Abstract

Strain in InGaN/GaN multiple-quantum well (MQW) light emitters was relaxed via nanopatterning using colloidal lithography and top-down plasma etching. Colloidal lithography was performed using Langmuir-Blodgett dip-coating of samples with silica particles (d = 170, 310, 690, 960 nm) and a Cl2/N2 inductively coupled plasma etch to produce nanorod structures. The InGaN/GaN MQW nanorods were characterized using X-ray diffraction (XRD) reciprocal space mapping to quantify the degree of relaxation. A peak relaxation of 32% was achieved for the smallest diameter features tested (120 nm after etching). Power-dependent photoluminescence at 13 K showed blue-shifted quantum well emission upon relaxation, which is attributed to reduction of the inherent piezoelectric field in the III-nitrides. Poisson-Schrödinger simulations of single well structures also predicted increasing spectral blueshift with strain relaxation, in agreement with experiments.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced performance of InGaN/GaN multiple-quantum-well light-emitting diodes grown on nanoporous GaN layers

Kwang Jae Lee, Sang-Jo Kim, Jae-Joon Kim, Kyungwook Hwang, Sung-Tae Kim, and Seong-Ju Park
Opt. Express 22(S4) A1164-A1173 (2014)

Effects of reduced exciton diffusion in InGaN/GaN multiple quantum well nanorods

Bin Jiang, Chunfeng Zhang, Xiaoyong Wang, Fei Xue, Min Joo Park, Joon Seop Kwak, and Min Xiao
Opt. Express 20(12) 13478-13487 (2012)

Multi-section core-shell InGaN/GaN quantum-well nanorod light-emitting diode array

Charng-Gan Tu, Yu-Feng Yao, Che-Hao Liao, Chia-Ying Su, Chieh Hsieh, Chi-Ming Weng, Chun-Han Lin, Hao-Tsung Chen, Yean-Woei Kiang, and C. C. Yang
Opt. Express 23(17) 21919-21930 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32(Part 2), L8–L11 (1993).
    [Crossref]
  2. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. 35(Part 2), L217–L220 (1996).
    [Crossref]
  3. H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, “III-nitride blue microdisplays,” Appl. Phys. Lett. 78(9), 1303–1305 (2001).
    [Crossref]
  4. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2), L382–L385 (1997).
    [Crossref]
  5. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
    [Crossref]
  6. C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
    [Crossref]
  7. H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, “Fabrication and photoluminescence of InGaN-based nanorods fabricated by plasma etching with nanoscale nickel metal islands,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 24(4), 1909–1912 (2006).
    [Crossref]
  8. Y.-R. Wu, C. Chiu, C.-Y. Chang, P. Yu, and H.-C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
    [Crossref]
  9. Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
    [Crossref]
  10. M.-Y. Hsieh, C.-Y. Wang, L.-Y. Chen, T.-P. Lin, M.-Y. Ke, Y.-W. Cheng, Y.-C. Yu, C. P. Chen, D.-M. Yeh, C.-F. Lu, C.-F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett. 29(7), 658–660 (2008).
    [Crossref]
  11. M. Y. Hsieh, C. Y. Wang, L. Y. Chen, M. Y. Ke, and J. J. Huang, “InGaN-GaN nanorod light emitting arrays fabricated by silica nanomasks,” IEEE J. Quantum Electron. 44(5), 468–472 (2008).
    [Crossref]
  12. W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Nanostructuring GaN using microsphere lithography,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(1), 76–79 (2008).
    [Crossref]
  13. W. Y. Fu, K. K.-Y. Wong, and H. W. Choi, “Close-packed hemiellipsoid arrays: A photonic band gap structure patterned by nanosphere lithography,” Appl. Phys. Lett. 95(13), 133125 (2009).
    [Crossref]
  14. C. D. Pynn, L. Chan, F. Lora Gonzalez, A. Berry, D. Hwang, H. Wu, T. Margalith, D. E. Morse, S. P. DenBaars, and M. J. Gordon, “Enhanced light extraction from free-standing InGaN/GaN light emitters using bio-inspired backside surface structuring,” Opt. Express 25(14), 15778 (2017).
    [Crossref]
  15. C.-Y. Wang, L.-Y. Chen, C.-P. Chen, Y.-W. Cheng, M.-Y. Ke, M.-Y. Hsieh, H.-M. Wu, L.-H. Peng, and J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Opt. Express 16(14), 10549 (2008).
    [Crossref]
  16. Q. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, S. Fathololoumi, Z. Mi, and G. T. Wang, “Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays,” Opt. Express 19(25), 25528 (2011).
    [Crossref]
  17. M. Latzel, P. Büttner, G. Sarau, K. Höflich, M. Heilmann, W. Chen, X. Wen, G. Conibeer, and S. H. Christiansen, “Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation,” Nanotechnology 28(5), 055201 (2017).
    [Crossref]
  18. L.-Y. Chen, Y.-Y. Huang, C.-H. Chang, Y.-H. Sun, Y.-W. Cheng, M.-Y. Ke, C.-P. Chen, and J. Huang, “High performance InGaN/GaN nanorod light emitting diode arrays fabricated by nanosphere lithography and chemical mechanical polishing processes,” Opt. Express 18(8), 7664–7669 (2010).
    [Crossref]
  19. T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, and P. M. Petroff, “Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal,” Appl. Phys. Lett. 94(2), 023101 (2009).
    [Crossref]
  20. B. Liu, R. Smith, J. Bai, Y. Gong, and T. Wang, “Great emission enhancement and excitonic recombination dynamics of InGaN/GaN nanorod structures,” Appl. Phys. Lett. 103(10), 101108 (2013).
    [Crossref]
  21. S. Keller, N. A. Fichtenbaum, C. Schaake, C. J. Neufeld, A. David, E. Matioli, Y. Wu, S. P. DenBaars, J. S. Speck, C. Weisbuch, and U. K. Mishra, “Optical properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi quantum wells,” Phys. Status Solidi 244(6), 1797–1801 (2007).
    [Crossref]
  22. S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕GaN multi-quantum wells,” J. Appl. Phys. 100(5), 054314 (2006).
    [Crossref]
  23. C. H. Teng, L. Zhang, H. Deng, and P. C. Ku, “Strain-induced red-green-blue wavelength tuning in InGaN quantum wells,” Appl. Phys. Lett. 108(7), 071104 (2016).
    [Crossref]
  24. F. Della Sala, A. Di Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J.-M. Jancu, “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett. 74(14), 2002–2004 (1999).
    [Crossref]
  25. N. P. Reddy, S. Naureen, S. Mokkapati, K. Vora, N. Shahid, F. Karouta, H. H. Tan, and C. Jagadish, “Enhanced luminescence from GaN nanopillar arrays fabricated using a top-down process,” Nanotechnology 27(6), 065304 (2016).
    [Crossref]
  26. V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, and Y. Kawakami, “Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well,” J. Appl. Phys. 107(11), 114303 (2010).
    [Crossref]
  27. Q. Wang, Z. Ji, Y. Zhou, X. Wang, B. Liu, X. Xu, X. Gao, and J. Leng, “Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs,” Appl. Surf. Sci. 410, 196–200 (2017).
    [Crossref]
  28. S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
    [Crossref]
  29. Q. Wang, J. Bai, Y. P. Gong, and T. Wang, “Influence of strain relaxation on the optical properties of InGaN/GaN multiple quantum well nanorods,” J. Phys. D: Appl. Phys. 44(39), 395102 (2011).
    [Crossref]
  30. F. L. Gonzalez, L. Chan, A. Berry, D. E. Morse, and M. J. Gordon, “Simple colloidal lithography method to fabricate large-area moth-eye antireflective structures on Si, Ge, and GaAs for IR applications,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 32(5), 051213 (2014).
    [Crossref]
  31. M. Schuster, P. O. Gervais, B. Jobst, W. Hösler, R. Averbeck, H. Riechert, A. Iberl, and R. Stömmer, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys. 32(10A), A56–A60 (1999).
    [Crossref]
  32. E. C. Young, A. E. Romanov, and J. S. Speck, “Determination of composition and lattice relaxation in semipolar ternary (In,Al,Ga)N strained layers from symmetric x-ray diffraction measurements,” Appl. Phys. Express 4(6), 061001 (2011).
    [Crossref]
  33. A. F. Wright, “Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN,” J. Appl. Phys. 82(6), 2833–2839 (1997).
    [Crossref]
  34. M. A. Moram and M. E. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys. 72(3), 036502 (2009).
    [Crossref]
  35. T. Roesener, V. Klinger, C. Weuffen, D. Lackner, and F. Dimroth, “Determination of heteroepitaxial layer relaxation at growth temperature from room temperature x-ray reciprocal space maps,” J. Cryst. Growth 368, 21–28 (2013).
    [Crossref]
  36. F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, and F. Templier, “Influence of size-reduction on the performances of GaN-based micro-LEDs for display application,” J. Lumin. 191, 112–116 (2017).
    [Crossref]
  37. Y. B. Hahn, R. J. Choi, J. H. Hong, H. J. Park, C. S. Choi, and H. J. Lee, “High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light- emitting diodes,” J. Appl. Phys. 92(3), 1189–1194 (2002).
    [Crossref]
  38. F. Olivier, A. Daami, C. Licitra, and F. Templier, “Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: A size effect study,” Appl. Phys. Lett. 111(2), 022104 (2017).
    [Crossref]
  39. K. A. Bulashevich and S. Yu Karpov, “Impact of surface recombination on efficiency of III-nitride light-emitting diodes,” Phys. Status Solidi RRL 10(6), 480–484 (2016).
    [Crossref]
  40. SiLENSe Version 5.12, http://www.str-soft.com .

