Abstract

Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant near-field enhancement due to its light trapping capability into the so-called hotspots. Appearance of these highly localized hotspots at the excitation and/or Stokes wavelengths of the analytes makes such oligomers promising SERS active substrates. In this work, we numerically and experimentally investigate optical properties of two disk-type gold oligomers, which have different strength and origin of Fano resonance. Raman analysis of rhodamine 6G and adenine with the presence of the fabricated oligomers clearly indicates that an increment in the strength of Fano resonance can improve the Raman enhancement of an oligomer significantly. Therefore, by suitable engineering of Fano lineshape, one can achieve efficient SERS active substrates with spatially localized hotspots.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fano resonances with a high figure of merit in silver oligomer systems

Hong-Jin Hu, Fan-Wei Zhang, Guo-Zhou Li, Jun-Yi Chen, Qiang Li, and Li-Jun Wu
Photon. Res. 6(3) 204-213 (2018)

Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization

M. Rahmani, B. Lukiyanchuk, T. T. V. Nguyen, T. Tahmasebi, Y. Lin, T. Y. F. Liew, and M. H. Hong
Opt. Mater. Express 1(8) 1409-1415 (2011)

Plasmonic band gap structures for surface-enhanced Raman scattering

Askin Kocabas, Gulay Ertas, S. Seckin Senlik, and Atilla Aydinli
Opt. Express 16(17) 12469-12477 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. Long, “Early history of the Raman effect,” Int. Rev. Phys. Chem. 7(4), 317–349 (1988).
    [Crossref]
  2. C. Banwell, Fundamentals of Molecular Spectroscopy (McGraw-Hill, 1972), Chap. 4.
  3. D. Long, The Raman Effect: A Unified Treatment of The Theory of Raman Scattering by Molecules (John Wiley & Sons, 2002).
  4. D. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
    [Crossref]
  5. R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc. 57(2), 163–176 (2011).
    [Crossref]
  6. C. Haynes, A. McFarland, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
    [Crossref]
  7. M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [Crossref]
  8. S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. Engl. 53(19), 4756–4795 (2014).
    [Crossref] [PubMed]
  9. B. Sharma, R. Frontiera, A. Henry, E. Ringe, and R. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
    [Crossref]
  10. G. Schatz and R. Van Duyne, “Electromagnetic mechanism of surface-enhanced spectroscopy,” in Surface-Enhanced Vibrational Spectroscopy, Handbook of Vibrational Spectroscopy vol. 1, J. Chalmers and P. Griffiths, eds. (John Wiley & Sons, 2002).
  11. S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46(13), 4042–4076 (2017).
    [Crossref] [PubMed]
  12. D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
    [Crossref] [PubMed]
  13. C. Muehlethaler, M. Leona, and J. R. Lombardi, “Review of surface enhanced Raman scattering applications in forensic science,” Anal. Chem. 88(1), 152–169 (2016).
    [Crossref] [PubMed]
  14. D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of linear and nonlinear surface-enhanced vibrational spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
    [Crossref] [PubMed]
  15. A. I. Henry, B. Sharma, M. F. Cardinal, D. Kurouski, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging,” Anal. Chem. 88(13), 6638–6647 (2016).
    [Crossref] [PubMed]
  16. R. Tripp, R. Dluhy, and Y. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3–4), 31–37 (2008).
    [Crossref]
  17. K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
    [Crossref] [PubMed]
  18. E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
    [Crossref] [PubMed]
  19. Y. Wang and J. Irudayaraj, “Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120026 (2013).
    [Crossref] [PubMed]
  20. H. M. Lee, S. M. Jin, H. M. Kim, and Y. D. Suh, “Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status,” Phys. Chem. Chem. Phys. 15(15), 5276–5287 (2013).
    [Crossref] [PubMed]
  21. A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
    [Crossref] [PubMed]
  22. J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
    [Crossref] [PubMed]
  23. M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. 7(3), 329–349 (2013).
    [Crossref]
  24. U. Fano, “On the absorption spectrum of noble gases at the arc spectrum limit,” Nuovo Cim. 12, 154–161 (1935).
    [Crossref]
  25. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  26. A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  27. M. Limonov, M. Rybin, A. Poddubny, and Y. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
    [Crossref]
  28. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  29. S. Emami, R. Penny, H. Rashid, W. Mohammed, and B. Rahman, “Fano resonance in plasmonic optical antennas,” in Reviews in Plasmonics 2015, C. Geddes, ed. (Springer, 2016).
  30. M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
    [Crossref] [PubMed]
  31. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
    [Crossref] [PubMed]
  32. Y. Zhang, F. Wen, Y.-R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
    [Crossref] [PubMed]
  33. J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
    [Crossref] [PubMed]
  34. B. Gallinet and O. J. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
    [Crossref] [PubMed]
  35. J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
    [Crossref] [PubMed]
  36. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  37. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
    [Crossref] [PubMed]
  38. M. Rahmani, B. Lukiyanchuk, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers,” Appl. Phys., A Mater. Sci. Process. 107(1), 23–30 (2012).
    [Crossref]
  39. B. Gallinet and O. J. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19(22), 22167–22175 (2011).
    [Crossref] [PubMed]
  40. Y. Joe, A. Satanin, and C. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
    [Crossref]
  41. A. Lovera, B. Gallinet, P. Nordlander, and O. J. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7(5), 4527–4536 (2013).
    [Crossref] [PubMed]
  42. M. Rahmani, T. Tahmasebi, Y. Lin, B. Lukiyanchuk, T. Y. Liew, and M. H. Hong, “Influence of plasmon destructive interferences on optical properties of gold planar quadrumers,” Nanotechnology 22(24), 245204 (2011).
    [Crossref] [PubMed]
  43. M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
    [Crossref] [PubMed]
  44. A. Attaran, S. Emami, M. Soltanian, R. Penny, F. Behbahani, S. Harun, H. Ahmad, H. Abdul-Rashid, and M. Moghavvemi, “Circuit model of Fano resonance on tetramers, pentamers and broken symmetry pentamers,” Plasmonics 9(6), 1303–1313 (2014).
    [Crossref]
  45. B. Gallinet and O. Martin, “Ab-initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 2354271–2354276 (2011).
    [Crossref]
  46. M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K G, Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4949–4956 (2011).
    [Crossref] [PubMed]
  47. M. Rahmani, B. Lukiyanchuk, T. Nguyen, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization,” Opt. Mater. Express 1(8), 1409–1415 (2011).
    [Crossref]
  48. Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5(1), 4424 (2014).
    [Crossref] [PubMed]
  49. J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21(2), 2236–2244 (2013).
    [Crossref] [PubMed]
  50. S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
    [Crossref] [PubMed]
  51. J. He, C. Fan, P. Ding, S. Zhu, and E. Liang, “Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements,” Sci. Rep. 6(1), 20777 (2016).
    [Crossref] [PubMed]
  52. A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
    [Crossref] [PubMed]
  53. C. Wu, E. Chen, and J. Wei, “Surface enhanced Raman spectroscopy of rhodamine 6G on agglomerates of different-sized silver truncated nanotriangles,” Colloids Surf. A Physicochem. Eng. Asp. 506, 450–456 (2016).
    [Crossref]
  54. F. Madzharova, Z. Heiner, M. Gühlke, and J. Kneipp, “Surface-enhanced hyper-Raman spectra of adenine, guanine, cytosine, thymine and uracil,” J Phys Chem C Nanomater Interfaces 120(28), 15415–15423 (2016).
    [Crossref] [PubMed]
  55. COMSOL Multiphysics application gallery, “Scatterer on substrate” (COMSOL Multiphysics, 2019). https://www.comsol.fi/model/download/563151/models.woptics.scatterer_on_substrate.pdf
  56. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  57. S. Baieva, O. Hakamaa, G. Groenhof, T. Heikkila, and J. J. Toppari, “Dynamics of strongly coupled modes between surface plasmon polaritons and photoactive molecules: the effect of the Stokes shift,” ACS Photonics 4(1), 28–37 (2017).
    [Crossref]
  58. T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
    [Crossref] [PubMed]
  59. M. Koponen, U. Hohenester, T. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 0854251–0854258 (2013).
    [Crossref]
  60. S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
    [Crossref]
  61. J. Luo, K. Ying, and J. Bai, “Savitzky–Golay smoothing and differentiation filter for even number data,” Signal Processing 85(7), 1429–1434 (2005).
    [Crossref]
  62. M. Clupek, P. Matejka, and K. Volka, “Noise reduction in Raman spectra: finite impulse response filtration versus Savitzky–Golay smoothing,” J. Raman Spectrosc. 38(9), 1174–1179 (2007).
    [Crossref]
  63. OriginLab documentation, “Origin user guide” (OriginLab, 2017). https://www.originlab.com/pdfs/Origin2017_Documentation/English/Origin_User_Guide_2017_E.pdf
  64. J. Kundu, O. Neumann, B. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. Scuseria, and N. J. Halas, “Adenine- and adenosine monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies,” J. Phys. Chem. C 113(32), 14390–14397 (2009).
    [Crossref]
  65. K. Kneipp, R. Dasari, and Y. Wang, “Near-infrared surface-enhanced Raman scattering (NIR SERS) on colloidal silver and gold,” Appl. Spectrosc. 48(8), 951–955 (1994).
    [Crossref]
  66. E. Kohr, B. I. Karawdeniya, J. R. Dwyer, A. Gupta, and W. B. Euler, “A comparison of SERS and MEF of rhodamine 6G on a gold substrate,” Phys. Chem. Chem. Phys. 19(39), 27074–27080 (2017).
    [Crossref] [PubMed]
  67. M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue, and S. Yamada, “Surface-enhanced nonresonance Raman scattering from size- and morphology-controlled gold nanoparticle films,” J. Phys. Chem. B 108(31), 11660–11665 (2004).
    [Crossref]

