. DiLello, Jung U. Yoon, Ali Motamedi, Jason S. Orcutt, Jade P. Wang, Cheryl M. Sorace-Agaskar, Miloš A. Popović, Jie Sun, Gui-Rong Zhou, Hyunil Byun, Jian Chen, Judy L. Hoyt, Henry I. Smith, Rajeev J. Ram, Michael Perrott, Theodore M. Lyszczarz, Erich P. Ippen, and Franz X. Kärtner
Opt. Express 20(4) 4454-4469 (2012)

Optical under-sampling by using a broadband optical comb with a high average power

Alexander Sherman, Moshe Horowitz, and Shlomo Zach
Opt. Express 22(13) 15502-15513 (2014)

Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution

Jungwon Kim, Matthew J. Park, Michael H. Perrott, and Franz X. Kärtner
Opt. Express 16(21) 16509-16515 (2008)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17(4), 539–550 (1999).
    [Crossref]
  2. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref]
  3. Yan Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
    [Crossref]
  4. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
    [Crossref]
  5. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49(10), 1840–1853 (2001).
    [Crossref]
  6. J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
    [Crossref]
  7. F. Su, G. Wu, L. Ye, R. Liu, X. Xue, and J. Chen, “Effects of the photonic sampling pulse width and the photodetection bandwidth on the channel response of photonic ADCs,” Opt. Express 24(2), 924–934 (2016).
    [Crossref]
  8. D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
    [Crossref]
  9. S. Preußler, G. Raoof Mehrpoor, and T. Schneider, “Frequency-time coherence for all-optical sampling without optical pulse source,” Sci. Rep. 6(1), 34500 (2016).
    [Crossref]
  10. J. Meier, A. Misra, S. Preußler, and T. Schneider, “Orthogonal Full-Field Optical Sampling,” IEEE Photonics J. 11(2), 1–9 (2019).
    [Crossref]
  11. J. Meier, A. Misra, S. Preussler, and T. Schneider, “Optical convolution with a rectangular frequency comb for almost ideal sampling,” in Proc. SPIE, vol. 10947 (SPIE, 2019), p. 109211O.
  12. A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems (Prentice Hall, 1996), 2nd ed.
  13. M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
    [Crossref]
  14. M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Generation of Nyquist sinc pulses using intensity modulators,” in Conference on Lasers and Electro-Optics Conference (CLEO), (Optical Society of America, 2013), p. CM4G.3.
  15. S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
    [Crossref]
  16. R. A. Cohen, O. Amrani, and S. Ruschin, “Linearized electro-optic racetrack modulator based on double injection method in silicon,” Opt. Express 23(3), 2252–2261 (2015).
    [Crossref]
  17. C. Feng, S. Preussler, and T. Schneider, “Sharp tunable and additional noise-free optical filter based on Brillouin losses,” Photonics Res. 6(2), 132–137 (2018).
    [Crossref]
  18. Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
    [Crossref]
  19. Q. Sun, L. Zhou, L. Lu, G. Zhou, and J. Chen, “Reconfigurable High-Resolution Microwave Photonic Filter Based on Dual-Ring-Assisted MZIs on the Si3N4 Platform,” IEEE Photonics J. 10(6), 1–12 (2018).
    [Crossref]
  20. D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76–83 (2015).
    [Crossref]
  21. V. Vercesi, D. Onori, J. Davies, A. Seeds, and C.-P. Liu, “Electronically synthesized Nyquist pulses for photonic sampling of microwave signals,” Opt. Express 25(23), 29249–29259 (2017).
    [Crossref]
  22. J. Witzens, “High-speed silicon photonics modulators,” Proc. IEEE 106(12), 2158–2182 (2018).
    [Crossref]
  23. L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light: Sci. Appl. 3(5), e173 (2014).
    [Crossref]
  24. F. Herzel, S. A. Osmany, K. Schmalz, W. Winkler, J. C. Scheytt, T. Podrebersek, R. Follmann, and H.-V. Heyer, “An integrated 18 GHz fractional-N PLL in SiGe BiCMOS technology for satellite communications,” in 2009 IEEE Radio Frequency Integrated Circuits Symposium, (IEEE, 2009), pp. 329–332.
  25. F. Herzel, S. Glisic, S. A. Osmany, J. C. Scheytt, K. Schmalz, W. Winkler, and M. Engels, “A fully integrated 48-GHz low-noise PLL with a constant loop bandwidth,” in 2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (IEEE, 2008), pp. 82–85.
  26. S. A. Osmany, F. Herzel, and J. C. Scheytt, “An integrated 0.6–4.6 GHz, 5–7 GHz, 10–14 GHz, and 20–28 GHz frequency synthesizer for software-defined radio applications,” IEEE J. Solid-State Circuits 45(9), 1657–1668 (2010).
    [Crossref]
  27. Y. Sun and C. J. Scheytt, “A 360 degree phase shifter for 60 GHz application in SiGe BiCMOS technology,” in 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, (2009), pp. 1–4
  28. M. Elkhouly, S. Glisic, C. Meliani, F. Ellinger, and J. C. Scheytt, “220 - 250-GHz Phased-Array Circuits in 0.13-/spl mu/m SiGe BiCMOS Technology,” IEEE Trans. Microwave Theory Tech. 61(8), 3115–3127 (2013).
    [Crossref]
  29. A. P. G. Ariza, R. Müller, R. Stephan, F. Wollenschläger, A. Schulz, M. Elkhouly, C. Scheytt, U. Trautwein, J. Müller, R. S. Thomä, and M. A. Hein, “60 GHz polarimetric MIMO sensing: Architectures and technology,” in 2012 6th European Conference on Antennas and Propagation (EUCAP), (2012), pp. 2578–2582.
  30. S. Lischke, D. Knoll, C. Mai, L. Zimmermann, A. Peczek, M. Kroh, A. Trusch, E. Krune, K. Voigt, and A. Mai, “High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode,” Opt. Express 23(21), 27213–27220 (2015).
    [Crossref]
  31. V. Stojanović, R. J. Ram, M. Popović, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello, N. Mehta, and P. Bhargava, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes,” Opt. Express 26(10), 13106–13121 (2018).
    [Crossref]
  32. D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
    [Crossref]
  33. A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.
  34. S. Tanaka, T. Simoyama, T. Aoki, T. Mori, S. Sekiguchi, S. Jeong, T. Usuki, Y. Tanaka, and K. Morito, “Ultralow-Power (1.59 mW/Gbps), 56-Gbps PAM4 Operation of Si Photonic Transmitter Integrating Segmented PIN Mach-Zehnder Modulator and 28 nm CMOS Driver,” J. Lightwave Technol. 36(5), 1275–1280 (2018).
    [Crossref]
  35. N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.
  36. L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th4E.5.
  37. P. Rito, I. G. Lòpez, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 $\mu m$μm SiGe:C BiCMOS with 13 db extinction ratio at 28 gb/s,” in 2016 IEEE MTT-S International Microwave Symposium (IMS), (2016), pp. 1–4.
  38. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  39. I. G. Lòpez, P. Rito, D. Petousi, S. Lischke, D. Knoll, M. Kroh, L. Zimmermann, M. Ko, A. C. Ulusoy, and D. Kissinger, “Monolithically integrated si photonics transmitters in 0.25 $\mu m$μm BiCMOS platform for high-speed optical communications,” in 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1312–1315.
  40. G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in European Conference on Optical Communication (ECOC), (2014), p. PD.2.4.
  41. X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
    [Crossref]