2017 (5)

Q. Wang, Z. Ji, Y. Zhou, X. Wang, B. Liu, X. Xu, X. Gao, and J. Leng, “Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs,” Appl. Surf. Sci. 410, 196–200 (2017).
[Crossref]

F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, and F. Templier, “Influence of size-reduction on the performances of GaN-based micro-LEDs for display application,” J. Lumin. 191, 112–116 (2017).
[Crossref]

F. Olivier, A. Daami, C. Licitra, and F. Templier, “Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: A size effect study,” Appl. Phys. Lett. 111(2), 022104 (2017).
[Crossref]

M. Latzel, P. Büttner, G. Sarau, K. Höflich, M. Heilmann, W. Chen, X. Wen, G. Conibeer, and S. H. Christiansen, “Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation,” Nanotechnology 28(5), 055201 (2017).
[Crossref]

C. D. Pynn, L. Chan, F. Lora Gonzalez, A. Berry, D. Hwang, H. Wu, T. Margalith, D. E. Morse, S. P. DenBaars, and M. J. Gordon, “Enhanced light extraction from free-standing InGaN/GaN light emitters using bio-inspired backside surface structuring,” Opt. Express 25(14), 15778 (2017).
[Crossref]

2016 (3)

K. A. Bulashevich and S. Yu Karpov, “Impact of surface recombination on efficiency of III-nitride light-emitting diodes,” Phys. Status Solidi RRL 10(6), 480–484 (2016).
[Crossref]

N. P. Reddy, S. Naureen, S. Mokkapati, K. Vora, N. Shahid, F. Karouta, H. H. Tan, and C. Jagadish, “Enhanced luminescence from GaN nanopillar arrays fabricated using a top-down process,” Nanotechnology 27(6), 065304 (2016).
[Crossref]

C. H. Teng, L. Zhang, H. Deng, and P. C. Ku, “Strain-induced red-green-blue wavelength tuning in InGaN quantum wells,” Appl. Phys. Lett. 108(7), 071104 (2016).
[Crossref]

2014 (1)

F. L. Gonzalez, L. Chan, A. Berry, D. E. Morse, and M. J. Gordon, “Simple colloidal lithography method to fabricate large-area moth-eye antireflective structures on Si, Ge, and GaAs for IR applications,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 32(5), 051213 (2014).
[Crossref]

2013 (2)

T. Roesener, V. Klinger, C. Weuffen, D. Lackner, and F. Dimroth, “Determination of heteroepitaxial layer relaxation at growth temperature from room temperature x-ray reciprocal space maps,” J. Cryst. Growth 368, 21–28 (2013).
[Crossref]

B. Liu, R. Smith, J. Bai, Y. Gong, and T. Wang, “Great emission enhancement and excitonic recombination dynamics of InGaN/GaN nanorod structures,” Appl. Phys. Lett. 103(10), 101108 (2013).
[Crossref]

2011 (3)

E. C. Young, A. E. Romanov, and J. S. Speck, “Determination of composition and lattice relaxation in semipolar ternary (In,Al,Ga)N strained layers from symmetric x-ray diffraction measurements,” Appl. Phys. Express 4(6), 061001 (2011).
[Crossref]

Q. Wang, J. Bai, Y. P. Gong, and T. Wang, “Influence of strain relaxation on the optical properties of InGaN/GaN multiple quantum well nanorods,” J. Phys. D: Appl. Phys. 44(39), 395102 (2011).
[Crossref]

Q. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, S. Fathololoumi, Z. Mi, and G. T. Wang, “Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays,” Opt. Express 19(25), 25528 (2011).
[Crossref]

2010 (2)

2009 (5)

T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, and P. M. Petroff, “Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal,” Appl. Phys. Lett. 94(2), 023101 (2009).
[Crossref]

M. A. Moram and M. E. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys. 72(3), 036502 (2009).
[Crossref]

W. Y. Fu, K. K.-Y. Wong, and H. W. Choi, “Close-packed hemiellipsoid arrays: A photonic band gap structure patterned by nanosphere lithography,” Appl. Phys. Lett. 95(13), 133125 (2009).
[Crossref]

Y.-R. Wu, C. Chiu, C.-Y. Chang, P. Yu, and H.-C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
[Crossref]

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[Crossref]

2008 (4)

M.-Y. Hsieh, C.-Y. Wang, L.-Y. Chen, T.-P. Lin, M.-Y. Ke, Y.-W. Cheng, Y.-C. Yu, C. P. Chen, D.-M. Yeh, C.-F. Lu, C.-F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett. 29(7), 658–660 (2008).
[Crossref]

M. Y. Hsieh, C. Y. Wang, L. Y. Chen, M. Y. Ke, and J. J. Huang, “InGaN-GaN nanorod light emitting arrays fabricated by silica nanomasks,” IEEE J. Quantum Electron. 44(5), 468–472 (2008).
[Crossref]

W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Nanostructuring GaN using microsphere lithography,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(1), 76–79 (2008).
[Crossref]

C.-Y. Wang, L.-Y. Chen, C.-P. Chen, Y.-W. Cheng, M.-Y. Ke, M.-Y. Hsieh, H.-M. Wu, L.-H. Peng, and J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Opt. Express 16(14), 10549 (2008).
[Crossref]

2007 (2)

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[Crossref]

S. Keller, N. A. Fichtenbaum, C. Schaake, C. J. Neufeld, A. David, E. Matioli, Y. Wu, S. P. DenBaars, J. S. Speck, C. Weisbuch, and U. K. Mishra, “Optical properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi quantum wells,” Phys. Status Solidi 244(6), 1797–1801 (2007).
[Crossref]

2006 (2)

S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕GaN multi-quantum wells,” J. Appl. Phys. 100(5), 054314 (2006).
[Crossref]

H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, “Fabrication and photoluminescence of InGaN-based nanorods fabricated by plasma etching with nanoscale nickel metal islands,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 24(4), 1909–1912 (2006).
[Crossref]

2002 (2)

Y. B. Hahn, R. J. Choi, J. H. Hong, H. J. Park, C. S. Choi, and H. J. Lee, “High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light- emitting diodes,” J. Appl. Phys. 92(3), 1189–1194 (2002).
[Crossref]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[Crossref]

2001 (1)

H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, “III-nitride blue microdisplays,” Appl. Phys. Lett. 78(9), 1303–1305 (2001).
[Crossref]

1999 (2)

F. Della Sala, A. Di Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J.-M. Jancu, “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett. 74(14), 2002–2004 (1999).
[Crossref]

M. Schuster, P. O. Gervais, B. Jobst, W. Hösler, R. Averbeck, H. Riechert, A. Iberl, and R. Stömmer, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

1997 (2)

A. F. Wright, “Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN,” J. Appl. Phys. 82(6), 2833–2839 (1997).
[Crossref]

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2), L382–L385 (1997).
[Crossref]

1996 (1)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. 35(Part 2), L217–L220 (1996).
[Crossref]

1993 (1)

S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32(Part 2), L8–L11 (1993).
[Crossref]

1984 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Akasaki, I.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2), L382–L385 (1997).
[Crossref]

Alves, E.

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[Crossref]

Amano, H.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2), L382–L385 (1997).
[Crossref]

Arif, R. A.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[Crossref]

Aventurier, B.

F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, and F. Templier, “Influence of size-reduction on the performances of GaN-based micro-LEDs for display application,” J. Lumin. 191, 112–116 (2017).
[Crossref]

Averbeck, R.