2017 (7)

D. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
[Crossref]

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46(13), 4042–4076 (2017).
[Crossref] [PubMed]

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

M. Limonov, M. Rybin, A. Poddubny, and Y. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

S. Baieva, O. Hakamaa, G. Groenhof, T. Heikkila, and J. J. Toppari, “Dynamics of strongly coupled modes between surface plasmon polaritons and photoactive molecules: the effect of the Stokes shift,” ACS Photonics 4(1), 28–37 (2017).
[Crossref]

E. Kohr, B. I. Karawdeniya, J. R. Dwyer, A. Gupta, and W. B. Euler, “A comparison of SERS and MEF of rhodamine 6G on a gold substrate,” Phys. Chem. Chem. Phys. 19(39), 27074–27080 (2017).
[Crossref] [PubMed]

2016 (6)

C. Wu, E. Chen, and J. Wei, “Surface enhanced Raman spectroscopy of rhodamine 6G on agglomerates of different-sized silver truncated nanotriangles,” Colloids Surf. A Physicochem. Eng. Asp. 506, 450–456 (2016).
[Crossref]

F. Madzharova, Z. Heiner, M. Gühlke, and J. Kneipp, “Surface-enhanced hyper-Raman spectra of adenine, guanine, cytosine, thymine and uracil,” J Phys Chem C Nanomater Interfaces 120(28), 15415–15423 (2016).
[Crossref] [PubMed]

J. He, C. Fan, P. Ding, S. Zhu, and E. Liang, “Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements,” Sci. Rep. 6(1), 20777 (2016).
[Crossref] [PubMed]

C. Muehlethaler, M. Leona, and J. R. Lombardi, “Review of surface enhanced Raman scattering applications in forensic science,” Anal. Chem. 88(1), 152–169 (2016).
[Crossref] [PubMed]

D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of linear and nonlinear surface-enhanced vibrational spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
[Crossref] [PubMed]

A. I. Henry, B. Sharma, M. F. Cardinal, D. Kurouski, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging,” Anal. Chem. 88(13), 6638–6647 (2016).
[Crossref] [PubMed]

2014 (5)

S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. Engl. 53(19), 4756–4795 (2014).
[Crossref] [PubMed]

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5(1), 4424 (2014).
[Crossref] [PubMed]

A. Attaran, S. Emami, M. Soltanian, R. Penny, F. Behbahani, S. Harun, H. Ahmad, H. Abdul-Rashid, and M. Moghavvemi, “Circuit model of Fano resonance on tetramers, pentamers and broken symmetry pentamers,” Plasmonics 9(6), 1303–1313 (2014).
[Crossref]

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

2013 (7)

M. Koponen, U. Hohenester, T. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 0854251–0854258 (2013).
[Crossref]

A. Lovera, B. Gallinet, P. Nordlander, and O. J. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21(2), 2236–2244 (2013).
[Crossref] [PubMed]

Y. Wang and J. Irudayaraj, “Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120026 (2013).
[Crossref] [PubMed]

H. M. Lee, S. M. Jin, H. M. Kim, and Y. D. Suh, “Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status,” Phys. Chem. Chem. Phys. 15(15), 5276–5287 (2013).
[Crossref] [PubMed]

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. 7(3), 329–349 (2013).
[Crossref]

Y. Zhang, F. Wen, Y.-R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
[Crossref] [PubMed]

2012 (6)

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

M. Rahmani, B. Lukiyanchuk, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers,” Appl. Phys., A Mater. Sci. Process. 107(1), 23–30 (2012).
[Crossref]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

B. Sharma, R. Frontiera, A. Henry, E. Ringe, and R. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

2011 (10)

M. Rahmani, T. Tahmasebi, Y. Lin, B. Lukiyanchuk, T. Y. Liew, and M. H. Hong, “Influence of plasmon destructive interferences on optical properties of gold planar quadrumers,” Nanotechnology 22(24), 245204 (2011).
[Crossref] [PubMed]

B. Gallinet and O. Martin, “Ab-initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 2354271–2354276 (2011).
[Crossref]

M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K G, Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4949–4956 (2011).
[Crossref] [PubMed]

M. Rahmani, B. Lukiyanchuk, T. Nguyen, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization,” Opt. Mater. Express 1(8), 1409–1415 (2011).
[Crossref]

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[Crossref] [PubMed]

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc. 57(2), 163–176 (2011).
[Crossref]

