Abstract

Chalcogenide glasses possess novel optical property in infrared range, which make them ideal candidates for photonic devices by laser direct writing. Precisely control of the refractive index manipulation in the material is the key to achieve high quality optical devices. In this work, diffraction gratings in chalcogenide As2Se3 thin films were fabricated with femtosecond laser direct writing and its refractive index change was carefully studied. Grating diffraction efficiency was measured from visible to near-infrared light by using multiple single-wavelength lasers and a supercontinuum laser. Clear diffraction patterns and high diffraction efficiency indicated the good optical quality of the prepared gratings. Results show that the grating with period of 5 µm inscribed under pulse energy of 30 nJ demonstrated a 1st-order diffraction efficiency of 30% at 808 nm testing wavelength, due to the changes of refractive index and absorption. The relationship of the change of refractive index and absorption coefficient of film under different laser irradiation intensity is carefully studied. The maximum refractive index change was estimated to be 0.087 at 808 nm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photoinduced refractive index change in As2Se3 by 633nm illumination

A. C. van Popta, R. G. DeCorby, C. J. Haugen, T. Robinson, J. N. McMullin, D. Tonchev, and S. O. Kasap
Opt. Express 10(15) 639-644 (2002)

Direct laser writing of relief diffraction gratings into a bulk chalcogenide glass

Tomas Kohoutek, Mark A. Hughes, Jiri Orava, Morio Mastumoto, Takashi Misumi, Hiroyasu Kawashima, Takenobu Suzuki, and Yasutake Ohishi
J. Opt. Soc. Am. B 29(10) 2779-2786 (2012)

Direct femtosecond laser writing of waveguides in As2S3 thin films

Arnaud Zoubir, Martin Richardson, Clara Rivero, Alfons Schulte, Cedric Lopez, Kathleen Richardson, Nicolas Hô, and Réal Vallée
Opt. Lett. 29(7) 748-750 (2004)