M. Schuster, P. O. Gervais, B. Jobst, W. Hösler, R. Averbeck, H. Riechert, A. Iberl, and R. Stömmer, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Bai, J.

B. Liu, R. Smith, J. Bai, Y. Gong, and T. Wang, “Great emission enhancement and excitonic recombination dynamics of InGaN/GaN nanorod structures,” Appl. Phys. Lett. 103(10), 101108 (2013).
[Crossref]

Q. Wang, J. Bai, Y. P. Gong, and T. Wang, “Influence of strain relaxation on the optical properties of InGaN/GaN multiple quantum well nanorods,” J. Phys. D: Appl. Phys. 44(39), 395102 (2011).
[Crossref]

Bernardini, F.

F. Della Sala, A. Di Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J.-M. Jancu, “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett. 74(14), 2002–2004 (1999).
[Crossref]

Berry, A.

C. D. Pynn, L. Chan, F. Lora Gonzalez, A. Berry, D. Hwang, H. Wu, T. Margalith, D. E. Morse, S. P. DenBaars, and M. J. Gordon, “Enhanced light extraction from free-standing InGaN/GaN light emitters using bio-inspired backside surface structuring,” Opt. Express 25(14), 15778 (2017).
[Crossref]

F. L. Gonzalez, L. Chan, A. Berry, D. E. Morse, and M. J. Gordon, “Simple colloidal lithography method to fabricate large-area moth-eye antireflective structures on Si, Ge, and GaAs for IR applications,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 32(5), 051213 (2014).
[Crossref]

Bulashevich, K. A.

K. A. Bulashevich and S. Yu Karpov, “Impact of surface recombination on efficiency of III-nitride light-emitting diodes,” Phys. Status Solidi RRL 10(6), 480–484 (2016).
[Crossref]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Büttner, P.

M. Latzel, P. Büttner, G. Sarau, K. Höflich, M. Heilmann, W. Chen, X. Wen, G. Conibeer, and S. H. Christiansen, “Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation,” Nanotechnology 28(5), 055201 (2017).
[Crossref]

Campos, L. M.

T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, and P. M. Petroff, “Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal,” Appl. Phys. Lett. 94(2), 023101 (2009).
[Crossref]

Chan, L.

C. D. Pynn, L. Chan, F. Lora Gonzalez, A. Berry, D. Hwang, H. Wu, T. Margalith, D. E. Morse, S. P. DenBaars, and M. J. Gordon, “Enhanced light extraction from free-standing InGaN/GaN light emitters using bio-inspired backside surface structuring,” Opt. Express 25(14), 15778 (2017).
[Crossref]

F. L. Gonzalez, L. Chan, A. Berry, D. E. Morse, and M. J. Gordon, “Simple colloidal lithography method to fabricate large-area moth-eye antireflective structures on Si, Ge, and GaAs for IR applications,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 32(5), 051213 (2014).
[Crossref]

Chang, C.-H.

Chang, C.-Y.

Y.-R. Wu, C. Chiu, C.-Y. Chang, P. Yu, and H.-C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
[Crossref]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Chen, C. P.

M.-Y. Hsieh, C.-Y. Wang, L.-Y. Chen, T.-P. Lin, M.-Y. Ke, Y.-W. Cheng, Y.-C. Yu, C. P. Chen, D.-M. Yeh, C.-F. Lu, C.-F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett. 29(7), 658–660 (2008).
[Crossref]

Chen, C.-P.

Chen, L. Y.

M. Y. Hsieh, C. Y. Wang, L. Y. Chen, M. Y. Ke, and J. J. Huang, “InGaN-GaN nanorod light emitting arrays fabricated by silica nanomasks,” IEEE J. Quantum Electron. 44(5), 468–472 (2008).
[Crossref]

Chen, L.-Y.

Chen, W.

M. Latzel, P. Büttner, G. Sarau, K. Höflich, M. Heilmann, W. Chen, X. Wen, G. Conibeer, and S. H. Christiansen, “Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation,” Nanotechnology 28(5), 055201 (2017).
[Crossref]

Cheng, Y.-W.

Chiu, C.

Y.-R. Wu, C. Chiu, C.-Y. Chang, P. Yu, and H.-C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
[Crossref]

Chiu, C. H.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[Crossref]

Choi, C. S.

Y. B. Hahn, R. J. Choi, J. H. Hong, H. J. Park, C. S. Choi, and H. J. Lee, “High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light- emitting diodes,” J. Appl. Phys. 92(3), 1189–1194 (2002).
[Crossref]

Choi, H. W.

W. Y. Fu, K. K.-Y. Wong, and H. W. Choi, “Close-packed hemiellipsoid arrays: A photonic band gap structure patterned by nanosphere lithography,” Appl. Phys. Lett. 95(13), 133125 (2009).
[Crossref]

W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Nanostructuring GaN using microsphere lithography,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(1), 76–79 (2008).
[Crossref]

Choi, R. J.

Y. B. Hahn, R. J. Choi, J. H. Hong, H. J. Park, C. S. Choi, and H. J. Lee, “High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light- emitting diodes,” J. Appl. Phys. 92(3), 1189–1194 (2002).
[Crossref]

Christiansen, S. H.

M. Latzel, P. Büttner, G. Sarau, K. Höflich, M. Heilmann, W. Chen, X. Wen, G. Conibeer, and S. H. Christiansen, “Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation,” Nanotechnology 28(5), 055201 (2017).
[Crossref]

Chu, J. T.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[Crossref]

H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, “Fabrication and photoluminescence of InGaN-based nanorods fabricated by plasma etching with nanoscale nickel metal islands,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 24(4), 1909–1912 (2006).
[Crossref]

Conibeer, G.

M. Latzel, P. Büttner, G. Sarau, K. Höflich, M. Heilmann, W. Chen, X. Wen, G. Conibeer, and S. H. Christiansen, “Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation,” Nanotechnology 28(5), 055201 (2017).
[Crossref]

Correia, M. R.

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[Crossref]

Crawford, M. H.

Cross, K. C.

Daami, A.

F. Olivier, A. Daami, C. Licitra, and F. Templier, “Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: A size effect study,” Appl. Phys. Lett. 111(2), 022104 (2017).
[Crossref]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

David, A.

S. Keller, N. A. Fichtenbaum, C. Schaake, C. J. Neufeld, A. David, E. Matioli, Y. Wu, S. P. DenBaars, J. S. Speck, C. Weisbuch, and U. K. Mishra, “Optical properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi quantum wells,” Phys. Status Solidi 244(6), 1797–1801 (2007).
[Crossref]

S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕GaN multi-quantum wells,” J. Appl. Phys. 100(5), 054314 (2006).
[Crossref]

Deatcher, C. J.

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[Crossref]

Della Sala, F.

F. Della Sala, A. Di Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J.-M. Jancu, “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett. 74(14), 2002–2004 (1999).
[Crossref]

DenBaars, S. P.

C. D. Pynn, L. Chan, F. Lora Gonzalez, A. Berry, D. Hwang, H. Wu, T. Margalith, D. E. Morse, S. P. DenBaars, and M. J. Gordon, “Enhanced light extraction from free-standing InGaN/GaN light emitters using bio-inspired backside surface structuring,” Opt. Express 25(14), 15778 (2017).
[Crossref]

S. Keller, N. A. Fichtenbaum, C. Schaake, C. J. Neufeld, A. David, E. Matioli, Y. Wu, S. P. DenBaars, J. S. Speck, C. Weisbuch, and U. K. Mishra, “Optical properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi quantum wells,” Phys. Status Solidi 244(6), 1797–1801 (2007).
[Crossref]

S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕GaN multi-quantum wells,” J. Appl. Phys. 100(5), 054314 (2006).
[Crossref]

Deng, H.

C. H. Teng, L. Zhang, H. Deng, and P. C. Ku, “Strain-induced red-green-blue wavelength tuning in InGaN quantum wells,” Appl. Phys. Lett. 108(7), 071104 (2016).
[Crossref]

Di Carlo, A.

F. Della Sala, A. Di Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J.-M. Jancu, “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett. 74(14), 2002–2004 (1999).
[Crossref]

Dimroth, F.

T. Roesener, V. Klinger, C. Weuffen, D. Lackner, and F. Dimroth, “Determination of heteroepitaxial layer relaxation at growth temperature from room temperature x-ray reciprocal space maps,” J. Cryst. Growth 368, 21–28 (2013).
[Crossref]

Dupré, L.

F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, and F. Templier, “Influence of size-reduction on the performances of GaN-based micro-LEDs for display application,” J. Lumin. 191, 112–116 (2017).
[Crossref]

Ee, Y.-K.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[Crossref]

Fathololoumi, S.