2020 (1)

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

2019 (2)

J. Meier, A. Misra, S. Preußler, and T. Schneider, “Orthogonal Full-Field Optical Sampling,” IEEE Photonics J. 11(2), 1–9 (2019).
[Crossref]

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
[Crossref]

2018 (5)

C. Feng, S. Preussler, and T. Schneider, “Sharp tunable and additional noise-free optical filter based on Brillouin losses,” Photonics Res. 6(2), 132–137 (2018).
[Crossref]

Q. Sun, L. Zhou, L. Lu, G. Zhou, and J. Chen, “Reconfigurable High-Resolution Microwave Photonic Filter Based on Dual-Ring-Assisted MZIs on the Si3N4 Platform,” IEEE Photonics J. 10(6), 1–12 (2018).
[Crossref]

J. Witzens, “High-speed silicon photonics modulators,” Proc. IEEE 106(12), 2158–2182 (2018).
[Crossref]

V. Stojanović, R. J. Ram, M. Popović, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello, N. Mehta, and P. Bhargava, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes,” Opt. Express 26(10), 13106–13121 (2018).
[Crossref]

S. Tanaka, T. Simoyama, T. Aoki, T. Mori, S. Sekiguchi, S. Jeong, T. Usuki, Y. Tanaka, and K. Morito, “Ultralow-Power (1.59 mW/Gbps), 56-Gbps PAM4 Operation of Si Photonic Transmitter Integrating Segmented PIN Mach-Zehnder Modulator and 28 nm CMOS Driver,” J. Lightwave Technol. 36(5), 1275–1280 (2018).
[Crossref]

2017 (2)

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

V. Vercesi, D. Onori, J. Davies, A. Seeds, and C.-P. Liu, “Electronically synthesized Nyquist pulses for photonic sampling of microwave signals,” Opt. Express 25(23), 29249–29259 (2017).
[Crossref]

2016 (2)

F. Su, G. Wu, L. Ye, R. Liu, X. Xue, and J. Chen, “Effects of the photonic sampling pulse width and the photodetection bandwidth on the channel response of photonic ADCs,” Opt. Express 24(2), 924–934 (2016).
[Crossref]

S. Preußler, G. Raoof Mehrpoor, and T. Schneider, “Frequency-time coherence for all-optical sampling without optical pulse source,” Sci. Rep. 6(1), 34500 (2016).
[Crossref]

2015 (4)

2014 (2)

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light: Sci. Appl. 3(5), e173 (2014).
[Crossref]

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

2013 (2)

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[Crossref]

M. Elkhouly, S. Glisic, C. Meliani, F. Ellinger, and J. C. Scheytt, “220 - 250-GHz Phased-Array Circuits in 0.13-/spl mu/m SiGe BiCMOS Technology,” IEEE Trans. Microwave Theory Tech. 61(8), 3115–3127 (2013).
[Crossref]

2012 (1)

2010 (1)

S. A. Osmany, F. Herzel, and J. C. Scheytt, “An integrated 0.6–4.6 GHz, 5–7 GHz, 10–14 GHz, and 20–28 GHz frequency synthesizer for software-defined radio applications,” IEEE J. Solid-State Circuits 45(9), 1657–1668 (2010).
[Crossref]

2008 (1)

2007 (1)

2003 (1)

2001 (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

1999 (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17(4), 539–550 (1999).
[Crossref]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Agrawal, A.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Ahmed, A. H.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Alem, M.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[Crossref]

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Generation of Nyquist sinc pulses using intensity modulators,” in Conference on Lasers and Electro-Optics Conference (CLEO), (Optical Society of America, 2013), p. CM4G.3.

Alexandre, C.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Alloatti, L.

V. Stojanović, R. J. Ram, M. Popović, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello, N. Mehta, and P. Bhargava, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes,” Opt. Express 26(10), 13106–13121 (2018).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light: Sci. Appl. 3(5), e173 (2014).
[Crossref]

Amin Shoaie, M.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[Crossref]

Amrani, O.

Anderson, F. G.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Aoki, T.

Ariza, A. P. G.

A. P. G. Ariza, R. Müller, R. Stephan, F. Wollenschläger, A. Schulz, M. Elkhouly, C. Scheytt, U. Trautwein, J. Müller, R. S. Thomä, and M. A. Hein, “60 GHz polarimetric MIMO sensing: Architectures and technology,” in 2012 6th European Conference on Antennas and Propagation (EUCAP), (2012), pp. 2578–2582.

Atabaki, A.

Baker, F.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Baks, C. W.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Barwicz, T.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Ben-Ezra, Y.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Betts, G. E.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Bhargava, P.

Bouchand, R.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Brès, C.-S.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[Crossref]

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Generation of Nyquist sinc pulses using intensity modulators,” in Conference on Lasers and Electro-Optics Conference (CLEO), (Optical Society of America, 2013), p. CM4G.3.

Byun, H.

Capmany, J.

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
[Crossref]

Chagnon, M.

Chen, A.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in European Conference on Optical Communication (ECOC), (2014), p. PD.2.4.

Chen, B.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light: Sci. Appl. 3(5), e173 (2014).
[Crossref]

Chen, J.

Chilstedt, S.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Choi, D.-Y.

Cohen, R. A.

Cucci, B.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Dahlem, M. S.

Dang, D.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Datta, S.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Davies, J.

Denoyer, G.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in European Conference on Optical Communication (ECOC), (2014), p. PD.2.4.

Diebold, S.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light: Sci. Appl. 3(5), e173 (2014).
[Crossref]

DiLello, N. A.

Ding, R.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Ding, Y.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Dinu, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light: Sci. Appl. 3(5), e173 (2014).
[Crossref]

Doan, T.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Doany, F.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Eggleton, B. J.

Elkhouly, M.

M. Elkhouly, S. Glisic, C. Meliani, F. Ellinger, and J. C. Scheytt, “220 - 250-GHz Phased-Array Circuits in 0.13-/spl mu/m SiGe BiCMOS Technology,” IEEE Trans. Microwave Theory Tech. 61(8), 3115–3127 (2013).
[Crossref]

A. P. G. Ariza, R. Müller, R. Stephan, F. Wollenschläger, A. Schulz, M. Elkhouly, C. Scheytt, U. Trautwein, J. Müller, R. S. Thomä, and M. A. Hein, “60 GHz polarimetric MIMO sensing: Architectures and technology,” in 2012 6th European Conference on Antennas and Propagation (EUCAP), (2012), pp. 2578–2582.