References

  • View by:
  • |
  • |
  • |

  1. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
    [Crossref]
  2. C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
    [Crossref]
  3. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
    [Crossref]
  4. H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
    [Crossref]
  5. Y. Xu, H. Guo, X. Xiao, P. Wang, X. Cui, M. Lu, C. Lin, S. Dai, and B. Peng, “High Verdet constants and diamagnetic responses of GeS2-In2S3-PbI2 chalcogenide glasses for integrated optics applications,” Opt. Express 25(17), 20410 (2017).
    [Crossref]
  6. A. F. Abouraddy, G. Tao, J. J. Kaufman, and S. Shabahang, “Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nanotapers,” J. Opt. Soc. Am. B 30(9), 2498–2506 (2013).
    [Crossref]
  7. K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Opt. Express 17(25), 22393–22400 (2009).
    [Crossref]
  8. Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
    [Crossref]
  9. D. Maystre, “Diffraction gratings: An amazing phenomenon,” C. R. Phys. 14(4), 381–392 (2013).
    [Crossref]
  10. X. Wang, X. Liu, and X. Wang, “Hydrogel diffraction grating as sensor: A tool for studying volume phase transition of thermo-responsive hydrogel,” Sens. Actuators, B 204, 611–616 (2014).
    [Crossref]
  11. E. G. Loewen and E. Popov, “Diffraction gratings and applications,” Lasers Optics & Photonics (2012).
  12. C. Graulig, R. Riesenberg, and A. Grjasnow, “Imaging and dispersion analysis of a diffractive optical element for infrared sensors,” Optik (Munich, Ger.) 124(14), 1777–1782 (2013).
    [Crossref]
  13. G. S. Spagnolo and D. Ambrosini, “Diffractive optical element based sensor for roughness measurement,” Sens. Actuators, A 100(2-3), 180–186 (2002).
    [Crossref]
  14. Q. Tan, Q. He, Y. Yan, G. Jin, and D. Xu, “Spatial-frequency spectrum analysis of the performance of diffractive optical element for beam smoothing,” Optik (Munich, Ger.) 113(4), 163–166 (2002).
    [Crossref]
  15. D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13(8), 3079–3086 (2005).
    [Crossref]
  16. P. Zhang, Z. Zhao, J. Zeng, Q. Zhang, X. Wang, F. Chen, X. Shen, and S. Dai, “Fabrication and characterization of Ge20As20Se15Te45 chalcogenide glass for photonic crystal by nanoimprint lithography,” Opt. Mater. Express 6(6), 1853–1860 (2016).
    [Crossref]
  17. D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A 104(3), 769–773 (2011).
    [Crossref]
  18. D. Dai, J. J. He, and S. He, “Elimination of multimode effects in a silicon-on-insulator etched diffraction grating demultiplexer with bi-level taper structure,” IEEE J. Sel. Top. Quantum Electron. 11(2), 439–443 (2005).
    [Crossref]
  19. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
    [Crossref]
  20. M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett. 35(10), 1662–1664 (2010).
    [Crossref]
  21. C. Meneghini and A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” J. Opt. Soc. Am. B 15(12), 2946–2950 (1998).
    [Crossref]
  22. C. Florea, J. S. Sanghera, and I. D. Aggarwal, “Direct-write gratings in chalcogenide bulk glasses and fibers using a femtosecond laser,” Opt. Mater. 30(10), 1603–1606 (2008).
    [Crossref]
  23. D. G. MacLachlan, R. R. Thomson, C. R. Cunningham, and D. Lee, “Mid-Infrared Volume Phase Gratings Manufactured using Ultrafast Laser Inscription,” Opt. Mater. Express 3(10), 1616–1624 (2013).
    [Crossref]
  24. M. S. El-Bana, R. Bohdan, and S. S. Fouad, “Optical characteristics and holographic gratings recording on As30Se70 thin films,” J. Alloys Compd. 686, 115–121 (2016).
    [Crossref]
  25. T. Cardinal, O. M. Efimov, L. B. Glebov, K. C. Richardson, and E. V. Stryland, “Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
    [Crossref]
  26. J. Wang, B. He, S. Dai, J. Zhu, and Z. Wei, “Waveguide in Tm3+-Doped Chalcogenide Glass Fabricated by Femtosecond Laser Direct Writing,” IEEE Photonics Technol. Lett. 27(3), 237–240 (2015).
    [Crossref]
  27. D. Pudo, E. C. Mägi, and B. J. Eggleton, “Long-period gratings in chalcogenide fibers,” Opt. Express 14(9), 3763–3766 (2006).
    [Crossref]
  28. G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379 (2015).
    [Crossref]
  29. L. Zhu, D. Yang, L. Wang, J. Zeng, Q. Zhang, M. Xiea, S. Zhang, P. Zhang, and S. Dai, “Optical and thermal stability of Ge-As-Se chalcogenide glasses for femtosecond laser writing,” Opt.Matter 85, 220–225 (2018).
    [Crossref]
  30. T. G. Robinson, R. G. Decorby, J. N. Mcmullin, C. J. Haugen, S. O. Kasap, and T. Dancho, “Strong Bragg gratings photoinduced by 633-nm illumination in evaporated As2Se3 thin films,” Opt. Lett. 28(6), 459–461 (2003).
    [Crossref]
  31. Y. Jin, B. Song, Z. Jia, Y. Zhang, C. Lin, X. Wang, and S. Dai, “Improvement of Swanepoel method for deriving the thickness and the optical properties of chalcogenide thin films,” Opt. Express 25(1), 440–451 (2017).
    [Crossref]
  32. Y. Jin, B. Song, C. Lin, P. Zhang, S. Dai, T. Xu, and Q. Nie, “Extension of the Swanepoel method for obtaining the refractive index of chalcogenide thin films accurately at an arbitrary wavenumber,” Opt. Express 25(25), 31273–31280 (2017).
    [Crossref]
  33. Y. Ohmachi and T. Igo, “Laser-Induced Refractive-Index Change in As–S–Ge Glasses,” Appl. Phys. Lett. 20(12), 506–508 (1972).
    [Crossref]
  34. A. B. Seddon, “Chalcogenide glasses: A review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
    [Crossref]
  35. M. Mishra, R. Chauhan, A. Katiyar, and K. K. Srivastava, “Optical properties of amorphous thin film of Se-Te-Ag system prepared by using thermal evaporation technique,” Prog. Nat. Sci. 21(1), 36–39 (2011).
    [Crossref]

2018 (2)

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

L. Zhu, D. Yang, L. Wang, J. Zeng, Q. Zhang, M. Xiea, S. Zhang, P. Zhang, and S. Dai, “Optical and thermal stability of Ge-As-Se chalcogenide glasses for femtosecond laser writing,” Opt.Matter 85, 220–225 (2018).
[Crossref]

2017 (4)

2016 (2)

2015 (2)