Fichtenbaum, N. A.

S. Keller, N. A. Fichtenbaum, C. Schaake, C. J. Neufeld, A. David, E. Matioli, Y. Wu, S. P. DenBaars, J. S. Speck, C. Weisbuch, and U. K. Mishra, “Optical properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi quantum wells,” Phys. Status Solidi 244(6), 1797–1801 (2007).
[Crossref]

S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕GaN multi-quantum wells,” J. Appl. Phys. 100(5), 054314 (2006).
[Crossref]

Figiel, J. J.

Fiorentini, V.

F. Della Sala, A. Di Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J.-M. Jancu, “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett. 74(14), 2002–2004 (1999).
[Crossref]

Franco, N.

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[Crossref]

Fu, W. Y.

W. Y. Fu, K. K.-Y. Wong, and H. W. Choi, “Close-packed hemiellipsoid arrays: A photonic band gap structure patterned by nanosphere lithography,” Appl. Phys. Lett. 95(13), 133125 (2009).
[Crossref]

Funato, M.

V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, and Y. Kawakami, “Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well,” J. Appl. Phys. 107(11), 114303 (2010).
[Crossref]

Gao, X.

Q. Wang, Z. Ji, Y. Zhou, X. Wang, B. Liu, X. Xu, X. Gao, and J. Leng, “Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs,” Appl. Surf. Sci. 410, 196–200 (2017).
[Crossref]

Gervais, P. O.

M. Schuster, P. O. Gervais, B. Jobst, W. Hösler, R. Averbeck, H. Riechert, A. Iberl, and R. Stömmer, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Gilchrist, J. F.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[Crossref]

Gong, Y.

B. Liu, R. Smith, J. Bai, Y. Gong, and T. Wang, “Great emission enhancement and excitonic recombination dynamics of InGaN/GaN nanorod structures,” Appl. Phys. Lett. 103(10), 101108 (2013).
[Crossref]

Gong, Y. P.

Q. Wang, J. Bai, Y. P. Gong, and T. Wang, “Influence of strain relaxation on the optical properties of InGaN/GaN multiple quantum well nanorods,” J. Phys. D: Appl. Phys. 44(39), 395102 (2011).
[Crossref]

Gonzalez, F. L.

F. L. Gonzalez, L. Chan, A. Berry, D. E. Morse, and M. J. Gordon, “Simple colloidal lithography method to fabricate large-area moth-eye antireflective structures on Si, Ge, and GaAs for IR applications,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 32(5), 051213 (2014).
[Crossref]

Gordon, M. J.

C. D. Pynn, L. Chan, F. Lora Gonzalez, A. Berry, D. Hwang, H. Wu, T. Margalith, D. E. Morse, S. P. DenBaars, and M. J. Gordon, “Enhanced light extraction from free-standing InGaN/GaN light emitters using bio-inspired backside surface structuring,” Opt. Express 25(14), 15778 (2017).
[Crossref]

F. L. Gonzalez, L. Chan, A. Berry, D. E. Morse, and M. J. Gordon, “Simple colloidal lithography method to fabricate large-area moth-eye antireflective structures on Si, Ge, and GaAs for IR applications,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 32(5), 051213 (2014).
[Crossref]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Hahn, Y. B.

Y. B. Hahn, R. J. Choi, J. H. Hong, H. J. Park, C. S. Choi, and H. J. Lee, “High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light- emitting diodes,” J. Appl. Phys. 92(3), 1189–1194 (2002).
[Crossref]

Hawker, C. J.

T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, and P. M. Petroff, “Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal,” Appl. Phys. Lett. 94(2), 023101 (2009).
[Crossref]

Heilmann, M.

M. Latzel, P. Büttner, G. Sarau, K. Höflich, M. Heilmann, W. Chen, X. Wen, G. Conibeer, and S. H. Christiansen, “Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation,” Nanotechnology 28(5), 055201 (2017).
[Crossref]

Höflich, K.

M. Latzel, P. Büttner, G. Sarau, K. Höflich, M. Heilmann, W. Chen, X. Wen, G. Conibeer, and S. H. Christiansen, “Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation,” Nanotechnology 28(5), 055201 (2017).
[Crossref]

Hong, J. H.

Y. B. Hahn, R. J. Choi, J. H. Hong, H. J. Park, C. S. Choi, and H. J. Lee, “High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light- emitting diodes,” J. Appl. Phys. 92(3), 1189–1194 (2002).
[Crossref]

Hösler, W.

M. Schuster, P. O. Gervais, B. Jobst, W. Hösler, R. Averbeck, H. Riechert, A. Iberl, and R. Stömmer, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Hsieh, M. Y.

M. Y. Hsieh, C. Y. Wang, L. Y. Chen, M. Y. Ke, and J. J. Huang, “InGaN-GaN nanorod light emitting arrays fabricated by silica nanomasks,” IEEE J. Quantum Electron. 44(5), 468–472 (2008).
[Crossref]

Hsieh, M.-Y.

M.-Y. Hsieh, C.-Y. Wang, L.-Y. Chen, T.-P. Lin, M.-Y. Ke, Y.-W. Cheng, Y.-C. Yu, C. P. Chen, D.-M. Yeh, C.-F. Lu, C.-F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett. 29(7), 658–660 (2008).
[Crossref]

C.-Y. Wang, L.-Y. Chen, C.-P. Chen, Y.-W. Cheng, M.-Y. Ke, M.-Y. Hsieh, H.-M. Wu, L.-H. Peng, and J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Opt. Express 16(14), 10549 (2008).
[Crossref]

Hsueh, T. H.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[Crossref]

H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, “Fabrication and photoluminescence of InGaN-based nanorods fabricated by plasma etching with nanoscale nickel metal islands,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 24(4), 1909–1912 (2006).
[Crossref]

Huang, C.-F.

M.-Y. Hsieh, C.-Y. Wang, L.-Y. Chen, T.-P. Lin, M.-Y. Ke, Y.-W. Cheng, Y.-C. Yu, C. P. Chen, D.-M. Yeh, C.-F. Lu, C.-F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett. 29(7), 658–660 (2008).
[Crossref]

Huang, H. W.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[Crossref]

H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, “Fabrication and photoluminescence of InGaN-based nanorods fabricated by plasma etching with nanoscale nickel metal islands,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 24(4), 1909–1912 (2006).
[Crossref]

Huang, J.

Huang, J. J.

M. Y. Hsieh, C. Y. Wang, L. Y. Chen, M. Y. Ke, and J. J. Huang, “InGaN-GaN nanorod light emitting arrays fabricated by silica nanomasks,” IEEE J. Quantum Electron. 44(5), 468–472 (2008).
[Crossref]

M.-Y. Hsieh, C.-Y. Wang, L.-Y. Chen, T.-P. Lin, M.-Y. Ke, Y.-W. Cheng, Y.-C. Yu, C. P. Chen, D.-M. Yeh, C.-F. Lu, C.-F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett. 29(7), 658–660 (2008).
[Crossref]

Huang, Y.-Y.

Hwang, D.

Iberl, A.

M. Schuster, P. O. Gervais, B. Jobst, W. Hösler, R. Averbeck, H. Riechert, A. Iberl, and R. Stömmer, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Iwasa, N.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. 35(Part 2), L217–L220 (1996).
[Crossref]

Jagadish, C.

N. P. Reddy, S. Naureen, S. Mokkapati, K. Vora, N. Shahid, F. Karouta, H. H. Tan, and C. Jagadish, “Enhanced luminescence from GaN nanopillar arrays fabricated using a top-down process,” Nanotechnology 27(6), 065304 (2016).
[Crossref]

Jancu, J.-M.

F. Della Sala, A. Di Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J.-M. Jancu, “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett. 74(14), 2002–2004 (1999).
[Crossref]

Ji, Z.

Q. Wang, Z. Ji, Y. Zhou, X. Wang, B. Liu, X. Xu, X. Gao, and J. Leng, “Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs,” Appl. Surf. Sci. 410, 196–200 (2017).
[Crossref]

Jiang, H. X.

H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, “III-nitride blue microdisplays,” Appl. Phys. Lett. 78(9), 1303–1305 (2001).
[Crossref]

Jin, S. X.

H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, “III-nitride blue microdisplays,” Appl. Phys. Lett. 78(9), 1303–1305 (2001).
[Crossref]

Jobst, B.

M. Schuster, P. O. Gervais, B. Jobst, W. Hösler, R. Averbeck, H. Riechert, A. Iberl, and R. Stömmer, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Kao, C. C.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[Crossref]

Karouta, F.