Ellinger, F.

M. Elkhouly, S. Glisic, C. Meliani, F. Ellinger, and J. C. Scheytt, “220 - 250-GHz Phased-Array Circuits in 0.13-/spl mu/m SiGe BiCMOS Technology,” IEEE Trans. Microwave Theory Tech. 61(8), 3115–3127 (2013).
[Crossref]

Ellis-Monaghan, J.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Elmoznine, A.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Engelmann, S.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Engels, M.

F. Herzel, S. Glisic, S. A. Osmany, J. C. Scheytt, K. Schmalz, W. Winkler, and M. Engels, “A fully integrated 48-GHz low-noise PLL with a constant loop bandwidth,” in 2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (IEEE, 2008), pp. 82–85.

Fedeli, J.-M.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light: Sci. Appl. 3(5), e173 (2014).
[Crossref]

Feilchenfeld, N. B.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Feng, C.

C. Feng, S. Preussler, and T. Schneider, “Sharp tunable and additional noise-free optical filter based on Brillouin losses,” Photonics Res. 6(2), 132–137 (2018).
[Crossref]

Ferrario, J.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Follmann, R.

F. Herzel, S. A. Osmany, K. Schmalz, W. Winkler, J. C. Scheytt, T. Podrebersek, R. Follmann, and H.-V. Heyer, “An integrated 18 GHz fractional-N PLL in SiGe BiCMOS technology for satellite communications,” in 2009 IEEE Radio Frequency Integrated Circuits Symposium, (IEEE, 2009), pp. 329–332.

Fournier, M.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light: Sci. Appl. 3(5), e173 (2014).
[Crossref]

Freude, W.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light: Sci. Appl. 3(5), e173 (2014).
[Crossref]

Geis, M. W.

Ghosh, S.

Gill, D. M.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Giunta, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Glisic, S.

M. Elkhouly, S. Glisic, C. Meliani, F. Ellinger, and J. C. Scheytt, “220 - 250-GHz Phased-Array Circuits in 0.13-/spl mu/m SiGe BiCMOS Technology,” IEEE Trans. Microwave Theory Tech. 61(8), 3115–3127 (2013).
[Crossref]

F. Herzel, S. Glisic, S. A. Osmany, J. C. Scheytt, K. Schmalz, W. Winkler, and M. Engels, “A fully integrated 48-GHz low-noise PLL with a constant loop bandwidth,” in 2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (IEEE, 2008), pp. 82–85.

Gordon, M.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Green, W. M. J.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Grein, M. E.

Haensch, W.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Hamid, S.

A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems (Prentice Hall, 1996), 2nd ed.

Han, Yan

Hänsel, W.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Hargreaves, J. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Hedges, C.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Hein, M. A.

A. P. G. Ariza, R. Müller, R. Stephan, F. Wollenschläger, A. Schulz, M. Elkhouly, C. Scheytt, U. Trautwein, J. Müller, R. S. Thomä, and M. A. Hein, “60 GHz polarimetric MIMO sensing: Architectures and technology,” in 2012 6th European Conference on Antennas and Propagation (EUCAP), (2012), pp. 2578–2582.

Herzel, F.

S. A. Osmany, F. Herzel, and J. C. Scheytt, “An integrated 0.6–4.6 GHz, 5–7 GHz, 10–14 GHz, and 20–28 GHz frequency synthesizer for software-defined radio applications,” IEEE J. Solid-State Circuits 45(9), 1657–1668 (2010).
[Crossref]

F. Herzel, S. Glisic, S. A. Osmany, J. C. Scheytt, K. Schmalz, W. Winkler, and M. Engels, “A fully integrated 48-GHz low-noise PLL with a constant loop bandwidth,” in 2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (IEEE, 2008), pp. 82–85.

F. Herzel, S. A. Osmany, K. Schmalz, W. Winkler, J. C. Scheytt, T. Podrebersek, R. Follmann, and H.-V. Heyer, “An integrated 18 GHz fractional-N PLL in SiGe BiCMOS technology for satellite communications,” in 2009 IEEE Radio Frequency Integrated Circuits Symposium, (IEEE, 2009), pp. 329–332.

Heyer, H.-V.

F. Herzel, S. A. Osmany, K. Schmalz, W. Winkler, J. C. Scheytt, T. Podrebersek, R. Follmann, and H.-V. Heyer, “An integrated 18 GHz fractional-N PLL in SiGe BiCMOS technology for satellite communications,” in 2009 IEEE Radio Frequency Integrated Circuits Symposium, (IEEE, 2009), pp. 329–332.

Hochberg, M.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Hofrichter, J.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Holzwarth, C. W.

Holzwarth, R.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Horst, F.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Hoyt, J. L.

Huynh, T.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Ippen, E. P.

Jalali, B.

Jeong, S.

Joseph, E.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Joshi, A.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Juodawlkis, P. W.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Kärtner, F. X.

Khater, M.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Khilo, A.

Kiewra, E.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Kim, J.

Kissinger, D.

P. Rito, I. G. Lòpez, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 $\mu m$μm SiGe:C BiCMOS with 13 db extinction ratio at 28 gb/s,” in 2016 IEEE MTT-S International Microwave Symposium (IMS), (2016), pp. 1–4.

I. G. Lòpez, P. Rito, D. Petousi, S. Lischke, D. Knoll, M. Kroh, L. Zimmermann, M. Ko, A. C. Ulusoy, and D. Kissinger, “Monolithically integrated si photonics transmitters in 0.25 $\mu m$μm BiCMOS platform for high-speed optical communications,” in 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1312–1315.

Knoll, D.

S. Lischke, D. Knoll, C. Mai, L. Zimmermann, A. Peczek, M. Kroh, A. Trusch, E. Krune, K. Voigt, and A. Mai, “High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode,” Opt. Express 23(21), 27213–27220 (2015).
[Crossref]

P. Rito, I. G. Lòpez, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 $\mu m$μm SiGe:C BiCMOS with 13 db extinction ratio at 28 gb/s,” in 2016 IEEE MTT-S International Microwave Symposium (IMS), (2016), pp. 1–4.

I. G. Lòpez, P. Rito, D. Petousi, S. Lischke, D. Knoll, M. Kroh, L. Zimmermann, M. Ko, A. C. Ulusoy, and D. Kissinger, “Monolithically integrated si photonics transmitters in 0.25 $\mu m$μm BiCMOS platform for high-speed optical communications,” in 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1312–1315.

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th4E.5.

Ko, M.