B. Gallinet and O. J. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19(22), 22167–22175 (2011).
[Crossref] [PubMed]

B. Gallinet and O. J. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

2010 (5)

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

2009 (2)

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

J. Kundu, O. Neumann, B. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. Scuseria, and N. J. Halas, “Adenine- and adenosine monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies,” J. Phys. Chem. C 113(32), 14390–14397 (2009).
[Crossref]

2008 (2)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

R. Tripp, R. Dluhy, and Y. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3–4), 31–37 (2008).
[Crossref]

2007 (1)

M. Clupek, P. Matejka, and K. Volka, “Noise reduction in Raman spectra: finite impulse response filtration versus Savitzky–Golay smoothing,” J. Raman Spectrosc. 38(9), 1174–1179 (2007).
[Crossref]

2006 (1)

Y. Joe, A. Satanin, and C. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

2005 (2)

C. Haynes, A. McFarland, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[Crossref]

J. Luo, K. Ying, and J. Bai, “Savitzky–Golay smoothing and differentiation filter for even number data,” Signal Processing 85(7), 1429–1434 (2005).
[Crossref]

2004 (1)

M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue, and S. Yamada, “Surface-enhanced nonresonance Raman scattering from size- and morphology-controlled gold nanoparticle films,” J. Phys. Chem. B 108(31), 11660–11665 (2004).
[Crossref]

1994 (1)

1988 (1)

D. Long, “Early history of the Raman effect,” Int. Rev. Phys. Chem. 7(4), 317–349 (1988).
[Crossref]

1974 (1)

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

1935 (1)

U. Fano, “On the absorption spectrum of noble gases at the arc spectrum limit,” Nuovo Cim. 12, 154–161 (1935).
[Crossref]

Abdul-Rashid, H.

A. Attaran, S. Emami, M. Soltanian, R. Penny, F. Behbahani, S. Harun, H. Ahmad, H. Abdul-Rashid, and M. Moghavvemi, “Circuit model of Fano resonance on tetramers, pentamers and broken symmetry pentamers,” Plasmonics 9(6), 1303–1313 (2014).
[Crossref]

Agrawal, Y. K.

R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc. 57(2), 163–176 (2011).
[Crossref]

Ahmad, H.

A. Attaran, S. Emami, M. Soltanian, R. Penny, F. Behbahani, S. Harun, H. Ahmad, H. Abdul-Rashid, and M. Moghavvemi, “Circuit model of Fano resonance on tetramers, pentamers and broken symmetry pentamers,” Plasmonics 9(6), 1303–1313 (2014).
[Crossref]

Alivisatos, A. P.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Attaran, A.

A. Attaran, S. Emami, M. Soltanian, R. Penny, F. Behbahani, S. Harun, H. Ahmad, H. Abdul-Rashid, and M. Moghavvemi, “Circuit model of Fano resonance on tetramers, pentamers and broken symmetry pentamers,” Plasmonics 9(6), 1303–1313 (2014).
[Crossref]

Bai, J.

J. Luo, K. Ying, and J. Bai, “Savitzky–Golay smoothing and differentiation filter for even number data,” Signal Processing 85(7), 1429–1434 (2005).
[Crossref]

Baieva, S.

S. Baieva, O. Hakamaa, G. Groenhof, T. Heikkila, and J. J. Toppari, “Dynamics of strongly coupled modes between surface plasmon polaritons and photoactive molecules: the effect of the Stokes shift,” ACS Photonics 4(1), 28–37 (2017).
[Crossref]

Bantz, K. C.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Bao, J.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Bao, K.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Bardhan, R.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Barhoumi, A.

J. Kundu, O. Neumann, B. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. Scuseria, and N. J. Halas, “Adenine- and adenosine monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies,” J. Phys. Chem. C 113(32), 14390–14397 (2009).
[Crossref]

Behbahani, F.

A. Attaran, S. Emami, M. Soltanian, R. Penny, F. Behbahani, S. Harun, H. Ahmad, H. Abdul-Rashid, and M. Moghavvemi, “Circuit model of Fano resonance on tetramers, pentamers and broken symmetry pentamers,” Plasmonics 9(6), 1303–1313 (2014).
[Crossref]

Capasso, F.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Cardinal, M. F.

A. I. Henry, B. Sharma, M. F. Cardinal, D. Kurouski, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging,” Anal. Chem. 88(13), 6638–6647 (2016).
[Crossref] [PubMed]

Chapman, C. T.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

Chen, E.

C. Wu, E. Chen, and J. Wei, “Surface enhanced Raman spectroscopy of rhodamine 6G on agglomerates of different-sized silver truncated nanotriangles,” Colloids Surf. A Physicochem. Eng. Asp. 506, 450–456 (2016).
[Crossref]

Chen, X.

D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of linear and nonlinear surface-enhanced vibrational spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
[Crossref] [PubMed]

Chiang, N.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chulhai, D. V.

D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of linear and nonlinear surface-enhanced vibrational spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
[Crossref] [PubMed]

Cialla-May, D.

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

Clupek, M.

M. Clupek, P. Matejka, and K. Volka, “Noise reduction in Raman spectra: finite impulse response filtration versus Savitzky–Golay smoothing,” J. Raman Spectrosc. 38(9), 1174–1179 (2007).
[Crossref]

Das, R. S.

R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc. 57(2), 163–176 (2011).
[Crossref]

Dasari, R.

Day, J. K.

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5(1), 4424 (2014).
[Crossref] [PubMed]

De Angelis, F.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

Ding, P.

Ding, S. Y.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46(13), 4042–4076 (2017).
[Crossref] [PubMed]

Dionne, J. A.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[Crossref] [PubMed]

Dluhy, R.

R. Tripp, R. Dluhy, and Y. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3–4), 31–37 (2008).
[Crossref]

Dregely, D.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

Du, C.

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Dwyer, J. R.

E. Kohr, B. I. Karawdeniya, J. R. Dwyer, A. Gupta, and W. B. Euler, “A comparison of SERS and MEF of rhodamine 6G on a gold substrate,” Phys. Chem. Chem. Phys. 19(39), 27074–27080 (2017).
[Crossref] [PubMed]

Emami, S.

A. Attaran, S. Emami, M. Soltanian, R. Penny, F. Behbahani, S. Harun, H. Ahmad, H. Abdul-Rashid, and M. Moghavvemi, “Circuit model of Fano resonance on tetramers, pentamers and broken symmetry pentamers,” Plasmonics 9(6), 1303–1313 (2014).
[Crossref]

Etchegoin, P. G.

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

Euler, W. B.

E. Kohr, B. I. Karawdeniya, J. R. Dwyer, A. Gupta, and W. B. Euler, “A comparison of SERS and MEF of rhodamine 6G on a gold substrate,” Phys. Chem. Chem. Phys. 19(39), 27074–27080 (2017).
[Crossref] [PubMed]

Fan, C.

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

U. Fano, “On the absorption spectrum of noble gases at the arc spectrum limit,” Nuovo Cim. 12, 154–161 (1935).
[Crossref]

Flach, S.

A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Fleischmann, M.

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Frontiera, R.