N. P. Reddy, S. Naureen, S. Mokkapati, K. Vora, N. Shahid, F. Karouta, H. H. Tan, and C. Jagadish, “Enhanced luminescence from GaN nanopillar arrays fabricated using a top-down process,” Nanotechnology 27(6), 065304 (2016).
[Crossref]

Katsuragawa, M.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2), L382–L385 (1997).
[Crossref]

Kawakami, Y.

V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, and Y. Kawakami, “Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well,” J. Appl. Phys. 107(11), 114303 (2010).
[Crossref]

Ke, M. Y.

M. Y. Hsieh, C. Y. Wang, L. Y. Chen, M. Y. Ke, and J. J. Huang, “InGaN-GaN nanorod light emitting arrays fabricated by silica nanomasks,” IEEE J. Quantum Electron. 44(5), 468–472 (2008).
[Crossref]

Ke, M.-Y.

Keller, S.

S. Keller, N. A. Fichtenbaum, C. Schaake, C. J. Neufeld, A. David, E. Matioli, Y. Wu, S. P. DenBaars, J. S. Speck, C. Weisbuch, and U. K. Mishra, “Optical properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi quantum wells,” Phys. Status Solidi 244(6), 1797–1801 (2007).
[Crossref]

S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕GaN multi-quantum wells,” J. Appl. Phys. 100(5), 054314 (2006).
[Crossref]

Kikuchi, A.

V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, and Y. Kawakami, “Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well,” J. Appl. Phys. 107(11), 114303 (2010).
[Crossref]

Kishino, K.

V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, and Y. Kawakami, “Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well,” J. Appl. Phys. 107(11), 114303 (2010).
[Crossref]

Kiyoku, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. 35(Part 2), L217–L220 (1996).
[Crossref]

Klinger, V.

T. Roesener, V. Klinger, C. Weuffen, D. Lackner, and F. Dimroth, “Determination of heteroepitaxial layer relaxation at growth temperature from room temperature x-ray reciprocal space maps,” J. Cryst. Growth 368, 21–28 (2013).
[Crossref]

Koleske, D. D.

Komori, M.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2), L382–L385 (1997).
[Crossref]

Ku, P. C.

C. H. Teng, L. Zhang, H. Deng, and P. C. Ku, “Strain-induced red-green-blue wavelength tuning in InGaN quantum wells,” Appl. Phys. Lett. 108(7), 071104 (2016).
[Crossref]

Kumnorkaew, P.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[Crossref]

Kuo, H. C.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[Crossref]

H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, “Fabrication and photoluminescence of InGaN-based nanorods fabricated by plasma etching with nanoscale nickel metal islands,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 24(4), 1909–1912 (2006).
[Crossref]

Kuo, H.-C.

Y.-R. Wu, C. Chiu, C.-Y. Chang, P. Yu, and H.-C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
[Crossref]

Lackner, D.

T. Roesener, V. Klinger, C. Weuffen, D. Lackner, and F. Dimroth, “Determination of heteroepitaxial layer relaxation at growth temperature from room temperature x-ray reciprocal space maps,” J. Cryst. Growth 368, 21–28 (2013).
[Crossref]

Lai, C. F.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[Crossref]

Lai, P. T.

W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Nanostructuring GaN using microsphere lithography,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(1), 76–79 (2008).
[Crossref]

Largeron, C.

F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, and F. Templier, “Influence of size-reduction on the performances of GaN-based micro-LEDs for display application,” J. Lumin. 191, 112–116 (2017).
[Crossref]

Latzel, M.

M. Latzel, P. Büttner, G. Sarau, K. Höflich, M. Heilmann, W. Chen, X. Wen, G. Conibeer, and S. H. Christiansen, “Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation,” Nanotechnology 28(5), 055201 (2017).
[Crossref]

Lee, H. J.

Y. B. Hahn, R. J. Choi, J. H. Hong, H. J. Park, C. S. Choi, and H. J. Lee, “High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light- emitting diodes,” J. Appl. Phys. 92(3), 1189–1194 (2002).
[Crossref]

Lee, S. R.

Leng, J.

Q. Wang, Z. Ji, Y. Zhou, X. Wang, B. Liu, X. Xu, X. Gao, and J. Leng, “Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs,” Appl. Surf. Sci. 410, 196–200 (2017).
[Crossref]

Leung, C. H.

W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Nanostructuring GaN using microsphere lithography,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(1), 76–79 (2008).
[Crossref]

Li, J.

H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, “III-nitride blue microdisplays,” Appl. Phys. Lett. 78(9), 1303–1305 (2001).
[Crossref]

Li, Q.

Licitra, C.

F. Olivier, A. Daami, C. Licitra, and F. Templier, “Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: A size effect study,” Appl. Phys. Lett. 111(2), 022104 (2017).
[Crossref]

Lin, C. F.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[Crossref]

Lin, J. Y.

H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, “III-nitride blue microdisplays,” Appl. Phys. Lett. 78(9), 1303–1305 (2001).
[Crossref]

Lin, T.-P.

M.-Y. Hsieh, C.-Y. Wang, L.-Y. Chen, T.-P. Lin, M.-Y. Ke, Y.-W. Cheng, Y.-C. Yu, C. P. Chen, D.-M. Yeh, C.-F. Lu, C.-F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett. 29(7), 658–660 (2008).
[Crossref]

Liu, B.

Q. Wang, Z. Ji, Y. Zhou, X. Wang, B. Liu, X. Xu, X. Gao, and J. Leng, “Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs,” Appl. Surf. Sci. 410, 196–200 (2017).
[Crossref]

B. Liu, R. Smith, J. Bai, Y. Gong, and T. Wang, “Great emission enhancement and excitonic recombination dynamics of InGaN/GaN nanorod structures,” Appl. Phys. Lett. 103(10), 101108 (2013).
[Crossref]

Lora Gonzalez, F.

Lu, C.-F.

M.-Y. Hsieh, C.-Y. Wang, L.-Y. Chen, T.-P. Lin, M.-Y. Ke, Y.-W. Cheng, Y.-C. Yu, C. P. Chen, D.-M. Yeh, C.-F. Lu, C.-F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett. 29(7), 658–660 (2008).
[Crossref]

Lu, T. C.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[Crossref]

Lugli, P.

F. Della Sala, A. Di Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J.-M. Jancu, “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett. 74(14), 2002–2004 (1999).
[Crossref]

Margalith, T.

Matioli, E.

T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, and P. M. Petroff, “Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal,” Appl. Phys. Lett. 94(2), 023101 (2009).
[Crossref]

S. Keller, N. A. Fichtenbaum, C. Schaake, C. J. Neufeld, A. David, E. Matioli, Y. Wu, S. P. DenBaars, J. S. Speck, C. Weisbuch, and U. K. Mishra, “Optical properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi quantum wells,” Phys. Status Solidi 244(6), 1797–1801 (2007).
[Crossref]

Matsushita, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. 35(Part 2), L217–L220 (1996).
[Crossref]

McGroddy, K.

S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕GaN multi-quantum wells,” J. Appl. Phys. 100(5), 054314 (2006).
[Crossref]

Meinel, I.

T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, and P. M. Petroff, “Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal,” Appl. Phys. Lett. 94(2), 023101 (2009).
[Crossref]

Mi, Z.

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Mishra, U. K.

S. Keller, N. A. Fichtenbaum, C. Schaake, C. J. Neufeld, A. David, E. Matioli, Y. Wu, S. P. DenBaars, J. S. Speck, C. Weisbuch, and U. K. Mishra, “Optical properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi quantum wells,” Phys. Status Solidi 244(6), 1797–1801 (2007).
[Crossref]

S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕GaN multi-quantum wells,” J. Appl. Phys. 100(5), 054314 (2006).
[Crossref]

Mokkapati, S.

N. P. Reddy, S. Naureen, S. Mokkapati, K. Vora, N. Shahid, F. Karouta, H. H. Tan, and C. Jagadish, “Enhanced luminescence from GaN nanopillar arrays fabricated using a top-down process,” Nanotechnology 27(6), 065304 (2016).
[Crossref]

Moram, M. A.

M. A. Moram and M. E. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys. 72(3), 036502 (2009).
[Crossref]

Morse, D. E.