J. Wang, B. He, S. Dai, J. Zhu, and Z. Wei, “Waveguide in Tm3+-Doped Chalcogenide Glass Fabricated by Femtosecond Laser Direct Writing,” IEEE Photonics Technol. Lett. 27(3), 237–240 (2015).
[Crossref]

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379 (2015).
[Crossref]

2014 (1)

X. Wang, X. Liu, and X. Wang, “Hydrogel diffraction grating as sensor: A tool for studying volume phase transition of thermo-responsive hydrogel,” Sens. Actuators, B 204, 611–616 (2014).
[Crossref]

2013 (4)

2011 (2)

M. Mishra, R. Chauhan, A. Katiyar, and K. K. Srivastava, “Optical properties of amorphous thin film of Se-Te-Ag system prepared by using thermal evaporation technique,” Prog. Nat. Sci. 21(1), 36–39 (2011).
[Crossref]

D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A 104(3), 769–773 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (2)

C. Florea, J. S. Sanghera, and I. D. Aggarwal, “Direct-write gratings in chalcogenide bulk glasses and fibers using a femtosecond laser,” Opt. Mater. 30(10), 1603–1606 (2008).
[Crossref]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

2006 (2)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

D. Pudo, E. C. Mägi, and B. J. Eggleton, “Long-period gratings in chalcogenide fibers,” Opt. Express 14(9), 3763–3766 (2006).
[Crossref]

2005 (2)

D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13(8), 3079–3086 (2005).
[Crossref]

D. Dai, J. J. He, and S. He, “Elimination of multimode effects in a silicon-on-insulator etched diffraction grating demultiplexer with bi-level taper structure,” IEEE J. Sel. Top. Quantum Electron. 11(2), 439–443 (2005).
[Crossref]

2003 (2)

2002 (2)

G. S. Spagnolo and D. Ambrosini, “Diffractive optical element based sensor for roughness measurement,” Sens. Actuators, A 100(2-3), 180–186 (2002).
[Crossref]

Q. Tan, Q. He, Y. Yan, G. Jin, and D. Xu, “Spatial-frequency spectrum analysis of the performance of diffractive optical element for beam smoothing,” Optik (Munich, Ger.) 113(4), 163–166 (2002).
[Crossref]

2001 (2)

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

T. Cardinal, O. M. Efimov, L. B. Glebov, K. C. Richardson, and E. V. Stryland, “Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

1998 (1)

1995 (1)

A. B. Seddon, “Chalcogenide glasses: A review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

1972 (1)

Y. Ohmachi and T. Igo, “Laser-Induced Refractive-Index Change in As–S–Ge Glasses,” Appl. Phys. Lett. 20(12), 506–508 (1972).
[Crossref]

Abouraddy, A. F.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379 (2015).
[Crossref]

A. F. Abouraddy, G. Tao, J. J. Kaufman, and S. Shabahang, “Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nanotapers,” J. Opt. Soc. Am. B 30(9), 2498–2506 (2013).
[Crossref]

Aggarwal, I. D.

C. Florea, J. S. Sanghera, and I. D. Aggarwal, “Direct-write gratings in chalcogenide bulk glasses and fibers using a femtosecond laser,” Opt. Mater. 30(10), 1603–1606 (2008).
[Crossref]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Ambrosini, D.

G. S. Spagnolo and D. Ambrosini, “Diffractive optical element based sensor for roughness measurement,” Sens. Actuators, A 100(2-3), 180–186 (2002).
[Crossref]

Baba, T.

Badding, J. V.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379 (2015).
[Crossref]

Ballato, J.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379 (2015).
[Crossref]

Barthélémy, A.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Bashkansky, M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Beresna, M.

Bohdan, R.

M. S. El-Bana, R. Bohdan, and S. S. Fouad, “Optical characteristics and holographic gratings recording on As30Se70 thin films,” J. Alloys Compd. 686, 115–121 (2016).
[Crossref]

Cardinal, T.

T. Cardinal, O. M. Efimov, L. B. Glebov, K. C. Richardson, and E. V. Stryland, “Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Chauhan, R.

M. Mishra, R. Chauhan, A. Katiyar, and K. K. Srivastava, “Optical properties of amorphous thin film of Se-Te-Ag system prepared by using thermal evaporation technique,” Prog. Nat. Sci. 21(1), 36–39 (2011).
[Crossref]

Chen, F.

Couderc, V.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Cui, X.

Cunningham, C. R.

Dai, D.