I. G. Lòpez, P. Rito, D. Petousi, S. Lischke, D. Knoll, M. Kroh, L. Zimmermann, M. Ko, A. C. Ulusoy, and D. Kissinger, “Monolithically integrated si photonics transmitters in 0.25 $\mu m$μm BiCMOS platform for high-speed optical communications,” in 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1312–1315.

Koos, C.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light: Sci. Appl. 3(5), e173 (2014).
[Crossref]

Kroh, M.

S. Lischke, D. Knoll, C. Mai, L. Zimmermann, A. Peczek, M. Kroh, A. Trusch, E. Krune, K. Voigt, and A. Mai, “High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode,” Opt. Express 23(21), 27213–27220 (2015).
[Crossref]

P. Rito, I. G. Lòpez, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 $\mu m$μm SiGe:C BiCMOS with 13 db extinction ratio at 28 gb/s,” in 2016 IEEE MTT-S International Microwave Symposium (IMS), (2016), pp. 1–4.

I. G. Lòpez, P. Rito, D. Petousi, S. Lischke, D. Knoll, M. Kroh, L. Zimmermann, M. Ko, A. C. Ulusoy, and D. Kissinger, “Monolithically integrated si photonics transmitters in 0.25 $\mu m$μm BiCMOS platform for high-speed optical communications,” in 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1312–1315.

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th4E.5.

Krune, E.

Le Coq, Y.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Leidy, R.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Leuthold, J.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light: Sci. Appl. 3(5), e173 (2014).
[Crossref]

Lezius, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Libsch, F.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Lim, D.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Lin, S.

Lischke, S.

S. Lischke, D. Knoll, C. Mai, L. Zimmermann, A. Peczek, M. Kroh, A. Trusch, E. Krune, K. Voigt, and A. Mai, “High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode,” Opt. Express 23(21), 27213–27220 (2015).
[Crossref]

P. Rito, I. G. Lòpez, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 $\mu m$μm SiGe:C BiCMOS with 13 db extinction ratio at 28 gb/s,” in 2016 IEEE MTT-S International Microwave Symposium (IMS), (2016), pp. 1–4.

I. G. Lòpez, P. Rito, D. Petousi, S. Lischke, D. Knoll, M. Kroh, L. Zimmermann, M. Ko, A. C. Ulusoy, and D. Kissinger, “Monolithically integrated si photonics transmitters in 0.25 $\mu m$μm BiCMOS platform for high-speed optical communications,” in 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1312–1315.

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th4E.5.

Liu, C.-P.

Liu, R.

Liu, S.

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

Liu, Y.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Lòpez, I. G.

I. G. Lòpez, P. Rito, D. Petousi, S. Lischke, D. Knoll, M. Kroh, L. Zimmermann, M. Ko, A. C. Ulusoy, and D. Kissinger, “Monolithically integrated si photonics transmitters in 0.25 $\mu m$μm BiCMOS platform for high-speed optical communications,” in 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1312–1315.

P. Rito, I. G. Lòpez, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 $\mu m$μm SiGe:C BiCMOS with 13 db extinction ratio at 28 gb/s,” in 2016 IEEE MTT-S International Microwave Symposium (IMS), (2016), pp. 1–4.

Lours, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Lu, L.

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

Q. Sun, L. Zhou, L. Lu, G. Zhou, and J. Chen, “Reconfigurable High-Resolution Microwave Photonic Filter Based on Dual-Ring-Assisted MZIs on the Si3N4 Platform,” IEEE Photonics J. 10(6), 1–12 (2018).
[Crossref]

Luther-Davies, B.

Lyszczarz, T. M.

Ma, Y.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Madden, S. J.

Mai, A.

Mai, C.

Maling, J.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Marpaung, D.

Martin, Y.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

McLean, K.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Meghelli, M.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Mehta, N.

Meier, J.

J. Meier, A. Misra, S. Preußler, and T. Schneider, “Orthogonal Full-Field Optical Sampling,” IEEE Photonics J. 11(2), 1–9 (2019).
[Crossref]

J. Meier, A. Misra, S. Preussler, and T. Schneider, “Optical convolution with a rectangular frequency comb for almost ideal sampling,” in Proc. SPIE, vol. 10947 (SPIE, 2019), p. 109211O.

Meliani, C.

M. Elkhouly, S. Glisic, C. Meliani, F. Ellinger, and J. C. Scheytt, “220 - 250-GHz Phased-Array Circuits in 0.13-/spl mu/m SiGe BiCMOS Technology,” IEEE Trans. Microwave Theory Tech. 61(8), 3115–3127 (2013).
[Crossref]

Misra, A.

J. Meier, A. Misra, S. Preußler, and T. Schneider, “Orthogonal Full-Field Optical Sampling,” IEEE Photonics J. 11(2), 1–9 (2019).
[Crossref]

J. Meier, A. Misra, S. Preussler, and T. Schneider, “Optical convolution with a rectangular frequency comb for almost ideal sampling,” in Proc. SPIE, vol. 10947 (SPIE, 2019), p. 109211O.

Moazeni, S.

Mori, T.

Morito, K.

Morrison, B.

Motamedi, A.

Müller, J.

A. P. G. Ariza, R. Müller, R. Stephan, F. Wollenschläger, A. Schulz, M. Elkhouly, C. Scheytt, U. Trautwein, J. Müller, R. S. Thomä, and M. A. Hein, “60 GHz polarimetric MIMO sensing: Architectures and technology,” in 2012 6th European Conference on Antennas and Propagation (EUCAP), (2012), pp. 2578–2582.

Müller, R.

A. P. G. Ariza, R. Müller, R. Stephan, F. Wollenschläger, A. Schulz, M. Elkhouly, C. Scheytt, U. Trautwein, J. Müller, R. S. Thomä, and M. A. Hein, “60 GHz polarimetric MIMO sensing: Architectures and technology,” in 2012 6th European Conference on Antennas and Propagation (EUCAP), (2012), pp. 2578–2582.

Nejadmalayeri, A. H.

Nicewicz, M.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Nicolodi, D.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Novack, A.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

O’Donnell, F. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Offrein, B.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Onori, D.

Oppenheim, A. V.

A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems (Prentice Hall, 1996), 2nd ed.

Orcutt, J. S.

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
[Crossref]

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Osman, M.

Osmany, S. A.

S. A. Osmany, F. Herzel, and J. C. Scheytt, “An integrated 0.6–4.6 GHz, 5–7 GHz, 10–14 GHz, and 20–28 GHz frequency synthesizer for software-defined radio applications,” IEEE J. Solid-State Circuits 45(9), 1657–1668 (2010).
[Crossref]

F. Herzel, S. Glisic, S. A. Osmany, J. C. Scheytt, K. Schmalz, W. Winkler, and M. Engels, “A fully integrated 48-GHz low-noise PLL with a constant loop bandwidth,” in 2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (IEEE, 2008), pp. 82–85.