C. D. Pynn, L. Chan, F. Lora Gonzalez, A. Berry, D. Hwang, H. Wu, T. Margalith, D. E. Morse, S. P. DenBaars, and M. J. Gordon, “Enhanced light extraction from free-standing InGaN/GaN light emitters using bio-inspired backside surface structuring,” Opt. Express 25(14), 15778 (2017).
[Crossref]

F. L. Gonzalez, L. Chan, A. Berry, D. E. Morse, and M. J. Gordon, “Simple colloidal lithography method to fabricate large-area moth-eye antireflective structures on Si, Ge, and GaAs for IR applications,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 32(5), 051213 (2014).
[Crossref]

Mukai, T.

S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32(Part 2), L8–L11 (1993).
[Crossref]

Nagahama, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. 35(Part 2), L217–L220 (1996).
[Crossref]

Nakamura, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. 35(Part 2), L217–L220 (1996).
[Crossref]

S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32(Part 2), L8–L11 (1993).
[Crossref]

Naureen, S.

N. P. Reddy, S. Naureen, S. Mokkapati, K. Vora, N. Shahid, F. Karouta, H. H. Tan, and C. Jagadish, “Enhanced luminescence from GaN nanopillar arrays fabricated using a top-down process,” Nanotechnology 27(6), 065304 (2016).
[Crossref]

Neufeld, C. J.

S. Keller, N. A. Fichtenbaum, C. Schaake, C. J. Neufeld, A. David, E. Matioli, Y. Wu, S. P. DenBaars, J. S. Speck, C. Weisbuch, and U. K. Mishra, “Optical properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi quantum wells,” Phys. Status Solidi 244(6), 1797–1801 (2007).
[Crossref]

S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕GaN multi-quantum wells,” J. Appl. Phys. 100(5), 054314 (2006).
[Crossref]

Ng, W. N.

W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Nanostructuring GaN using microsphere lithography,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(1), 76–79 (2008).
[Crossref]

O’Donnell, K. P.

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[Crossref]

Olivier, F.

F. Olivier, A. Daami, C. Licitra, and F. Templier, “Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: A size effect study,” Appl. Phys. Lett. 111(2), 022104 (2017).
[Crossref]

F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, and F. Templier, “Influence of size-reduction on the performances of GaN-based micro-LEDs for display application,” J. Lumin. 191, 112–116 (2017).
[Crossref]

Ou-Yang, M. C.

H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, “Fabrication and photoluminescence of InGaN-based nanorods fabricated by plasma etching with nanoscale nickel metal islands,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 24(4), 1909–1912 (2006).
[Crossref]

Park, H. J.

Y. B. Hahn, R. J. Choi, J. H. Hong, H. J. Park, C. S. Choi, and H. J. Lee, “High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light- emitting diodes,” J. Appl. Phys. 92(3), 1189–1194 (2002).
[Crossref]

Peng, L.-H.

Pereira, E.

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[Crossref]

Pereira, S.

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[Crossref]

Petroff, P. M.

T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, and P. M. Petroff, “Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal,” Appl. Phys. Lett. 94(2), 023101 (2009).
[Crossref]

Pynn, C. D.

Ramesh, V.

V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, and Y. Kawakami, “Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well,” J. Appl. Phys. 107(11), 114303 (2010).
[Crossref]

Reddy, N. P.

N. P. Reddy, S. Naureen, S. Mokkapati, K. Vora, N. Shahid, F. Karouta, H. H. Tan, and C. Jagadish, “Enhanced luminescence from GaN nanopillar arrays fabricated using a top-down process,” Nanotechnology 27(6), 065304 (2016).
[Crossref]

Riechert, H.

M. Schuster, P. O. Gervais, B. Jobst, W. Hösler, R. Averbeck, H. Riechert, A. Iberl, and R. Stömmer, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Roesener, T.

T. Roesener, V. Klinger, C. Weuffen, D. Lackner, and F. Dimroth, “Determination of heteroepitaxial layer relaxation at growth temperature from room temperature x-ray reciprocal space maps,” J. Cryst. Growth 368, 21–28 (2013).
[Crossref]

Romanov, A. E.

E. C. Young, A. E. Romanov, and J. S. Speck, “Determination of composition and lattice relaxation in semipolar ternary (In,Al,Ga)N strained layers from symmetric x-ray diffraction measurements,” Appl. Phys. Express 4(6), 061001 (2011).
[Crossref]

Sarau, G.

M. Latzel, P. Büttner, G. Sarau, K. Höflich, M. Heilmann, W. Chen, X. Wen, G. Conibeer, and S. H. Christiansen, “Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation,” Nanotechnology 28(5), 055201 (2017).
[Crossref]

Schaake, C.

S. Keller, N. A. Fichtenbaum, C. Schaake, C. J. Neufeld, A. David, E. Matioli, Y. Wu, S. P. DenBaars, J. S. Speck, C. Weisbuch, and U. K. Mishra, “Optical properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi quantum wells,” Phys. Status Solidi 244(6), 1797–1801 (2007).
[Crossref]

S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕GaN multi-quantum wells,” J. Appl. Phys. 100(5), 054314 (2006).
[Crossref]

Scholz, R.

F. Della Sala, A. Di Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J.-M. Jancu, “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett. 74(14), 2002–2004 (1999).
[Crossref]

Schuster, M.

M. Schuster, P. O. Gervais, B. Jobst, W. Hösler, R. Averbeck, H. Riechert, A. Iberl, and R. Stömmer, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Senoh, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. 35(Part 2), L217–L220 (1996).
[Crossref]

S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32(Part 2), L8–L11 (1993).
[Crossref]

Sequeira, A. D.

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[Crossref]

Shahid, N.

N. P. Reddy, S. Naureen, S. Mokkapati, K. Vora, N. Shahid, F. Karouta, H. H. Tan, and C. Jagadish, “Enhanced luminescence from GaN nanopillar arrays fabricated using a top-down process,” Nanotechnology 27(6), 065304 (2016).
[Crossref]

Shakya, J.

H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, “III-nitride blue microdisplays,” Appl. Phys. Lett. 78(9), 1303–1305 (2001).
[Crossref]

Smith, R.

B. Liu, R. Smith, J. Bai, Y. Gong, and T. Wang, “Great emission enhancement and excitonic recombination dynamics of InGaN/GaN nanorod structures,” Appl. Phys. Lett. 103(10), 101108 (2013).
[Crossref]

Sota, S.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2), L382–L385 (1997).
[Crossref]

Speck, J. S.

E. C. Young, A. E. Romanov, and J. S. Speck, “Determination of composition and lattice relaxation in semipolar ternary (In,Al,Ga)N strained layers from symmetric x-ray diffraction measurements,” Appl. Phys. Express 4(6), 061001 (2011).
[Crossref]

S. Keller, N. A. Fichtenbaum, C. Schaake, C. J. Neufeld, A. David, E. Matioli, Y. Wu, S. P. DenBaars, J. S. Speck, C. Weisbuch, and U. K. Mishra, “Optical properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi quantum wells,” Phys. Status Solidi 244(6), 1797–1801 (2007).
[Crossref]

S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕GaN multi-quantum wells,” J. Appl. Phys. 100(5), 054314 (2006).
[Crossref]

Stömmer, R.

M. Schuster, P. O. Gervais, B. Jobst, W. Hösler, R. Averbeck, H. Riechert, A. Iberl, and R. Stömmer, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Sugimoto, Y.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. 35(Part 2), L217–L220 (1996).
[Crossref]

Sun, Y.-H.

Takeuchi, H.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2), L382–L385 (1997).
[Crossref]

Takeuchi, T.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2), L382–L385 (1997).
[Crossref]

Tan, H. H.

N. P. Reddy, S. Naureen, S. Mokkapati, K. Vora, N. Shahid, F. Karouta, H. H. Tan, and C. Jagadish, “Enhanced luminescence from GaN nanopillar arrays fabricated using a top-down process,” Nanotechnology 27(6), 065304 (2016).
[Crossref]

Tansu, N.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[Crossref]

Templier, F.

F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, and F. Templier, “Influence of size-reduction on the performances of GaN-based micro-LEDs for display application,” J. Lumin. 191, 112–116 (2017).
[Crossref]

F. Olivier, A. Daami, C. Licitra, and F. Templier, “Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: A size effect study,” Appl. Phys. Lett. 111(2), 022104 (2017).
[Crossref]

Teng, C. H.

C. H. Teng, L. Zhang, H. Deng, and P. C. Ku, “Strain-induced red-green-blue wavelength tuning in InGaN quantum wells,” Appl. Phys. Lett. 108(7), 071104 (2016).
[Crossref]

Tirano, S.

F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, and F. Templier, “Influence of size-reduction on the performances of GaN-based micro-LEDs for display application,” J. Lumin. 191, 112–116 (2017).
[Crossref]

Tong, H.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[Crossref]

Truong, T. A.