D. Dai, J. J. He, and S. He, “Elimination of multimode effects in a silicon-on-insulator etched diffraction grating demultiplexer with bi-level taper structure,” IEEE J. Sel. Top. Quantum Electron. 11(2), 439–443 (2005).
[Crossref]

Dai, S.

Dancho, T.

Danto, S.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379 (2015).
[Crossref]

Deckoff-Jones, S.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Decorby, R. G.

Deubel, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Du, Q.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Du, T.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Dutton, Z.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Ebendorff-Heidepriem, H.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379 (2015).
[Crossref]

Efimov, O. M.

T. Cardinal, O. M. Efimov, L. B. Glebov, K. C. Richardson, and E. V. Stryland, “Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Eggleton, B. J.

El-Bana, M. S.

M. S. El-Bana, R. Bohdan, and S. S. Fouad, “Optical characteristics and holographic gratings recording on As30Se70 thin films,” J. Alloys Compd. 686, 115–121 (2016).
[Crossref]

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Englund, D.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Fink, Y.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379 (2015).
[Crossref]

Florea, C.

C. Florea, J. S. Sanghera, and I. D. Aggarwal, “Direct-write gratings in chalcogenide bulk glasses and fibers using a femtosecond laser,” Opt. Mater. 30(10), 1603–1606 (2008).
[Crossref]

Florea, C. M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Fouad, S. S.

M. S. El-Bana, R. Bohdan, and S. S. Fouad, “Optical characteristics and holographic gratings recording on As30Se70 thin films,” J. Alloys Compd. 686, 115–121 (2016).
[Crossref]

Freeman, D.

Glebov, L. B.

T. Cardinal, O. M. Efimov, L. B. Glebov, K. C. Richardson, and E. V. Stryland, “Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Graulig, C.

C. Graulig, R. Riesenberg, and A. Grjasnow, “Imaging and dispersion analysis of a diffractive optical element for infrared sensors,” Optik (Munich, Ger.) 124(14), 1777–1782 (2013).
[Crossref]

Grjasnow, A.

C. Graulig, R. Riesenberg, and A. Grjasnow, “Imaging and dispersion analysis of a diffractive optical element for infrared sensors,” Optik (Munich, Ger.) 124(14), 1777–1782 (2013).
[Crossref]

Gu, T.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Guo, H.

Hamachi, Y.

Haugen, C. J.

He, B.

J. Wang, B. He, S. Dai, J. Zhu, and Z. Wei, “Waveguide in Tm3+-Doped Chalcogenide Glass Fabricated by Femtosecond Laser Direct Writing,” IEEE Photonics Technol. Lett. 27(3), 237–240 (2015).
[Crossref]

He, J. J.

D. Dai, J. J. He, and S. He, “Elimination of multimode effects in a silicon-on-insulator etched diffraction grating demultiplexer with bi-level taper structure,” IEEE J. Sel. Top. Quantum Electron. 11(2), 439–443 (2005).
[Crossref]

He, Q.

Q. Tan, Q. He, Y. Yan, G. Jin, and D. Xu, “Spatial-frequency spectrum analysis of the performance of diffractive optical element for beam smoothing,” Optik (Munich, Ger.) 113(4), 163–166 (2002).
[Crossref]

He, S.

D. Dai, J. J. He, and S. He, “Elimination of multimode effects in a silicon-on-insulator etched diffraction grating demultiplexer with bi-level taper structure,” IEEE J. Sel. Top. Quantum Electron. 11(2), 439–443 (2005).
[Crossref]

Hewak, D.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Hu, J.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Huang, C.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Huang, Y.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Igo, T.

Y. Ohmachi and T. Igo, “Laser-Induced Refractive-Index Change in As–S–Ge Glasses,” Appl. Phys. Lett. 20(12), 506–508 (1972).
[Crossref]

Jia, Z.

Jin, G.

Q. Tan, Q. He, Y. Yan, G. Jin, and D. Xu, “Spatial-frequency spectrum analysis of the performance of diffractive optical element for beam smoothing,” Optik (Munich, Ger.) 113(4), 163–166 (2002).
[Crossref]

Jin, Y.

John, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Kasap, S. O.

Katiyar, A.

M. Mishra, R. Chauhan, A. Katiyar, and K. K. Srivastava, “Optical properties of amorphous thin film of Se-Te-Ag system prepared by using thermal evaporation technique,” Prog. Nat. Sci. 21(1), 36–39 (2011).
[Crossref]

Kaufman, J. J.

Kazansky, P. G.

Kita, D.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Kong, J.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Kudriašov, V.