B. Sharma, R. Frontiera, A. Henry, E. Ringe, and R. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Gallinet, B.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

B. Gallinet and O. Martin, “Ab-initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 2354271–2354276 (2011).
[Crossref]

B. Gallinet and O. J. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19(22), 22167–22175 (2011).
[Crossref] [PubMed]

B. Gallinet and O. J. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

García-Etxarri, A.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giannini, V.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Giessen, H.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Groenhof, G.

S. Baieva, O. Hakamaa, G. Groenhof, T. Heikkila, and J. J. Toppari, “Dynamics of strongly coupled modes between surface plasmon polaritons and photoactive molecules: the effect of the Stokes shift,” ACS Photonics 4(1), 28–37 (2017).
[Crossref]

Gühlke, M.

F. Madzharova, Z. Heiner, M. Gühlke, and J. Kneipp, “Surface-enhanced hyper-Raman spectra of adenine, guanine, cytosine, thymine and uracil,” J Phys Chem C Nanomater Interfaces 120(28), 15415–15423 (2016).
[Crossref] [PubMed]

Gupta, A.

E. Kohr, B. I. Karawdeniya, J. R. Dwyer, A. Gupta, and W. B. Euler, “A comparison of SERS and MEF of rhodamine 6G on a gold substrate,” Phys. Chem. Chem. Phys. 19(39), 27074–27080 (2017).
[Crossref] [PubMed]

Hakala, T.

M. Koponen, U. Hohenester, T. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 0854251–0854258 (2013).
[Crossref]

Hakala, T. K.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Hakamaa, O.

S. Baieva, O. Hakamaa, G. Groenhof, T. Heikkila, and J. J. Toppari, “Dynamics of strongly coupled modes between surface plasmon polaritons and photoactive molecules: the effect of the Stokes shift,” ACS Photonics 4(1), 28–37 (2017).
[Crossref]

Halas, N. J.

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5(1), 4424 (2014).
[Crossref] [PubMed]

Y. Zhang, F. Wen, Y.-R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

J. Kundu, O. Neumann, B. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. Scuseria, and N. J. Halas, “Adenine- and adenosine monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies,” J. Phys. Chem. C 113(32), 14390–14397 (2009).
[Crossref]

Harun, S.

A. Attaran, S. Emami, M. Soltanian, R. Penny, F. Behbahani, S. Harun, H. Ahmad, H. Abdul-Rashid, and M. Moghavvemi, “Circuit model of Fano resonance on tetramers, pentamers and broken symmetry pentamers,” Plasmonics 9(6), 1303–1313 (2014).
[Crossref]

Haynes, C.

C. Haynes, A. McFarland, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[Crossref]

Haynes, C. L.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

He, J.

J. He, C. Fan, P. Ding, S. Zhu, and E. Liang, “Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements,” Sci. Rep. 6(1), 20777 (2016).
[Crossref] [PubMed]

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21(2), 2236–2244 (2013).
[Crossref] [PubMed]

He, S.

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Heikkila, T.

S. Baieva, O. Hakamaa, G. Groenhof, T. Heikkila, and J. J. Toppari, “Dynamics of strongly coupled modes between surface plasmon polaritons and photoactive molecules: the effect of the Stokes shift,” ACS Photonics 4(1), 28–37 (2017).
[Crossref]

Heiner, Z.

F. Madzharova, Z. Heiner, M. Gühlke, and J. Kneipp, “Surface-enhanced hyper-Raman spectra of adenine, guanine, cytosine, thymine and uracil,” J Phys Chem C Nanomater Interfaces 120(28), 15415–15423 (2016).
[Crossref] [PubMed]

Hendra, P.

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Henry, A.

B. Sharma, R. Frontiera, A. Henry, E. Ringe, and R. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Henry, A. I.

A. I. Henry, B. Sharma, M. F. Cardinal, D. Kurouski, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging,” Anal. Chem. 88(13), 6638–6647 (2016).
[Crossref] [PubMed]

Henry, A.-I.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

Hentschel, M.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Hohenester, U.

M. Koponen, U. Hohenester, T. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 0854251–0854258 (2013).
[Crossref]

Hong, M.

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. 7(3), 329–349 (2013).
[Crossref]

M. Rahmani, B. Lukiyanchuk, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers,” Appl. Phys., A Mater. Sci. Process. 107(1), 23–30 (2012).
[Crossref]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

M. Rahmani, B. Lukiyanchuk, T. Nguyen, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization,” Opt. Mater. Express 1(8), 1409–1415 (2011).
[Crossref]

Hong, M. H.

M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K G, Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4949–4956 (2011).
[Crossref] [PubMed]

M. Rahmani, T. Tahmasebi, Y. Lin, B. Lukiyanchuk, T. Y. Liew, and M. H. Hong, “Influence of plasmon destructive interferences on optical properties of gold planar quadrumers,” Nanotechnology 22(24), 245204 (2011).
[Crossref] [PubMed]

Hu, Z.

D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of linear and nonlinear surface-enhanced vibrational spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
[Crossref] [PubMed]

Huang, Y.

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Im, H.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Inoue, K.

M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue, and S. Yamada, “Surface-enhanced nonresonance Raman scattering from size- and morphology-controlled gold nanoparticle films,” J. Phys. Chem. B 108(31), 11660–11665 (2004).
[Crossref]

Irudayaraj, J.

Y. Wang and J. Irudayaraj, “Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120026 (2013).
[Crossref] [PubMed]

Janesko, B.

J. Kundu, O. Neumann, B. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. Scuseria, and N. J. Halas, “Adenine- and adenosine monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies,” J. Phys. Chem. C 113(32), 14390–14397 (2009).
[Crossref]

Jensen, L.

D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of linear and nonlinear surface-enhanced vibrational spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
[Crossref] [PubMed]

Jin, S. M.

H. M. Lee, S. M. Jin, H. M. Kim, and Y. D. Suh, “Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status,” Phys. Chem. Chem. Phys. 15(15), 5276–5287 (2013).
[Crossref] [PubMed]

Joe, Y.

Y. Joe, A. Satanin, and C. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Karawdeniya, B. I.

E. Kohr, B. I. Karawdeniya, J. R. Dwyer, A. Gupta, and W. B. Euler, “A comparison of SERS and MEF of rhodamine 6G on a gold substrate,” Phys. Chem. Chem. Phys. 19(39), 27074–27080 (2017).
[Crossref] [PubMed]

Kim, C.

Y. Joe, A. Satanin, and C. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Kim, H. M.

H. M. Lee, S. M. Jin, H. M. Kim, and Y. D. Suh, “Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status,” Phys. Chem. Chem. Phys. 15(15), 5276–5287 (2013).
[Crossref] [PubMed]

Kivshar, Y.

M. Limonov, M. Rybin, A. Poddubny, and Y. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Kneipp, J.

F. Madzharova, Z. Heiner, M. Gühlke, and J. Kneipp, “Surface-enhanced hyper-Raman spectra of adenine, guanine, cytosine, thymine and uracil,” J Phys Chem C Nanomater Interfaces 120(28), 15415–15423 (2016).
[Crossref] [PubMed]

Kneipp, K.