F. Herzel, S. A. Osmany, K. Schmalz, W. Winkler, J. C. Scheytt, T. Podrebersek, R. Follmann, and H.-V. Heyer, “An integrated 18 GHz fractional-N PLL in SiGe BiCMOS technology for satellite communications,” in 2009 IEEE Radio Frequency Integrated Circuits Symposium, (IEEE, 2009), pp. 329–332.

Pagani, M.

Pahl, K. P.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light: Sci. Appl. 3(5), e173 (2014).
[Crossref]

Palmer, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light: Sci. Appl. 3(5), e173 (2014).
[Crossref]

Pant, R.

Park, B.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in European Conference on Optical Communication (ECOC), (2014), p. PD.2.4.

Park, M. J.

Patel, D.

Pavanello, F.

Peczek, A.

Peng, M. Y.

Perrott, M.

Perrott, M. H.

Petousi, D.

P. Rito, I. G. Lòpez, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 $\mu m$μm SiGe:C BiCMOS with 13 db extinction ratio at 28 gb/s,” in 2016 IEEE MTT-S International Microwave Symposium (IMS), (2016), pp. 1–4.

I. G. Lòpez, P. Rito, D. Petousi, S. Lischke, D. Knoll, M. Kroh, L. Zimmermann, M. Ko, A. C. Ulusoy, and D. Kissinger, “Monolithically integrated si photonics transmitters in 0.25 $\mu m$μm BiCMOS platform for high-speed optical communications,” in 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1312–1315.

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th4E.5.

Plant, D. V.

Podrebersek, T.

F. Herzel, S. A. Osmany, K. Schmalz, W. Winkler, J. C. Scheytt, T. Podrebersek, R. Follmann, and H.-V. Heyer, “An integrated 18 GHz fractional-N PLL in SiGe BiCMOS technology for satellite communications,” in 2009 IEEE Radio Frequency Integrated Circuits Symposium, (IEEE, 2009), pp. 329–332.

Popovic, M.

Popovic, M. A.

Porth, B.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Preußler, S.

J. Meier, A. Misra, S. Preußler, and T. Schneider, “Orthogonal Full-Field Optical Sampling,” IEEE Photonics J. 11(2), 1–9 (2019).
[Crossref]

Preussler, S.

C. Feng, S. Preussler, and T. Schneider, “Sharp tunable and additional noise-free optical filter based on Brillouin losses,” Photonics Res. 6(2), 132–137 (2018).
[Crossref]

Preußler, S.

S. Preußler, G. Raoof Mehrpoor, and T. Schneider, “Frequency-time coherence for all-optical sampling without optical pulse source,” Sci. Rep. 6(1), 34500 (2016).
[Crossref]

Preussler, S.

J. Meier, A. Misra, S. Preussler, and T. Schneider, “Optical convolution with a rectangular frequency comb for almost ideal sampling,” in Proc. SPIE, vol. 10947 (SPIE, 2019), p. 109211O.

Proesel, J.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Ram, R. J.

Raoof Mehrpoor, G.

S. Preußler, G. Raoof Mehrpoor, and T. Schneider, “Frequency-time coherence for all-optical sampling without optical pulse source,” Sci. Rep. 6(1), 34500 (2016).
[Crossref]

Ray, K. G.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Reinholm, C.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Rito, P.

P. Rito, I. G. Lòpez, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 $\mu m$μm SiGe:C BiCMOS with 13 db extinction ratio at 28 gb/s,” in 2016 IEEE MTT-S International Microwave Symposium (IMS), (2016), pp. 1–4.

I. G. Lòpez, P. Rito, D. Petousi, S. Lischke, D. Knoll, M. Kroh, L. Zimmermann, M. Ko, A. C. Ulusoy, and D. Kissinger, “Monolithically integrated si photonics transmitters in 0.25 $\mu m$μm BiCMOS platform for high-speed optical communications,” in 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1312–1315.

Roman, J.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Rosenberg, J. C.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Ruschin, S.

Russo, R.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in European Conference on Optical Communication (ECOC), (2014), p. PD.2.4.

Rylyakov, A.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Sacher, W. D.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Samani, A.

Sander, M. Y.

Santarelli, G.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Santipo, A.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in European Conference on Optical Communication (ECOC), (2014), p. PD.2.4.

Scheytt, C.

A. P. G. Ariza, R. Müller, R. Stephan, F. Wollenschläger, A. Schulz, M. Elkhouly, C. Scheytt, U. Trautwein, J. Müller, R. S. Thomä, and M. A. Hein, “60 GHz polarimetric MIMO sensing: Architectures and technology,” in 2012 6th European Conference on Antennas and Propagation (EUCAP), (2012), pp. 2578–2582.

Scheytt, C. J.

Y. Sun and C. J. Scheytt, “A 360 degree phase shifter for 60 GHz application in SiGe BiCMOS technology,” in 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, (2009), pp. 1–4

Scheytt, J. C.

M. Elkhouly, S. Glisic, C. Meliani, F. Ellinger, and J. C. Scheytt, “220 - 250-GHz Phased-Array Circuits in 0.13-/spl mu/m SiGe BiCMOS Technology,” IEEE Trans. Microwave Theory Tech. 61(8), 3115–3127 (2013).
[Crossref]

S. A. Osmany, F. Herzel, and J. C. Scheytt, “An integrated 0.6–4.6 GHz, 5–7 GHz, 10–14 GHz, and 20–28 GHz frequency synthesizer for software-defined radio applications,” IEEE J. Solid-State Circuits 45(9), 1657–1668 (2010).
[Crossref]

F. Herzel, S. Glisic, S. A. Osmany, J. C. Scheytt, K. Schmalz, W. Winkler, and M. Engels, “A fully integrated 48-GHz low-noise PLL with a constant loop bandwidth,” in 2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (IEEE, 2008), pp. 82–85.

F. Herzel, S. A. Osmany, K. Schmalz, W. Winkler, J. C. Scheytt, T. Podrebersek, R. Follmann, and H.-V. Heyer, “An integrated 18 GHz fractional-N PLL in SiGe BiCMOS technology for satellite communications,” in 2009 IEEE Radio Frequency Integrated Circuits Symposium, (IEEE, 2009), pp. 329–332.

Schmalz, K.

F. Herzel, S. A. Osmany, K. Schmalz, W. Winkler, J. C. Scheytt, T. Podrebersek, R. Follmann, and H.-V. Heyer, “An integrated 18 GHz fractional-N PLL in SiGe BiCMOS technology for satellite communications,” in 2009 IEEE Radio Frequency Integrated Circuits Symposium, (IEEE, 2009), pp. 329–332.