D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A 104(3), 769–773 (2011).
[Crossref]

Lee, D.

Li, J.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Li, L.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Lin, C.

Lin, H.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Liu, X.

X. Wang, X. Liu, and X. Wang, “Hydrogel diffraction grating as sensor: A tool for studying volume phase transition of thermo-responsive hydrogel,” Sens. Actuators, B 204, 611–616 (2014).
[Crossref]

Loewen, E. G.

E. G. Loewen and E. Popov, “Diffraction gratings and applications,” Lasers Optics & Photonics (2012).

Lu, M.

Lucas, J.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Luo, Z.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Luther-Davies, B.

MacLachlan, D. G.

Madden, S.

Mägi, E. C.

Malinauskas, M.

D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A 104(3), 769–773 (2011).
[Crossref]

Maystre, D.

D. Maystre, “Diffraction gratings: An amazing phenomenon,” C. R. Phys. 14(4), 381–392 (2013).
[Crossref]

Mcmullin, J. N.

Meneghini, C.

Mishra, M.

M. Mishra, R. Chauhan, A. Katiyar, and K. K. Srivastava, “Optical properties of amorphous thin film of Se-Te-Ag system prepared by using thermal evaporation technique,” Prog. Nat. Sci. 21(1), 36–39 (2011).
[Crossref]

Nguyen, V. Q.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Nie, Q.

Novak, S.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Ohmachi, Y.

Y. Ohmachi and T. Igo, “Laser-Induced Refractive-Index Change in As–S–Ge Glasses,” Appl. Phys. Lett. 20(12), 506–508 (1972).
[Crossref]

Ozin, G. A.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Paipulas, D.

D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A 104(3), 769–773 (2011).
[Crossref]

Peng, B.

Pérez-Willard, F.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Popov, E.

E. G. Loewen and E. Popov, “Diffraction gratings and applications,” Lasers Optics & Photonics (2012).

Pudo, D.

Pureza, P.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Quémard, C.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Richardson, K.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Richardson, K. C.

T. Cardinal, O. M. Efimov, L. B. Glebov, K. C. Richardson, and E. V. Stryland, “Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Riesenberg, R.

C. Graulig, R. Riesenberg, and A. Grjasnow, “Imaging and dispersion analysis of a diffractive optical element for infrared sensors,” Optik (Munich, Ger.) 124(14), 1777–1782 (2013).
[Crossref]

Robinson, T. G.

Sanghera, J. S.

C. Florea, J. S. Sanghera, and I. D. Aggarwal, “Direct-write gratings in chalcogenide bulk glasses and fibers using a femtosecond laser,” Opt. Mater. 30(10), 1603–1606 (2008).
[Crossref]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Seddon, A. B.

A. B. Seddon, “Chalcogenide glasses: A review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

Shabahang, S.

Shaw, L. B.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Shen, X.

Shiue, R.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Sirutkaitis, V.

D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A 104(3), 769–773 (2011).
[Crossref]

Smektala, F.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Smilgevicius, V.

D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A 104(3), 769–773 (2011).
[Crossref]

Song, B.

Song, Y.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Spagnolo, G. S.

G. S. Spagnolo and D. Ambrosini, “Diffractive optical element based sensor for roughness measurement,” Sens. Actuators, A 100(2-3), 180–186 (2002).
[Crossref]

Srivastava, K. K.

M. Mishra, R. Chauhan, A. Katiyar, and K. K. Srivastava, “Optical properties of amorphous thin film of Se-Te-Ag system prepared by using thermal evaporation technique,” Prog. Nat. Sci. 21(1), 36–39 (2011).
[Crossref]

Stolyarov, A. M.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379 (2015).
[Crossref]

Stryland, E. V.

T. Cardinal, O. M. Efimov, L. B. Glebov, K. C. Richardson, and E. V. Stryland, “Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Suzuki, K.

Tan, Q.

Q. Tan, Q. He, Y. Yan, G. Jin, and D. Xu, “Spatial-frequency spectrum analysis of the performance of diffractive optical element for beam smoothing,” Optik (Munich, Ger.) 113(4), 163–166 (2002).
[Crossref]

Tao, G.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379 (2015).
[Crossref]

A. F. Abouraddy, G. Tao, J. J. Kaufman, and S. Shabahang, “Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nanotapers,” J. Opt. Soc. Am. B 30(9), 2498–2506 (2013).
[Crossref]

Thomson, R. R.

Villeneuve, A.

von Freymann, G.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Wang, H.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Wang, J.