Knight, M. W.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Kohr, E.

E. Kohr, B. I. Karawdeniya, J. R. Dwyer, A. Gupta, and W. B. Euler, “A comparison of SERS and MEF of rhodamine 6G on a gold substrate,” Phys. Chem. Chem. Phys. 19(39), 27074–27080 (2017).
[Crossref] [PubMed]

Koponen, M.

M. Koponen, U. Hohenester, T. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 0854251–0854258 (2013).
[Crossref]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

J. Kundu, O. Neumann, B. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. Scuseria, and N. J. Halas, “Adenine- and adenosine monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies,” J. Phys. Chem. C 113(32), 14390–14397 (2009).
[Crossref]

Kunttu, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Kurouski, D.

A. I. Henry, B. Sharma, M. F. Cardinal, D. Kurouski, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging,” Anal. Chem. 88(13), 6638–6647 (2016).
[Crossref] [PubMed]

Kurtulus, O.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Kuwahara, Y.

M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue, and S. Yamada, “Surface-enhanced nonresonance Raman scattering from size- and morphology-controlled gold nanoparticle films,” J. Phys. Chem. B 108(31), 11660–11665 (2004).
[Crossref]

Kuzyk, A.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Lal, S.

J. Kundu, O. Neumann, B. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. Scuseria, and N. J. Halas, “Adenine- and adenosine monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies,” J. Phys. Chem. C 113(32), 14390–14397 (2009).
[Crossref]

Lassiter, J. B.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Le Ru, E. C.

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

Lee, H. M.

H. M. Lee, S. M. Jin, H. M. Kim, and Y. D. Suh, “Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status,” Phys. Chem. Chem. Phys. 15(15), 5276–5287 (2013).
[Crossref] [PubMed]

Lee, S. H.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Lei, D. Y.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Leona, M.

C. Muehlethaler, M. Leona, and J. R. Lombardi, “Review of surface enhanced Raman scattering applications in forensic science,” Anal. Chem. 88(1), 152–169 (2016).
[Crossref] [PubMed]

Liang, E.

Liberale, C.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

Liew, T.

M. Rahmani, B. Lukiyanchuk, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers,” Appl. Phys., A Mater. Sci. Process. 107(1), 23–30 (2012).
[Crossref]

M. Rahmani, B. Lukiyanchuk, T. Nguyen, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization,” Opt. Mater. Express 1(8), 1409–1415 (2011).
[Crossref]

Liew, T. Y.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

M. Rahmani, T. Tahmasebi, Y. Lin, B. Lukiyanchuk, T. Y. Liew, and M. H. Hong, “Influence of plasmon destructive interferences on optical properties of gold planar quadrumers,” Nanotechnology 22(24), 245204 (2011).
[Crossref] [PubMed]

Liew, Y. F.

Limonov, M.

M. Limonov, M. Rybin, A. Poddubny, and Y. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Lin, Y.

M. Rahmani, B. Lukiyanchuk, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers,” Appl. Phys., A Mater. Sci. Process. 107(1), 23–30 (2012).
[Crossref]

M. Rahmani, B. Lukiyanchuk, T. Nguyen, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization,” Opt. Mater. Express 1(8), 1409–1415 (2011).
[Crossref]

M. Rahmani, T. Tahmasebi, Y. Lin, B. Lukiyanchuk, T. Y. Liew, and M. H. Hong, “Influence of plasmon destructive interferences on optical properties of gold planar quadrumers,” Nanotechnology 22(24), 245204 (2011).
[Crossref] [PubMed]

Lindquist, N. C.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Liu, L.

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Lombardi, J. R.

C. Muehlethaler, M. Leona, and J. R. Lombardi, “Review of surface enhanced Raman scattering applications in forensic science,” Anal. Chem. 88(1), 152–169 (2016).
[Crossref] [PubMed]

Long, D.

D. Long, “Early history of the Raman effect,” Int. Rev. Phys. Chem. 7(4), 317–349 (1988).
[Crossref]

Lovera, A.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B.

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. 7(3), 329–349 (2013).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Lukiyanchuk, B.

M. Rahmani, B. Lukiyanchuk, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers,” Appl. Phys., A Mater. Sci. Process. 107(1), 23–30 (2012).
[Crossref]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

M. Rahmani, T. Tahmasebi, Y. Lin, B. Lukiyanchuk, T. Y. Liew, and M. H. Hong, “Influence of plasmon destructive interferences on optical properties of gold planar quadrumers,” Nanotechnology 22(24), 245204 (2011).
[Crossref] [PubMed]

M. Rahmani, B. Lukiyanchuk, T. Nguyen, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization,” Opt. Mater. Express 1(8), 1409–1415 (2011).
[Crossref]

M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K G, Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4949–4956 (2011).
[Crossref] [PubMed]

Luo, J.

J. Luo, K. Ying, and J. Bai, “Savitzky–Golay smoothing and differentiation filter for even number data,” Signal Processing 85(7), 1429–1434 (2005).
[Crossref]

Madzharova, F.

F. Madzharova, Z. Heiner, M. Gühlke, and J. Kneipp, “Surface-enhanced hyper-Raman spectra of adenine, guanine, cytosine, thymine and uracil,” J Phys Chem C Nanomater Interfaces 120(28), 15415–15423 (2016).
[Crossref] [PubMed]

Maier, S. A.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Manoharan, V. N.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Martin, O.

B. Gallinet and O. Martin, “Ab-initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 2354271–2354276 (2011).
[Crossref]

Martin, O. J.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

B. Gallinet and O. J. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19(22), 22167–22175 (2011).
[Crossref] [PubMed]

B. Gallinet and O. J. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

Matejka, P.

M. Clupek, P. Matejka, and K. Volka, “Noise reduction in Raman spectra: finite impulse response filtration versus Savitzky–Golay smoothing,” J. Raman Spectrosc. 38(9), 1174–1179 (2007).
[Crossref]

Mattei, M.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

McAnally, M. O.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

McFarland, A.

C. Haynes, A. McFarland, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[Crossref]

McQuillan, A.

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Meyer, A. F.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Mielczarek, W. S.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Miroshnichenko, A.

A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Moghavvemi, M.

A. Attaran, S. Emami, M. Soltanian, R. Penny, F. Behbahani, S. Harun, H. Ahmad, H. Abdul-Rashid, and M. Moghavvemi, “Circuit model of Fano resonance on tetramers, pentamers and broken symmetry pentamers,” Plasmonics 9(6), 1303–1313 (2014).
[Crossref]

Moore, J. E.

D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of linear and nonlinear surface-enhanced vibrational spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
[Crossref] [PubMed]

Moskovits, M.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46(13), 4042–4076 (2017).
[Crossref] [PubMed]

Muehlethaler, C.

C. Muehlethaler, M. Leona, and J. R. Lombardi, “Review of surface enhanced Raman scattering applications in forensic science,” Anal. Chem. 88(1), 152–169 (2016).
[Crossref] [PubMed]

Nazir, A.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

Neumann, O.