F. Herzel, S. Glisic, S. A. Osmany, J. C. Scheytt, K. Schmalz, W. Winkler, and M. Engels, “A fully integrated 48-GHz low-noise PLL with a constant loop bandwidth,” in 2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (IEEE, 2008), pp. 82–85.

Schneider, T.

J. Meier, A. Misra, S. Preußler, and T. Schneider, “Orthogonal Full-Field Optical Sampling,” IEEE Photonics J. 11(2), 1–9 (2019).
[Crossref]

C. Feng, S. Preussler, and T. Schneider, “Sharp tunable and additional noise-free optical filter based on Brillouin losses,” Photonics Res. 6(2), 132–137 (2018).
[Crossref]

S. Preußler, G. Raoof Mehrpoor, and T. Schneider, “Frequency-time coherence for all-optical sampling without optical pulse source,” Sci. Rep. 6(1), 34500 (2016).
[Crossref]

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[Crossref]

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Generation of Nyquist sinc pulses using intensity modulators,” in Conference on Lasers and Electro-Optics Conference (CLEO), (Optical Society of America, 2013), p. CM4G.3.

J. Meier, A. Misra, S. Preussler, and T. Schneider, “Optical convolution with a rectangular frequency comb for almost ideal sampling,” in Proc. SPIE, vol. 10947 (SPIE, 2019), p. 109211O.

Schulz, A.

A. P. G. Ariza, R. Müller, R. Stephan, F. Wollenschläger, A. Schulz, M. Elkhouly, C. Scheytt, U. Trautwein, J. Müller, R. S. Thomä, and M. A. Hein, “60 GHz polarimetric MIMO sensing: Architectures and technology,” in 2012 6th European Conference on Antennas and Propagation (EUCAP), (2012), pp. 2578–2582.

Seeds, A.

Sekiguchi, S.

Shank, S.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Shekhar, S.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Shi, R.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Shoaie, M. A.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Generation of Nyquist sinc pulses using intensity modulators,” in Conference on Lasers and Electro-Optics Conference (CLEO), (Optical Society of America, 2013), p. CM4G.3.

Simoyama, T.

Smith, H. I.

Sorace-Agaskar, C. M.

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Soto, M. A.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[Crossref]

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Generation of Nyquist sinc pulses using intensity modulators,” in Conference on Lasers and Electro-Optics Conference (CLEO), (Optical Society of America, 2013), p. CM4G.3.

Spector, S. J.

Stephan, R.

A. P. G. Ariza, R. Müller, R. Stephan, F. Wollenschläger, A. Schulz, M. Elkhouly, C. Scheytt, U. Trautwein, J. Müller, R. S. Thomä, and M. A. Hein, “60 GHz polarimetric MIMO sensing: Architectures and technology,” in 2012 6th European Conference on Antennas and Propagation (EUCAP), (2012), pp. 2578–2582.

Stern, Y.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Stojanovic, V.

Streshinsky, M.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Stricker, A. D.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Su, F.

Sukkar, R.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Sun, C.

Sun, J.

Sun, Q.

Q. Sun, L. Zhou, L. Lu, G. Zhou, and J. Chen, “Reconfigurable High-Resolution Microwave Photonic Filter Based on Dual-Ring-Assisted MZIs on the Si3N4 Platform,” IEEE Photonics J. 10(6), 1–12 (2018).
[Crossref]

Sun, Y.

Y. Sun and C. J. Scheytt, “A 360 degree phase shifter for 60 GHz application in SiGe BiCMOS technology,” in 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, (2009), pp. 1–4

Tanaka, S.

Tanaka, Y.

Thévenaz, L.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[Crossref]

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Generation of Nyquist sinc pulses using intensity modulators,” in Conference on Lasers and Electro-Optics Conference (CLEO), (Optical Society of America, 2013), p. CM4G.3.

Thomä, R. S.

A. P. G. Ariza, R. Müller, R. Stephan, F. Wollenschläger, A. Schulz, M. Elkhouly, C. Scheytt, U. Trautwein, J. Müller, R. S. Thomä, and M. A. Hein, “60 GHz polarimetric MIMO sensing: Architectures and technology,” in 2012 6th European Conference on Antennas and Propagation (EUCAP), (2012), pp. 2578–2582.

Tian, X.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Trautwein, U.

A. P. G. Ariza, R. Müller, R. Stephan, F. Wollenschläger, A. Schulz, M. Elkhouly, C. Scheytt, U. Trautwein, J. Müller, R. S. Thomä, and M. A. Hein, “60 GHz polarimetric MIMO sensing: Architectures and technology,” in 2012 6th European Conference on Antennas and Propagation (EUCAP), (2012), pp. 2578–2582.

Tremblin, P.-A.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Trusch, A.

Tur, M.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Twichell, J. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Ulusoy, A. C.

P. Rito, I. G. Lòpez, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 $\mu m$μm SiGe:C BiCMOS with 13 db extinction ratio at 28 gb/s,” in 2016 IEEE MTT-S International Microwave Symposium (IMS), (2016), pp. 1–4.

I. G. Lòpez, P. Rito, D. Petousi, S. Lischke, D. Knoll, M. Kroh, L. Zimmermann, M. Ko, A. C. Ulusoy, and D. Kissinger, “Monolithically integrated si photonics transmitters in 0.25 $\mu m$μm BiCMOS platform for high-speed optical communications,” in 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1312–1315.

Usuki, T.

Valley, G. C.

Vedadi, A.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[Crossref]

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Generation of Nyquist sinc pulses using intensity modulators,” in Conference on Lasers and Electro-Optics Conference (CLEO), (Optical Society of America, 2013), p. CM4G.3.

Veerasubramanian, V.

Vera, L.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Vercesi, V.

Voigt, K.

Wade, M.

Walden, R. H.

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17(4), 539–550 (1999).
[Crossref]

Wang, J. P.

Wasserman, J. L.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Whiting, C.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Willets, C.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Williams, C.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Williamson, R. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Willsky, A. S.

A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems (Prentice Hall, 1996), 2nd ed.

Winkler, W.

F. Herzel, S. Glisic, S. A. Osmany, J. C. Scheytt, K. Schmalz, W. Winkler, and M. Engels, “A fully integrated 48-GHz low-noise PLL with a constant loop bandwidth,” in 2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (IEEE, 2008), pp. 82–85.

F. Herzel, S. A. Osmany, K. Schmalz, W. Winkler, J. C. Scheytt, T. Podrebersek, R. Follmann, and H.-V. Heyer, “An integrated 18 GHz fractional-N PLL in SiGe BiCMOS technology for satellite communications,” in 2009 IEEE Radio Frequency Integrated Circuits Symposium, (IEEE, 2009), pp. 329–332.

Winzer, G.

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th4E.5.

Witzens, J.

J. Witzens, “High-speed silicon photonics modulators,” Proc. IEEE 106(12), 2158–2182 (2018).
[Crossref]

Wollenschläger, F.