J. Wang, B. He, S. Dai, J. Zhu, and Z. Wei, “Waveguide in Tm3+-Doped Chalcogenide Glass Fabricated by Femtosecond Laser Direct Writing,” IEEE Photonics Technol. Lett. 27(3), 237–240 (2015).
[Crossref]

Wang, K.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Wang, L.

L. Zhu, D. Yang, L. Wang, J. Zeng, Q. Zhang, M. Xiea, S. Zhang, P. Zhang, and S. Dai, “Optical and thermal stability of Ge-As-Se chalcogenide glasses for femtosecond laser writing,” Opt.Matter 85, 220–225 (2018).
[Crossref]

Wang, P.

Wang, X.

Y. Jin, B. Song, Z. Jia, Y. Zhang, C. Lin, X. Wang, and S. Dai, “Improvement of Swanepoel method for deriving the thickness and the optical properties of chalcogenide thin films,” Opt. Express 25(1), 440–451 (2017).
[Crossref]

P. Zhang, Z. Zhao, J. Zeng, Q. Zhang, X. Wang, F. Chen, X. Shen, and S. Dai, “Fabrication and characterization of Ge20As20Se15Te45 chalcogenide glass for photonic crystal by nanoimprint lithography,” Opt. Mater. Express 6(6), 1853–1860 (2016).
[Crossref]

X. Wang, X. Liu, and X. Wang, “Hydrogel diffraction grating as sensor: A tool for studying volume phase transition of thermo-responsive hydrogel,” Sens. Actuators, B 204, 611–616 (2014).
[Crossref]

X. Wang, X. Liu, and X. Wang, “Hydrogel diffraction grating as sensor: A tool for studying volume phase transition of thermo-responsive hydrogel,” Sens. Actuators, B 204, 611–616 (2014).
[Crossref]

Wegener, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Wei, Z.

J. Wang, B. He, S. Dai, J. Zhu, and Z. Wei, “Waveguide in Tm3+-Doped Chalcogenide Glass Fabricated by Femtosecond Laser Direct Writing,” IEEE Photonics Technol. Lett. 27(3), 237–240 (2015).
[Crossref]

Wong, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Xiao, X.

Xiea, M.

L. Zhu, D. Yang, L. Wang, J. Zeng, Q. Zhang, M. Xiea, S. Zhang, P. Zhang, and S. Dai, “Optical and thermal stability of Ge-As-Se chalcogenide glasses for femtosecond laser writing,” Opt.Matter 85, 220–225 (2018).
[Crossref]

Xu, D.

Q. Tan, Q. He, Y. Yan, G. Jin, and D. Xu, “Spatial-frequency spectrum analysis of the performance of diffractive optical element for beam smoothing,” Optik (Munich, Ger.) 113(4), 163–166 (2002).
[Crossref]

Xu, T.

Xu, Y.

Yadav, A.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Yan, Y.

Q. Tan, Q. He, Y. Yan, G. Jin, and D. Xu, “Spatial-frequency spectrum analysis of the performance of diffractive optical element for beam smoothing,” Optik (Munich, Ger.) 113(4), 163–166 (2002).
[Crossref]

Yang, D.

L. Zhu, D. Yang, L. Wang, J. Zeng, Q. Zhang, M. Xiea, S. Zhang, P. Zhang, and S. Dai, “Optical and thermal stability of Ge-As-Se chalcogenide glasses for femtosecond laser writing,” Opt.Matter 85, 220–225 (2018).
[Crossref]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Zeng, J.

L. Zhu, D. Yang, L. Wang, J. Zeng, Q. Zhang, M. Xiea, S. Zhang, P. Zhang, and S. Dai, “Optical and thermal stability of Ge-As-Se chalcogenide glasses for femtosecond laser writing,” Opt.Matter 85, 220–225 (2018).
[Crossref]

P. Zhang, Z. Zhao, J. Zeng, Q. Zhang, X. Wang, F. Chen, X. Shen, and S. Dai, “Fabrication and characterization of Ge20As20Se15Te45 chalcogenide glass for photonic crystal by nanoimprint lithography,” Opt. Mater. Express 6(6), 1853–1860 (2016).
[Crossref]

Zhang, P.

Zhang, Q.