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5(1), 4424 (2014).
[Crossref] [PubMed]

J. Kundu, O. Neumann, B. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. Scuseria, and N. J. Halas, “Adenine- and adenosine monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies,” J. Phys. Chem. C 113(32), 14390–14397 (2009).
[Crossref]

Ng, B.

Nguyen, T.

Niidome, Y.

M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue, and S. Yamada, “Surface-enhanced nonresonance Raman scattering from size- and morphology-controlled gold nanoparticle films,” J. Phys. Chem. B 108(31), 11660–11665 (2004).
[Crossref]

Nordlander, P.

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5(1), 4424 (2014).
[Crossref] [PubMed]

A. Lovera, B. Gallinet, P. Nordlander, and O. J. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

Y. Zhang, F. Wen, Y.-R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Notingher, I.

D. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
[Crossref]

Oh, S.-H.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Panaro, S.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

Penny, R.

A. Attaran, S. Emami, M. Soltanian, R. Penny, F. Behbahani, S. Harun, H. Ahmad, H. Abdul-Rashid, and M. Moghavvemi, “Circuit model of Fano resonance on tetramers, pentamers and broken symmetry pentamers,” Plasmonics 9(6), 1303–1313 (2014).
[Crossref]

Pettersson, M.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Poddubny, A.

M. Limonov, M. Rybin, A. Poddubny, and Y. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Popp, J.

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

Proietti Zaccaria, R.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

Rahmani, M.

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. 7(3), 329–349 (2013).
[Crossref]

M. Rahmani, B. Lukiyanchuk, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers,” Appl. Phys., A Mater. Sci. Process. 107(1), 23–30 (2012).
[Crossref]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

M. Rahmani, T. Tahmasebi, Y. Lin, B. Lukiyanchuk, T. Y. Liew, and M. H. Hong, “Influence of plasmon destructive interferences on optical properties of gold planar quadrumers,” Nanotechnology 22(24), 245204 (2011).
[Crossref] [PubMed]

M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K G, Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4949–4956 (2011).
[Crossref] [PubMed]

M. Rahmani, B. Lukiyanchuk, T. Nguyen, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization,” Opt. Mater. Express 1(8), 1409–1415 (2011).
[Crossref]

Ranjbar, M.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Ringe, E.

B. Sharma, R. Frontiera, A. Henry, E. Ringe, and R. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Rybin, M.

M. Limonov, M. Rybin, A. Poddubny, and Y. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Saliba, M.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Satanin, A.

Y. Joe, A. Satanin, and C. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Schatz, G. C.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

Schlücker, S.

S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. Engl. 53(19), 4756–4795 (2014).
[Crossref] [PubMed]

Scuseria, G.

J. Kundu, O. Neumann, B. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. Scuseria, and N. J. Halas, “Adenine- and adenosine monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies,” J. Phys. Chem. C 113(32), 14390–14397 (2009).
[Crossref]

Sharma, B.

A. I. Henry, B. Sharma, M. F. Cardinal, D. Kurouski, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging,” Anal. Chem. 88(13), 6638–6647 (2016).
[Crossref] [PubMed]

B. Sharma, R. Frontiera, A. Henry, E. Ringe, and R. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Sheikholeslami, S. N.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[Crossref] [PubMed]

Shipp, D.

D. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
[Crossref]

Shvets, G.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Sinjab, F.

D. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
[Crossref]

Sobhani, H.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Soltanian, M.

A. Attaran, S. Emami, M. Soltanian, R. Penny, F. Behbahani, S. Harun, H. Ahmad, H. Abdul-Rashid, and M. Moghavvemi, “Circuit model of Fano resonance on tetramers, pentamers and broken symmetry pentamers,” Plasmonics 9(6), 1303–1313 (2014).
[Crossref]

Suh, Y. D.

H. M. Lee, S. M. Jin, H. M. Kim, and Y. D. Suh, “Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status,” Phys. Chem. Chem. Phys. 15(15), 5276–5287 (2013).
[Crossref] [PubMed]

Suzuki, M.

M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue, and S. Yamada, “Surface-enhanced nonresonance Raman scattering from size- and morphology-controlled gold nanoparticle films,” J. Phys. Chem. B 108(31), 11660–11665 (2004).
[Crossref]

Tahmasebi, T.

M. Rahmani, B. Lukiyanchuk, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers,” Appl. Phys., A Mater. Sci. Process. 107(1), 23–30 (2012).
[Crossref]

M. Rahmani, B. Lukiyanchuk, T. Nguyen, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization,” Opt. Mater. Express 1(8), 1409–1415 (2011).
[Crossref]

M. Rahmani, T. Tahmasebi, Y. Lin, B. Lukiyanchuk, T. Y. Liew, and M. H. Hong, “Influence of plasmon destructive interferences on optical properties of gold planar quadrumers,” Nanotechnology 22(24), 245204 (2011).
[Crossref] [PubMed]

Tavakkoli K G, A.

Terasaki, N.

M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue, and S. Yamada, “Surface-enhanced nonresonance Raman scattering from size- and morphology-controlled gold nanoparticle films,” J. Phys. Chem. B 108(31), 11660–11665 (2004).
[Crossref]

Tian, Z. Q.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46(13), 4042–4076 (2017).
[Crossref] [PubMed]

Tikkanen, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Toma, A.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

Toppari, J. J.

S. Baieva, O. Hakamaa, G. Groenhof, T. Heikkila, and J. J. Toppari, “Dynamics of strongly coupled modes between surface plasmon polaritons and photoactive molecules: the effect of the Stokes shift,” ACS Photonics 4(1), 28–37 (2017).
[Crossref]

M. Koponen, U. Hohenester, T. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 0854251–0854258 (2013).
[Crossref]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Törmä, P.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Tripp, R.

R. Tripp, R. Dluhy, and Y. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3–4), 31–37 (2008).
[Crossref]

Van Dorpe, P.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Van Duyne, R.

B. Sharma, R. Frontiera, A. Henry, E. Ringe, and R. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

C. Haynes, A. McFarland, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[Crossref]

Van Duyne, R. P.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

A. I. Henry, B. Sharma, M. F. Cardinal, D. Kurouski, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging,” Anal. Chem. 88(13), 6638–6647 (2016).
[Crossref] [PubMed]

Vogelgesang, R.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Volka, K.

M. Clupek, P. Matejka, and K. Volka, “Noise reduction in Raman spectra: finite impulse response filtration versus Savitzky–Golay smoothing,” J. Raman Spectrosc. 38(9), 1174–1179 (2007).
[Crossref]

Wang, J.

Wang, Y.

Y. Wang and J. Irudayaraj, “Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120026 (2013).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

K. Kneipp, R. Dasari, and Y. Wang, “Near-infrared surface-enhanced Raman scattering (NIR SERS) on colloidal silver and gold,” Appl. Spectrosc. 48(8), 951–955 (1994).
[Crossref]

Weber, K.

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

Wei, J.

C. Wu, E. Chen, and J. Wei, “Surface enhanced Raman spectroscopy of rhodamine 6G on agglomerates of different-sized silver truncated nanotriangles,” Colloids Surf. A Physicochem. Eng. Asp. 506, 450–456 (2016).
[Crossref]

Wen, F.