T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, and P. M. Petroff, “Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal,” Appl. Phys. Lett. 94(2), 023101 (2009).
[Crossref]

Vickers, M. E.

M. A. Moram and M. E. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys. 72(3), 036502 (2009).
[Crossref]

Vora, K.

N. P. Reddy, S. Naureen, S. Mokkapati, K. Vora, N. Shahid, F. Karouta, H. H. Tan, and C. Jagadish, “Enhanced luminescence from GaN nanopillar arrays fabricated using a top-down process,” Nanotechnology 27(6), 065304 (2016).
[Crossref]

Wang, C. Y.

M. Y. Hsieh, C. Y. Wang, L. Y. Chen, M. Y. Ke, and J. J. Huang, “InGaN-GaN nanorod light emitting arrays fabricated by silica nanomasks,” IEEE J. Quantum Electron. 44(5), 468–472 (2008).
[Crossref]

Wang, C.-Y.

M.-Y. Hsieh, C.-Y. Wang, L.-Y. Chen, T.-P. Lin, M.-Y. Ke, Y.-W. Cheng, Y.-C. Yu, C. P. Chen, D.-M. Yeh, C.-F. Lu, C.-F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett. 29(7), 658–660 (2008).
[Crossref]

C.-Y. Wang, L.-Y. Chen, C.-P. Chen, Y.-W. Cheng, M.-Y. Ke, M.-Y. Hsieh, H.-M. Wu, L.-H. Peng, and J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Opt. Express 16(14), 10549 (2008).
[Crossref]

Wang, G. T.

Wang, Q.

Q. Wang, Z. Ji, Y. Zhou, X. Wang, B. Liu, X. Xu, X. Gao, and J. Leng, “Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs,” Appl. Surf. Sci. 410, 196–200 (2017).
[Crossref]

Q. Wang, J. Bai, Y. P. Gong, and T. Wang, “Influence of strain relaxation on the optical properties of InGaN/GaN multiple quantum well nanorods,” J. Phys. D: Appl. Phys. 44(39), 395102 (2011).
[Crossref]

Wang, S. C.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[Crossref]

H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, “Fabrication and photoluminescence of InGaN-based nanorods fabricated by plasma etching with nanoscale nickel metal islands,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 24(4), 1909–1912 (2006).
[Crossref]

Wang, T.

B. Liu, R. Smith, J. Bai, Y. Gong, and T. Wang, “Great emission enhancement and excitonic recombination dynamics of InGaN/GaN nanorod structures,” Appl. Phys. Lett. 103(10), 101108 (2013).
[Crossref]

Q. Wang, J. Bai, Y. P. Gong, and T. Wang, “Influence of strain relaxation on the optical properties of InGaN/GaN multiple quantum well nanorods,” J. Phys. D: Appl. Phys. 44(39), 395102 (2011).
[Crossref]

Wang, X.

Q. Wang, Z. Ji, Y. Zhou, X. Wang, B. Liu, X. Xu, X. Gao, and J. Leng, “Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs,” Appl. Surf. Sci. 410, 196–200 (2017).
[Crossref]

Watson, I. M.

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[Crossref]

Weisbuch, C.

T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, and P. M. Petroff, “Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal,” Appl. Phys. Lett. 94(2), 023101 (2009).
[Crossref]

S. Keller, N. A. Fichtenbaum, C. Schaake, C. J. Neufeld, A. David, E. Matioli, Y. Wu, S. P. DenBaars, J. S. Speck, C. Weisbuch, and U. K. Mishra, “Optical properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi quantum wells,” Phys. Status Solidi 244(6), 1797–1801 (2007).
[Crossref]

S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕GaN multi-quantum wells,” J. Appl. Phys. 100(5), 054314 (2006).
[Crossref]

Wen, X.

M. Latzel, P. Büttner, G. Sarau, K. Höflich, M. Heilmann, W. Chen, X. Wen, G. Conibeer, and S. H. Christiansen, “Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation,” Nanotechnology 28(5), 055201 (2017).
[Crossref]

Westlake, K. R.

Weuffen, C.

T. Roesener, V. Klinger, C. Weuffen, D. Lackner, and F. Dimroth, “Determination of heteroepitaxial layer relaxation at growth temperature from room temperature x-ray reciprocal space maps,” J. Cryst. Growth 368, 21–28 (2013).
[Crossref]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Wong, K. K.-Y.

W. Y. Fu, K. K.-Y. Wong, and H. W. Choi, “Close-packed hemiellipsoid arrays: A photonic band gap structure patterned by nanosphere lithography,” Appl. Phys. Lett. 95(13), 133125 (2009).
[Crossref]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Wright, A. F.

A. F. Wright, “Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN,” J. Appl. Phys. 82(6), 2833–2839 (1997).
[Crossref]

Wu, H.

Wu, H.-M.

Wu, Y.

S. Keller, N. A. Fichtenbaum, C. Schaake, C. J. Neufeld, A. David, E. Matioli, Y. Wu, S. P. DenBaars, J. S. Speck, C. Weisbuch, and U. K. Mishra, “Optical properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi quantum wells,” Phys. Status Solidi 244(6), 1797–1801 (2007).
[Crossref]

S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕GaN multi-quantum wells,” J. Appl. Phys. 100(5), 054314 (2006).
[Crossref]

Wu, Y.-R.

Y.-R. Wu, C. Chiu, C.-Y. Chang, P. Yu, and H.-C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
[Crossref]

Xu, X.

Q. Wang, Z. Ji, Y. Zhou, X. Wang, B. Liu, X. Xu, X. Gao, and J. Leng, “Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs,” Appl. Surf. Sci. 410, 196–200 (2017).
[Crossref]

Yamada, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. 35(Part 2), L217–L220 (1996).
[Crossref]

Yang, C. C.

M.-Y. Hsieh, C.-Y. Wang, L.-Y. Chen, T.-P. Lin, M.-Y. Ke, Y.-W. Cheng, Y.-C. Yu, C. P. Chen, D.-M. Yeh, C.-F. Lu, C.-F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett. 29(7), 658–660 (2008).
[Crossref]

Yeh, D.-M.

M.-Y. Hsieh, C.-Y. Wang, L.-Y. Chen, T.-P. Lin, M.-Y. Ke, Y.-W. Cheng, Y.-C. Yu, C. P. Chen, D.-M. Yeh, C.-F. Lu, C.-F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett. 29(7), 658–660 (2008).
[Crossref]

Young, E. C.

E. C. Young, A. E. Romanov, and J. S. Speck, “Determination of composition and lattice relaxation in semipolar ternary (In,Al,Ga)N strained layers from symmetric x-ray diffraction measurements,” Appl. Phys. Express 4(6), 061001 (2011).
[Crossref]

Yu, C. C.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[Crossref]

Yu, P.

Y.-R. Wu, C. Chiu, C.-Y. Chang, P. Yu, and H.-C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
[Crossref]

Yu, Y.-C.

M.-Y. Hsieh, C.-Y. Wang, L.-Y. Chen, T.-P. Lin, M.-Y. Ke, Y.-W. Cheng, Y.-C. Yu, C. P. Chen, D.-M. Yeh, C.-F. Lu, C.-F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett. 29(7), 658–660 (2008).
[Crossref]

Yu Karpov, S.

K. A. Bulashevich and S. Yu Karpov, “Impact of surface recombination on efficiency of III-nitride light-emitting diodes,” Phys. Status Solidi RRL 10(6), 480–484 (2016).
[Crossref]

Zhang, L.

C. H. Teng, L. Zhang, H. Deng, and P. C. Ku, “Strain-induced red-green-blue wavelength tuning in InGaN quantum wells,” Appl. Phys. Lett. 108(7), 071104 (2016).
[Crossref]

Zhao, H.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[Crossref]

Zhou, Y.