L. Zhu, D. Yang, L. Wang, J. Zeng, Q. Zhang, M. Xiea, S. Zhang, P. Zhang, and S. Dai, “Optical and thermal stability of Ge-As-Se chalcogenide glasses for femtosecond laser writing,” Opt.Matter 85, 220–225 (2018).
[Crossref]

P. Zhang, Z. Zhao, J. Zeng, Q. Zhang, X. Wang, F. Chen, X. Shen, and S. Dai, “Fabrication and characterization of Ge20As20Se15Te45 chalcogenide glass for photonic crystal by nanoimprint lithography,” Opt. Mater. Express 6(6), 1853–1860 (2016).
[Crossref]

Zhang, S.

L. Zhu, D. Yang, L. Wang, J. Zeng, Q. Zhang, M. Xiea, S. Zhang, P. Zhang, and S. Dai, “Optical and thermal stability of Ge-As-Se chalcogenide glasses for femtosecond laser writing,” Opt.Matter 85, 220–225 (2018).
[Crossref]

Zhang, W.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Zhang, Y.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Y. Jin, B. Song, Z. Jia, Y. Zhang, C. Lin, X. Wang, and S. Dai, “Improvement of Swanepoel method for deriving the thickness and the optical properties of chalcogenide thin films,” Opt. Express 25(1), 440–451 (2017).
[Crossref]

Zhao, Z.

Zheng, H.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Zhong, H.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Zhu, J.

J. Wang, B. He, S. Dai, J. Zhu, and Z. Wei, “Waveguide in Tm3+-Doped Chalcogenide Glass Fabricated by Femtosecond Laser Direct Writing,” IEEE Photonics Technol. Lett. 27(3), 237–240 (2015).
[Crossref]

Zhu, L.

L. Zhu, D. Yang, L. Wang, J. Zeng, Q. Zhang, M. Xiea, S. Zhang, P. Zhang, and S. Dai, “Optical and thermal stability of Ge-As-Se chalcogenide glasses for femtosecond laser writing,” Opt.Matter 85, 220–225 (2018).
[Crossref]

Adv. Mater. (1)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Adv. Opt. Photonics (1)

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379 (2015).
[Crossref]

Appl. Phys. A (1)

D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A 104(3), 769–773 (2011).
[Crossref]

Appl. Phys. Lett. (1)

Y. Ohmachi and T. Igo, “Laser-Induced Refractive-Index Change in As–S–Ge Glasses,” Appl. Phys. Lett. 20(12), 506–508 (1972).
[Crossref]

C. R. Phys. (1)

D. Maystre, “Diffraction gratings: An amazing phenomenon,” C. R. Phys. 14(4), 381–392 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Dai, J. J. He, and S. He, “Elimination of multimode effects in a silicon-on-insulator etched diffraction grating demultiplexer with bi-level taper structure,” IEEE J. Sel. Top. Quantum Electron. 11(2), 439–443 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Wang, B. He, S. Dai, J. Zhu, and Z. Wei, “Waveguide in Tm3+-Doped Chalcogenide Glass Fabricated by Femtosecond Laser Direct Writing,” IEEE Photonics Technol. Lett. 27(3), 237–240 (2015).
[Crossref]

J. Alloys Compd. (1)

M. S. El-Bana, R. Bohdan, and S. S. Fouad, “Optical characteristics and holographic gratings recording on As30Se70 thin films,” J. Alloys Compd. 686, 115–121 (2016).
[Crossref]

J. Non-Cryst. Solids (3)

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: A review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Solids (1)

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Nat. Photonics (1)

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide Glass-on-Graphene Photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. (2)

T. Cardinal, O. M. Efimov, L. B. Glebov, K. C. Richardson, and E. V. Stryland, “Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

C. Florea, J. S. Sanghera, and I. D. Aggarwal, “Direct-write gratings in chalcogenide bulk glasses and fibers using a femtosecond laser,” Opt. Mater. 30(10), 1603–1606 (2008).
[Crossref]

Opt. Mater. Express (2)

Opt.Matter (1)

L. Zhu, D. Yang, L. Wang, J. Zeng, Q. Zhang, M. Xiea, S. Zhang, P. Zhang, and S. Dai, “Optical and thermal stability of Ge-As-Se chalcogenide glasses for femtosecond laser writing,” Opt.Matter 85, 220–225 (2018).
[Crossref]

Optik (Munich, Ger.) (2)

Q. Tan, Q. He, Y. Yan, G. Jin, and D. Xu, “Spatial-frequency spectrum analysis of the performance of diffractive optical element for beam smoothing,” Optik (Munich, Ger.) 113(4), 163–166 (2002).
[Crossref]