A. P. G. Ariza, R. Müller, R. Stephan, F. Wollenschläger, A. Schulz, M. Elkhouly, C. Scheytt, U. Trautwein, J. Müller, R. S. Thomä, and M. A. Hein, “60 GHz polarimetric MIMO sensing: Architectures and technology,” in 2012 6th European Conference on Antennas and Propagation (EUCAP), (2012), pp. 2578–2582.

Wu, G.

Wu, K.

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

Xie, X.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Xiong, C.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

Xue, X.

Yamamoto, Y.

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th4E.5.

Yao, J.

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
[Crossref]

Ye, L.

Yoon, J. U.

Younce, R.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

Younger, R. D.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Zadok, A.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Zhang, B.

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

Zhang, R.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Zhong, K.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Zhou, G.

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

Q. Sun, L. Zhou, L. Lu, G. Zhou, and J. Chen, “Reconfigurable High-Resolution Microwave Photonic Filter Based on Dual-Ring-Assisted MZIs on the Si3N4 Platform,” IEEE Photonics J. 10(6), 1–12 (2018).
[Crossref]

Zhou, G.-R.

Zhou, L.

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

Q. Sun, L. Zhou, L. Lu, G. Zhou, and J. Chen, “Reconfigurable High-Resolution Microwave Photonic Filter Based on Dual-Ring-Assisted MZIs on the Si3N4 Platform,” IEEE Photonics J. 10(6), 1–12 (2018).
[Crossref]

Zhou, Y.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in European Conference on Optical Communication (ECOC), (2014), p. PD.2.4.

Zimmermann, L.

S. Lischke, D. Knoll, C. Mai, L. Zimmermann, A. Peczek, M. Kroh, A. Trusch, E. Krune, K. Voigt, and A. Mai, “High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode,” Opt. Express 23(21), 27213–27220 (2015).
[Crossref]

P. Rito, I. G. Lòpez, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 $\mu m$μm SiGe:C BiCMOS with 13 db extinction ratio at 28 gb/s,” in 2016 IEEE MTT-S International Microwave Symposium (IMS), (2016), pp. 1–4.

I. G. Lòpez, P. Rito, D. Petousi, S. Lischke, D. Knoll, M. Kroh, L. Zimmermann, M. Ko, A. C. Ulusoy, and D. Kissinger, “Monolithically integrated si photonics transmitters in 0.25 $\mu m$μm BiCMOS platform for high-speed optical communications,” in 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1312–1315.

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th4E.5.

Zwick, T.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light: Sci. Appl. 3(5), e173 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17(4), 539–550 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

IEEE J. Solid-State Circuits (1)

S. A. Osmany, F. Herzel, and J. C. Scheytt, “An integrated 0.6–4.6 GHz, 5–7 GHz, 10–14 GHz, and 20–28 GHz frequency synthesizer for software-defined radio applications,” IEEE J. Solid-State Circuits 45(9), 1657–1668 (2010).
[Crossref]

IEEE Photonics J. (2)

Q. Sun, L. Zhou, L. Lu, G. Zhou, and J. Chen, “Reconfigurable High-Resolution Microwave Photonic Filter Based on Dual-Ring-Assisted MZIs on the Si3N4 Platform,” IEEE Photonics J. 10(6), 1–12 (2018).
[Crossref]

J. Meier, A. Misra, S. Preußler, and T. Schneider, “Orthogonal Full-Field Optical Sampling,” IEEE Photonics J. 11(2), 1–9 (2019).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

M. Elkhouly, S. Glisic, C. Meliani, F. Ellinger, and J. C. Scheytt, “220 - 250-GHz Phased-Array Circuits in 0.13-/spl mu/m SiGe BiCMOS Technology,” IEEE Trans. Microwave Theory Tech. 61(8), 3115–3127 (2013).
[Crossref]

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

J. Lightwave Technol. (2)

Light: Sci. Appl. (1)

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light: Sci. Appl. 3(5), e173 (2014).
[Crossref]

Nat. Commun. (1)

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[Crossref]

Nat. Photonics (2)

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
[Crossref]

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Opt. Express (9)

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref]

J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
[Crossref]

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
[Crossref]

R. A. Cohen, O. Amrani, and S. Ruschin, “Linearized electro-optic racetrack modulator based on double injection method in silicon,” Opt. Express 23(3), 2252–2261 (2015).
[Crossref]

D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
[Crossref]

S. Lischke, D. Knoll, C. Mai, L. Zimmermann, A. Peczek, M. Kroh, A. Trusch, E. Krune, K. Voigt, and A. Mai, “High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode,” Opt. Express 23(21), 27213–27220 (2015).
[Crossref]

F. Su, G. Wu, L. Ye, R. Liu, X. Xue, and J. Chen, “Effects of the photonic sampling pulse width and the photodetection bandwidth on the channel response of photonic ADCs,” Opt. Express 24(2), 924–934 (2016).
[Crossref]

V. Vercesi, D. Onori, J. Davies, A. Seeds, and C.-P. Liu, “Electronically synthesized Nyquist pulses for photonic sampling of microwave signals,” Opt. Express 25(23), 29249–29259 (2017).
[Crossref]

V. Stojanović, R. J. Ram, M. Popović, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello, N. Mehta, and P. Bhargava, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes,” Opt. Express 26(10), 13106–13121 (2018).
[Crossref]

Optica (1)

Photonics Res. (2)

C. Feng, S. Preussler, and T. Schneider, “Sharp tunable and additional noise-free optical filter based on Brillouin losses,” Photonics Res. 6(2), 132–137 (2018).
[Crossref]

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Proc. IEEE (1)

J. Witzens, “High-speed silicon photonics modulators,” Proc. IEEE 106(12), 2158–2182 (2018).
[Crossref]

Sci. Rep. (1)

S. Preußler, G. Raoof Mehrpoor, and T. Schneider, “Frequency-time coherence for all-optical sampling without optical pulse source,” Sci. Rep. 6(1), 34500 (2016).
[Crossref]

Other (13)

J. Meier, A. Misra, S. Preussler, and T. Schneider, “Optical convolution with a rectangular frequency comb for almost ideal sampling,” in Proc. SPIE, vol. 10947 (SPIE, 2019), p. 109211O.

A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems (Prentice Hall, 1996), 2nd ed.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Generation of Nyquist sinc pulses using intensity modulators,” in Conference on Lasers and Electro-Optics Conference (CLEO), (Optical Society of America, 2013), p. CM4G.3.

F. Herzel, S. A. Osmany, K. Schmalz, W. Winkler, J. C. Scheytt, T. Podrebersek, R. Follmann, and H.-V. Heyer, “An integrated 18 GHz fractional-N PLL in SiGe BiCMOS technology for satellite communications,” in 2009 IEEE Radio Frequency Integrated Circuits Symposium, (IEEE, 2009), pp. 329–332.