Y. Zhang, F. Wen, Y.-R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
[Crossref] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Wittenberg, N. J.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Wu, C.

C. Wu, E. Chen, and J. Wei, “Surface enhanced Raman spectroscopy of rhodamine 6G on agglomerates of different-sized silver truncated nanotriangles,” Colloids Surf. A Physicochem. Eng. Asp. 506, 450–456 (2016).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Wu, P.

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Xie, W.

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Xue, Q.

Yamada, S.

M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue, and S. Yamada, “Surface-enhanced nonresonance Raman scattering from size- and morphology-controlled gold nanoparticle films,” J. Phys. Chem. B 108(31), 11660–11665 (2004).
[Crossref]

Ye, J.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Ying, K.

J. Luo, K. Ying, and J. Bai, “Savitzky–Golay smoothing and differentiation filter for even number data,” Signal Processing 85(7), 1429–1434 (2005).
[Crossref]

You, E. M.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46(13), 4042–4076 (2017).
[Crossref] [PubMed]

Zaleski, S.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

Zhang, D.

J. Kundu, O. Neumann, B. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. Scuseria, and N. J. Halas, “Adenine- and adenosine monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies,” J. Phys. Chem. C 113(32), 14390–14397 (2009).
[Crossref]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5(1), 4424 (2014).
[Crossref] [PubMed]

Y. Zhang, F. Wen, Y.-R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
[Crossref] [PubMed]

Zhao, Y.

R. Tripp, R. Dluhy, and Y. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3–4), 31–37 (2008).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhen, Y. R.

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5(1), 4424 (2014).
[Crossref] [PubMed]

Zhen, Y.-R.

Y. Zhang, F. Wen, Y.-R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
[Crossref] [PubMed]

Zheng, X. S.

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

Zhu, S.

J. He, C. Fan, P. Ding, S. Zhu, and E. Liang, “Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements,” Sci. Rep. 6(1), 20777 (2016).
[Crossref] [PubMed]

Zrimsek, A. B.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

ACS Nano (3)

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

B. Gallinet and O. J. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

A. Lovera, B. Gallinet, P. Nordlander, and O. J. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

S. Baieva, O. Hakamaa, G. Groenhof, T. Heikkila, and J. J. Toppari, “Dynamics of strongly coupled modes between surface plasmon polaritons and photoactive molecules: the effect of the Stokes shift,” ACS Photonics 4(1), 28–37 (2017).
[Crossref]

Adv. Opt. Photonics (1)

D. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
[Crossref]

Anal. Chem. (3)

C. Haynes, A. McFarland, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[Crossref]

C. Muehlethaler, M. Leona, and J. R. Lombardi, “Review of surface enhanced Raman scattering applications in forensic science,” Anal. Chem. 88(1), 152–169 (2016).
[Crossref] [PubMed]

A. I. Henry, B. Sharma, M. F. Cardinal, D. Kurouski, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging,” Anal. Chem. 88(13), 6638–6647 (2016).
[Crossref] [PubMed]

Anal. Methods (1)

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. Engl. 53(19), 4756–4795 (2014).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (2)

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of linear and nonlinear surface-enhanced vibrational spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
[Crossref] [PubMed]

Appl. Phys., A Mater. Sci. Process. (1)

M. Rahmani, B. Lukiyanchuk, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers,” Appl. Phys., A Mater. Sci. Process. 107(1), 23–30 (2012).
[Crossref]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Chem. Rev. (1)

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46(13), 4042–4076 (2017).
[Crossref] [PubMed]

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

Colloids Surf. A Physicochem. Eng. Asp. (1)

C. Wu, E. Chen, and J. Wei, “Surface enhanced Raman spectroscopy of rhodamine 6G on agglomerates of different-sized silver truncated nanotriangles,” Colloids Surf. A Physicochem. Eng. Asp. 506, 450–456 (2016).
[Crossref]

Int. Rev. Phys. Chem. (1)

D. Long, “Early history of the Raman effect,” Int. Rev. Phys. Chem. 7(4), 317–349 (1988).
[Crossref]

J Phys Chem C Nanomater Interfaces (1)

F. Madzharova, Z. Heiner, M. Gühlke, and J. Kneipp, “Surface-enhanced hyper-Raman spectra of adenine, guanine, cytosine, thymine and uracil,” J Phys Chem C Nanomater Interfaces 120(28), 15415–15423 (2016).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue, and S. Yamada, “Surface-enhanced nonresonance Raman scattering from size- and morphology-controlled gold nanoparticle films,” J. Phys. Chem. B 108(31), 11660–11665 (2004).
[Crossref]

J. Phys. Chem. C (1)

J. Kundu, O. Neumann, B. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. Scuseria, and N. J. Halas, “Adenine- and adenosine monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies,” J. Phys. Chem. C 113(32), 14390–14397 (2009).
[Crossref]

J. Raman Spectrosc. (1)

M. Clupek, P. Matejka, and K. Volka, “Noise reduction in Raman spectra: finite impulse response filtration versus Savitzky–Golay smoothing,” J. Raman Spectrosc. 38(9), 1174–1179 (2007).
[Crossref]

Laser Photonics Rev. (1)

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. 7(3), 329–349 (2013).
[Crossref]

Mater. Today (1)

B. Sharma, R. Frontiera, A. Henry, E. Ringe, and R. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Nano Lett. (8)

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[Crossref] [PubMed]

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Nano Today (1)

R. Tripp, R. Dluhy, and Y. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3–4), 31–37 (2008).
[Crossref]

Nanotechnology (1)

M. Rahmani, T. Tahmasebi, Y. Lin, B. Lukiyanchuk, T. Y. Liew, and M. H. Hong, “Influence of plasmon destructive interferences on optical properties of gold planar quadrumers,” Nanotechnology 22(24), 245204 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5(1), 4424 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Limonov, M. Rybin, A. Poddubny, and Y. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Nuovo Cim. (1)

U. Fano, “On the absorption spectrum of noble gases at the arc spectrum limit,” Nuovo Cim. 12, 154–161 (1935).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

Y. Wang and J. Irudayaraj, “Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120026 (2013).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (3)

H. M. Lee, S. M. Jin, H. M. Kim, and Y. D. Suh, “Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status,” Phys. Chem. Chem. Phys. 15(15), 5276–5287 (2013).
[Crossref] [PubMed]

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

E. Kohr, B. I. Karawdeniya, J. R. Dwyer, A. Gupta, and W. B. Euler, “A comparison of SERS and MEF of rhodamine 6G on a gold substrate,” Phys. Chem. Chem. Phys. 19(39), 27074–27080 (2017).
[Crossref] [PubMed]

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. B (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

M. Koponen, U. Hohenester, T. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 0854251–0854258 (2013).
[Crossref]

B. Gallinet and O. Martin, “Ab-initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 2354271–2354276 (2011).
[Crossref]

Phys. Rev. Lett. (2)

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Phys. Scr. (1)