C. Graulig, R. Riesenberg, and A. Grjasnow, “Imaging and dispersion analysis of a diffractive optical element for infrared sensors,” Optik (Munich, Ger.) 124(14), 1777–1782 (2013).
[Crossref]

Photonics Res. (1)

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Prog. Nat. Sci. (1)

M. Mishra, R. Chauhan, A. Katiyar, and K. K. Srivastava, “Optical properties of amorphous thin film of Se-Te-Ag system prepared by using thermal evaporation technique,” Prog. Nat. Sci. 21(1), 36–39 (2011).
[Crossref]

Sens. Actuators, A (1)

G. S. Spagnolo and D. Ambrosini, “Diffractive optical element based sensor for roughness measurement,” Sens. Actuators, A 100(2-3), 180–186 (2002).
[Crossref]

Sens. Actuators, B (1)

X. Wang, X. Liu, and X. Wang, “Hydrogel diffraction grating as sensor: A tool for studying volume phase transition of thermo-responsive hydrogel,” Sens. Actuators, B 204, 611–616 (2014).
[Crossref]

Other (1)

E. G. Loewen and E. Popov, “Diffraction gratings and applications,” Lasers Optics & Photonics (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic of the experimental setup for direct laser writing of diffraction gratings in chalcogenide films
Fig. 2.
Fig. 2. Schematic of the experimental setup used for recording diffraction efficiency
Fig. 3.
Fig. 3. (a) Transmission curve and (inset) optical band gaps of As2Se3 films; (b) wavelength–refractive index graph and (inset) Raman shift of As2Se3 glass and films.
Fig. 4.
Fig. 4. Femtosecond laser direct writing surface roughness of a single line, and the inset is a microscope transmission images.
Fig. 5.
Fig. 5. Optical microscopy of the prepared gratings in As2Se3 thin film with different laser power irradiations.(a) 80 times and (b) 2000 times.
Fig. 6.
Fig. 6. Cross section of a grating with laser pulse energy of 30nJ. The inset is a partial enlarged view of the 30nJ grating topography.
Fig. 7.
Fig. 7. Diffraction patterns of recorded from a grating produced at 30nJ. (a) CW laser at λ=632.8 nm, (b) SC source with wavelength from 400 nm to 2200 nm, and (c) an 808 nm laser.
Fig. 8.
Fig. 8. (a)Contrast diagrams of diffraction efficiency using a SC source and (b) effect of laser power (15nJ–110nJ) on diffraction efficiency at 800nm.
Fig. 9.
Fig. 9. (a) Contrast diagram of diffraction efficiency using the SC source and CW laser at different wavelengths (980 nm and 1550 nm); (b) effect of laser power (15nJ-30nJ) on refractive index change
Fig. 10.
Fig. 10. The (a) transmission spectrum, (b) refractive index and (c) absorption coefficient of the IRR (25 nJ) and UN-IRR (0nJ) calculated by Swanepoel method.
Fig. 11.
Fig. 11. Evolution of the diffraction efficiency as a function of the wavelength. (a) Calculated by Swanepoel method in combination with Eq. (2) and (b) actual measured.

Tables (1)

Tables Icon

Table 1. Calculated refractive index modulation under different laser power irradiations

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I 0 I i = exp ( KH cos α ) [ co s 2 ( π Δ nH λ cos α ) + cos h 2 ( Δ KH 4 cos α ) 1 ] I 1 I i = exp ( KH cos α ) [ si n 2 ( π Δ nH λ cos α ) + sin h 2 ( Δ KH 4 cos α ) ]
η = I 1 I 0 = si n 2 ( π Δ nH λ cos α ) + sin h 2 ( Δ KH 4 cos α ) co s 2 ( π Δ nH λ cos α ) + cos h 2 ( Δ KH 4 cos α ) 1
η = I 1 I 0 = si n 2 ( π Δ nH λ cos α ) co s 2 ( π Δ nH λ cos α ) = ta n 2 ( π Δ nH λ cos α )
Δ n = λ cos α arctan ( η ) π H
n = 2 s T M T m T M T m + ( 2 s T M T m T M T m + s 2 + 1 2 ) 2 s 2
x = 8 n 2 s T M + ( n 2 1 ) ( n 2 s 2 ) { [ 8 n 2 s T M + ( n 2 1 ) ( n 2 s 2 ) ] 2 ( n 2 1 ) 3 ( n 2 s 4 ) } ( n 1 ) 3 ( n s 2 )
α = l n x d 2 ¯

Metrics