F. Herzel, S. Glisic, S. A. Osmany, J. C. Scheytt, K. Schmalz, W. Winkler, and M. Engels, “A fully integrated 48-GHz low-noise PLL with a constant loop bandwidth,” in 2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (IEEE, 2008), pp. 82–85.

A. P. G. Ariza, R. Müller, R. Stephan, F. Wollenschläger, A. Schulz, M. Elkhouly, C. Scheytt, U. Trautwein, J. Müller, R. S. Thomä, and M. A. Hein, “60 GHz polarimetric MIMO sensing: Architectures and technology,” in 2012 6th European Conference on Antennas and Propagation (EUCAP), (2012), pp. 2578–2582.

Y. Sun and C. J. Scheytt, “A 360 degree phase shifter for 60 GHz application in SiGe BiCMOS technology,” in 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, (2009), pp. 1–4

I. G. Lòpez, P. Rito, D. Petousi, S. Lischke, D. Knoll, M. Kroh, L. Zimmermann, M. Ko, A. C. Ulusoy, and D. Kissinger, “Monolithically integrated si photonics transmitters in 0.25 $\mu m$μm BiCMOS platform for high-speed optical communications,” in 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1312–1315.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in European Conference on Optical Communication (ECOC), (2014), p. PD.2.4.

A. H. Ahmed, D. Lim, A. Elmoznine, Y. Ma, T. Huynh, C. Williams, L. Vera, Y. Liu, R. Shi, M. Streshinsky, A. Novack, R. Ding, R. Younce, R. Sukkar, J. Roman, M. Hochberg, S. Shekhar, and A. Rylyakov, “30.6 A 6 V swing 3.6% THD >40 GHz driver with 4.5 $\times$× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (2019), pp. 484–486.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for o-band datacom,” in 2015 IEEE International Electron Devices Meeting (IEDM), (2015), pp. 25.7.1–25.7.4.

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th4E.5.

P. Rito, I. G. Lòpez, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 $\mu m$μm SiGe:C BiCMOS with 13 db extinction ratio at 28 gb/s,” in 2016 IEEE MTT-S International Microwave Symposium (IMS), (2016), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic illustration of the all optical sampling method. A bandwidth limited signal spectrum is convolved with a frequency comb with $k$ spectral lines. In time-domain, it corresponds to a sampled version of the signal with a sinc-shaped Nyquist pulse sequence having $k-1$ zero crossings between individual pulses, as expressed by Eq. (3). As a photodiode is only sensitive to power, the intensity has been depicted. The corresponding sampling points are the integral over the repetition time of the pulses in the sequence.
Fig. 2.
Fig. 2. Conventional optical sampling with an MZM (a) and the proposed method (b). For the conventional method, an optical pulse sequence (a frequency comb (c)) is multiplied with the RF signal to sample (d). The result is wanted spectral copies of the input spectrum and due to nonlinear modulator impairments unwanted spectral copies inside the wanted ones (e). For the proposed method the signal to sample is in the optical domain (f), whereas the sampling signal is just one single sinusoidal frequency line (g). The nonlinear impairments of the modulator lead to unwanted spectral copies outside the spectrum of the wanted ones (h). Thus, an additional filter might remarkably reduce them.
Fig. 3.
Fig. 3. A conceptual integrated Nyquist time-interleaved ADC architecture. The chip will include electronics and photonics on the same platform. Key components of the chip are an optical splitter, MZMs, RF generator, RF phase shifter, receiver electronics and digital electronics for signal processing. $\Delta \phi$ refers to the RF phase delay between the branches and $k$ is the number of branches. A prototype ePIC chip layout with three branches can be seen in the inset. Since an integrated device with all components is not available yet, for the presented proof of concept all optical sampling experiment one integrated modulator along with an integrated driver has been used. This serves as one branch of the proposed integrated Nyquist ADC.
Fig. 4.
Fig. 4. (a) Cross-section of lateral pn-doped phase shifters. Electrical interconnects from phase shifters to metal stack/backend-of-line (BEOL) by Aluminium vias. (b) MZM detail: As in a regular push-pull driving method the driver applies a differential signal to the phase shifter arms. Electrodes are terminated on the chip by 50 $\Omega$ resistors. Si phase-shifters are reversed-biased through $V_{\mathrm {pn,bias}}$. The light is coupled into the chip via grating couplers and a fiber array. Temperature phase tuners are implemented to control the MZM bias point. (c) Fabricated MZM chip including driver electronics (yellow) and (d) MZM chip without driver for characterization. Grating couplers (GC) were used for optical coupling and GSSG probes were used for RF signal input. All dc inputs were bonded to a printed circuit board (PCB). (e) Simulated and measured electro-optical $S_{21}$ response. The 6 dB bandwidth has been marked with a dashed line.
Fig. 5.
Fig. 5. Experimental setup for all optical source free sampling with sinc shaped Nyquist pulse sequence. LD: laser diode, PC: polarization controller, MZM: Mach-Zehnder Modulator, EDFA: Er-doped fiber amplifier, PG: pattern generator, RFG: radio frequency generator, BPF: band pass filter, PD: photodiode.
Fig. 6.
Fig. 6. (a) Power transfer characteristic of the used Si-MZM with respect to the dc input voltage to the heating element. The operating point for comb generation and sampling experiment is marked with a red circle. (b) Experimentally measured three line optical comb with 12 GHz spacing generated from an unmodulated CW laser.
Fig. 7.
Fig. 7. Optical sinc pulse sequence of different repetition rate and all optical sampling of microwave signal with them. (a) Experimental (orange) and theoretical (red) pulse sequence generated from a three line comb of 12 GHz spacing. (b) Pulse sequence generated from a five line comb with 5 GHz spacing. (c),(d) All optical sampling of microwave pattern (blue) with pulse sequences (orange) corresponding to three line comb of 7 GHz spacing and five line comb of 5 GHz spacing respectively.
Fig. 8.
Fig. 8. All optical sampling of microwave pattern (blue) with pulse sequence (orange) corresponding to a three line comb of 12 GHz spacing. The red points correspond to the integration over one period of the corresponding sampling pulse.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

g ( t ) = sin ( π k Δ f t ) / sin ( π Δ f t ) .
Ш Δ f ( f ) = n = δ ( f n Δ f ) ; ( f ) = { 1 , if   k Δ f 2 f k Δ f 2 0 , otherwise
S s ( f ) = S ( f ) [ Ш Δ f ( f ) × ( f ) ] .
s s ( t ) = s ( t ) × [ Ш Δ T ( t ) k sinc ( k t Δ T ) ] = s ( t ) × sin ( π k Δ f t ) sin ( π Δ f t ) .
Z L = Z 0 1 1 + C J C 0 τ L = τ 0 1 + C J C 0 ,

Metrics