Y. Joe, A. Satanin, and C. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Plasmonics (1)

A. Attaran, S. Emami, M. Soltanian, R. Penny, F. Behbahani, S. Harun, H. Ahmad, H. Abdul-Rashid, and M. Moghavvemi, “Circuit model of Fano resonance on tetramers, pentamers and broken symmetry pentamers,” Plasmonics 9(6), 1303–1313 (2014).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Zhang, F. Wen, Y.-R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Sci. Rep. (1)

J. He, C. Fan, P. Ding, S. Zhu, and E. Liang, “Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements,” Sci. Rep. 6(1), 20777 (2016).
[Crossref] [PubMed]

Signal Processing (1)

J. Luo, K. Ying, and J. Bai, “Savitzky–Golay smoothing and differentiation filter for even number data,” Signal Processing 85(7), 1429–1434 (2005).
[Crossref]

Vib. Spectrosc. (1)

R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc. 57(2), 163–176 (2011).
[Crossref]

Other (6)

C. Banwell, Fundamentals of Molecular Spectroscopy (McGraw-Hill, 1972), Chap. 4.

D. Long, The Raman Effect: A Unified Treatment of The Theory of Raman Scattering by Molecules (John Wiley & Sons, 2002).

G. Schatz and R. Van Duyne, “Electromagnetic mechanism of surface-enhanced spectroscopy,” in Surface-Enhanced Vibrational Spectroscopy, Handbook of Vibrational Spectroscopy vol. 1, J. Chalmers and P. Griffiths, eds. (John Wiley & Sons, 2002).

S. Emami, R. Penny, H. Rashid, W. Mohammed, and B. Rahman, “Fano resonance in plasmonic optical antennas,” in Reviews in Plasmonics 2015, C. Geddes, ed. (Springer, 2016).

OriginLab documentation, “Origin user guide” (OriginLab, 2017). https://www.originlab.com/pdfs/Origin2017_Documentation/English/Origin_User_Guide_2017_E.pdf

COMSOL Multiphysics application gallery, “Scatterer on substrate” (COMSOL Multiphysics, 2019). https://www.comsol.fi/model/download/563151/models.woptics.scatterer_on_substrate.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Optimized geometry for the trimer with R = 100 ± 5 nm, r = 50 ± 5 nm, d = 20 ± 5 nm, h = 20 ± 5 nm. (b) Optimized geometry for the pentamer with R = 75 ± 5 nm, r = 62.5 ± 5 nm, d = 20 ± 5 nm, h = 20 ± 5 nm. All geometric parameters related to the disks (i.e. interparticle gap, thickness and disk radius) had fabrication tolerances of ± 5 nm obtained from the numerical simulations. The arrows on top of the structures show the polarization of the excitation.
Fig. 2
Fig. 2 (a) Simulated scattering cross-sections of the trimer (blue line) and the pentamer (red line). The black dots represent the position of the peak and the dip in the corresponding spectra used to calculate $\(k\)$. (b) Simulated NFIE of the trimer (blue line) and the pentamer (red line). The red, green and blue dashed lines in both diagrams represent, the excitation wavelength (785 nm), the targeted Raman line of adenine (734 cm−1 or 833 nm) and the targeted Raman line of rhodamine 6G (1360 cm−1 or 879 nm), respectively.
Fig. 3
Fig. 3 Simulated NFE and SERS EEF maps calculated at a plane 1 nm above the top surface of the oligomers. (a-b) NFE plots for the trimer at Fano dip (795 nm) and Fano peak (716 nm). (c-d) SERS EEF maps of the trimer for the targeted Raman band of adenine (734 cm−1 or 833 nm) and rhodamine 6G (1360 cm−1 or 879 nm). (e-f) NFE plots for the pentamer at Fano dip (790 nm) and Fano peak (728 nm). (g-h) SERS EEF maps of the pentamer for the targeted Raman band of adenine (734 cm−1 or 833 nm) and rhodamine 6G (1360 cm−1 or 879 nm). In the plots (c-d) and (g-h), the white dashed lines represent the gold disks in the oligomer and for SERS EEF calculation, the excitation wavelength was considered as 785 nm. In (a-d) all the dimensions are along Fig. 1(a) and in (e-h) as illustrated in Fig. 1(b).
Fig. 4
Fig. 4 Simulated surface charge densities and conduction current densities over the top surfaces of the disks present in the oligomers. (a-b) Surface charge density plots for the pentamer at Fano peak (728 nm) and Fano dip (790 nm). (c) Surface charge density plot for the trimer at Fano peak (716 nm). (d) Conduction current density plot for the trimer at Fano dip (795 nm). In the plots (a-d), the black arrows represent the polarization of the excitation electric field $\(E\)$.
Fig. 5
Fig. 5 SEM images of the fabricated oligomers. (a-b) SEM images of a single trimer and a single pentamer. (c-d) SEM images of the arrays of the trimer and the pentamer with 2 μm gap between two adjacent oligomers both in x and y direction.
Fig. 6
Fig. 6 (a) Simulated (solid blue line) scattering cross-section and experimental (dotted blue line) scattering intensity profiles of the trimer. (b) Simulated (solid red line) scattering cross-section and experimental (dotted red line) scattering intensity profiles of the pentamer. The simulated spectra are scaled with the experimental ones. The black squares in the experimental spectra represent the peak intensities of the first diffraction order (normalized and Lambertian corrected) collected at different detection angles. The red and blue arrows represent the position of the peak and the dip in the corresponding spectra used to calculate $\(k\)$. The red, green and blue (vertical) dashed lines in both diagrams represent, the excitation wavelength (785 nm), the targeted Raman line of adenine (734 cm−1 or 833 nm) and the targeted Raman line of rhodamine 6G (1360 cm−1 or 879 nm), respectively. For comparison between experimental scattering intensities of the trimer and the pentamer, please find Fig. 8 in Appendix.
Fig. 7
Fig. 7 (a) SERS intensity spectrum of the targeted Raman line of adenine (734 cm−1) with the presence of the trimer (blue line) and the pentamer (red line). (b) SERS intensity spectrum of the targeted Raman lines of rhodamine 6G (1310 cm−1 and 1360 cm−1) with the presence of the trimer (blue line) and the pentamer (red line). For complete spectra, please find Fig. 9 in Appendix.
Fig. 8
Fig. 8 Experimental scattering intensity profiles of the trimer (blue dotted line) and the pentamer (red dotted line). The black circles (in the red dotted line) and the black triangles (in the blue dotted line) represent the peak intensities of the first diffraction order (normalized and Lambertian corrected) collected at different detection angles. The red and blue arrows represent the position of the peak and the dip in the corresponding spectra used to calculate $\(k\)$. The red, green and blue (vertical) dashed lines represent, the excitation wavelength (785 nm), the targeted Raman line of adenine (734 cm−1 or 833 nm), and the targeted Raman line of rhodamine 6G (1360 cm−1 or 879 nm), respectively.
Fig. 9
Fig. 9 (a) Complete SERS intensity spectrum of adenine (Ade) with the presence of the trimer (blue line) and the pentamer (red line). (b) Complete SERS intensity spectrum of rhodamine 6G (R6G) with the presence of the trimer (blue line) and the pentamer (red line). In (a-b), SERS spectra are reported without smoothing and baseline correction.

Metrics