Q. Wang, Z. Ji, Y. Zhou, X. Wang, B. Liu, X. Xu, X. Gao, and J. Leng, “Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs,” Appl. Surf. Sci. 410, 196–200 (2017).
[Crossref]

Appl. Phys. Express (1)

E. C. Young, A. E. Romanov, and J. S. Speck, “Determination of composition and lattice relaxation in semipolar ternary (In,Al,Ga)N strained layers from symmetric x-ray diffraction measurements,” Appl. Phys. Express 4(6), 061001 (2011).
[Crossref]

Appl. Phys. Lett. (8)

F. Olivier, A. Daami, C. Licitra, and F. Templier, “Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: A size effect study,” Appl. Phys. Lett. 111(2), 022104 (2017).
[Crossref]

T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, and P. M. Petroff, “Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal,” Appl. Phys. Lett. 94(2), 023101 (2009).
[Crossref]

B. Liu, R. Smith, J. Bai, Y. Gong, and T. Wang, “Great emission enhancement and excitonic recombination dynamics of InGaN/GaN nanorod structures,” Appl. Phys. Lett. 103(10), 101108 (2013).
[Crossref]

C. H. Teng, L. Zhang, H. Deng, and P. C. Ku, “Strain-induced red-green-blue wavelength tuning in InGaN quantum wells,” Appl. Phys. Lett. 108(7), 071104 (2016).
[Crossref]

F. Della Sala, A. Di Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J.-M. Jancu, “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett. 74(14), 2002–2004 (1999).
[Crossref]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[Crossref]

H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, “III-nitride blue microdisplays,” Appl. Phys. Lett. 78(9), 1303–1305 (2001).
[Crossref]

W. Y. Fu, K. K.-Y. Wong, and H. W. Choi, “Close-packed hemiellipsoid arrays: A photonic band gap structure patterned by nanosphere lithography,” Appl. Phys. Lett. 95(13), 133125 (2009).
[Crossref]

Appl. Surf. Sci. (1)

Q. Wang, Z. Ji, Y. Zhou, X. Wang, B. Liu, X. Xu, X. Gao, and J. Leng, “Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs,” Appl. Surf. Sci. 410, 196–200 (2017).
[Crossref]

IEEE Electron Device Lett. (1)

M.-Y. Hsieh, C.-Y. Wang, L.-Y. Chen, T.-P. Lin, M.-Y. Ke, Y.-W. Cheng, Y.-C. Yu, C. P. Chen, D.-M. Yeh, C.-F. Lu, C.-F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett. 29(7), 658–660 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Y. Hsieh, C. Y. Wang, L. Y. Chen, M. Y. Ke, and J. J. Huang, “InGaN-GaN nanorod light emitting arrays fabricated by silica nanomasks,” IEEE J. Quantum Electron. 44(5), 468–472 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y.-R. Wu, C. Chiu, C.-Y. Chang, P. Yu, and H.-C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
[Crossref]

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[Crossref]

J. Appl. Phys. (4)

Y. B. Hahn, R. J. Choi, J. H. Hong, H. J. Park, C. S. Choi, and H. J. Lee, “High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light- emitting diodes,” J. Appl. Phys. 92(3), 1189–1194 (2002).
[Crossref]

A. F. Wright, “Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN,” J. Appl. Phys. 82(6), 2833–2839 (1997).
[Crossref]

S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕GaN multi-quantum wells,” J. Appl. Phys. 100(5), 054314 (2006).
[Crossref]

V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, and Y. Kawakami, “Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well,” J. Appl. Phys. 107(11), 114303 (2010).
[Crossref]

J. Cryst. Growth (1)

T. Roesener, V. Klinger, C. Weuffen, D. Lackner, and F. Dimroth, “Determination of heteroepitaxial layer relaxation at growth temperature from room temperature x-ray reciprocal space maps,” J. Cryst. Growth 368, 21–28 (2013).
[Crossref]

J. Lumin. (1)

F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, and F. Templier, “Influence of size-reduction on the performances of GaN-based micro-LEDs for display application,” J. Lumin. 191, 112–116 (2017).
[Crossref]

J. Phys. D: Appl. Phys. (2)

M. Schuster, P. O. Gervais, B. Jobst, W. Hösler, R. Averbeck, H. Riechert, A. Iberl, and R. Stömmer, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Q. Wang, J. Bai, Y. P. Gong, and T. Wang, “Influence of strain relaxation on the optical properties of InGaN/GaN multiple quantum well nanorods,” J. Phys. D: Appl. Phys. 44(39), 395102 (2011).
[Crossref]

J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. (3)

F. L. Gonzalez, L. Chan, A. Berry, D. E. Morse, and M. J. Gordon, “Simple colloidal lithography method to fabricate large-area moth-eye antireflective structures on Si, Ge, and GaAs for IR applications,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 32(5), 051213 (2014).
[Crossref]

W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Nanostructuring GaN using microsphere lithography,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(1), 76–79 (2008).
[Crossref]

H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, “Fabrication and photoluminescence of InGaN-based nanorods fabricated by plasma etching with nanoscale nickel metal islands,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 24(4), 1909–1912 (2006).
[Crossref]

Jpn. J. Appl. Phys. (3)

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2), L382–L385 (1997).
[Crossref]

S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32(Part 2), L8–L11 (1993).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. 35(Part 2), L217–L220 (1996).
[Crossref]

Nanotechnology (3)

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[Crossref]

M. Latzel, P. Büttner, G. Sarau, K. Höflich, M. Heilmann, W. Chen, X. Wen, G. Conibeer, and S. H. Christiansen, “Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation,” Nanotechnology 28(5), 055201 (2017).
[Crossref]

N. P. Reddy, S. Naureen, S. Mokkapati, K. Vora, N. Shahid, F. Karouta, H. H. Tan, and C. Jagadish, “Enhanced luminescence from GaN nanopillar arrays fabricated using a top-down process,” Nanotechnology 27(6), 065304 (2016).
[Crossref]

Opt. Express (4)

Phys. Rev. Lett. (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Phys. Status Solidi (1)

S. Keller, N. A. Fichtenbaum, C. Schaake, C. J. Neufeld, A. David, E. Matioli, Y. Wu, S. P. DenBaars, J. S. Speck, C. Weisbuch, and U. K. Mishra, “Optical properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi quantum wells,” Phys. Status Solidi 244(6), 1797–1801 (2007).
[Crossref]

Phys. Status Solidi RRL (1)

K. A. Bulashevich and S. Yu Karpov, “Impact of surface recombination on efficiency of III-nitride light-emitting diodes,” Phys. Status Solidi RRL 10(6), 480–484 (2016).
[Crossref]

Rep. Prog. Phys. (1)

M. A. Moram and M. E. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys. 72(3), 036502 (2009).
[Crossref]

Other (1)

SiLENSe Version 5.12, http://www.str-soft.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the epitaxial structure grown by MOCVD and (b) geometry of the etched nanopatterned material.
Fig. 2.
Fig. 2. Scanning electron microscope (SEM) images of colloidal mask depositions (a-d) and the resulting nanopatterned materials after plasma etching (e-h).
Fig. 3.
Fig. 3. On (a),(c) and off-axis (b),(d) RSMs of a planar InGaN/GaN MQW sample. The (0002) RSMs in (a) and (c) were measured with the same stage angles (around [0002]) as the off-axis RSMs in (b) and (d), respectively. In some scans, higher order superlattice fringes appear below/above the InGaN or GaN peaks. The large diffuse streak is due to the x-ray monochromator divergence (i.e., parallel to the 2θ direction), and the peak broadening in panel (d) is due to a large x-ray spot on the sample at grazing incidence (ω ∼ 11° and near normal takeoff for 2θ ∼ 100°). Units are inverse Angstroms (Å−1).
Fig. 4.
Fig. 4. Example reciprocal space maps for (a) planar and (b) patterned (drod = 250 nm) InGaN/GaN MQW samples, with a summary of strain relaxation values (R) shown in (c). R values calculated from different reflections were averaged with the standard deviation representing the error bar. Diameter (of the rod) refers to the location of the active well region.
Fig. 5.
Fig. 5. Peak wavelength of PL emission at 13 K from planar and patterned InGaN/GaN MQW structures for different excitation power densities at 405 nm.
Fig. 6.
Fig. 6. (a) Simulated energy band diagram and (b) electric field profiles for a single 3 nm InGaN quantum well (see text for details) with different degrees of in-plane relaxation from 0–32%. Relaxation values were chosen to represent the experimental values determined by XRD RSMs. The position axis, referenced to the substrate position, lies along the [0001] growth direction with only the active region displayed. Inset in (a) shows a zoom of the conduction band, where lower band tilt can be seen for greater relaxation.

Tables (1)

Tables Icon

Table 1. Measured a and c Lattice Constants of GaN and InGaN for Each Sample (A-D), in Planar and Nanopatterned Forms. Lattice Constant Values are Listed in Angstroms.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ d d r e f = Δ θ m e a s cot θ r e f .
1 d 2 = 4 3 h 2 + h k + k 2 a 2 + l 2 c 2 ,
Q x h k i l = cos ω cos ( 2 θ ω ) λ
Q z h k i l = sin ω + sin ( 2 θ ω ) λ ,
R = a m e a s I n G a N a m e a s G a N a r e f I n G a N ( x ) a r e f G a N .

Metrics