Abstract

In this article, we demonstrate a technique to enhance the Terahertz (THz) emission bandwidth from photo-conductive antenna (PCA) based on semiconducting substrates by manipulating the surface carrier dynamics of the semiconductor. Bandwidths in PCAs are limited by the decay of the photogenerated charge carriers, which in case of SI-GaAs is in the orders of 50 picoseconds. We show, with an embedded design of plasmonic meta-surface in the photoconductive gap of a PCA, it is possible to enhance the emission bandwidths by more than 50 percent. This is due to the fact that these nano-structures act as local recombination sites for the photogenerated carriers, effectively reducing the carriers’ lifetime. Additionally, the defect sites reduce the terminal current, thereby reducing the Joule heating in the device. Furthermore, the meta-surface also facilitates higher in-coupling of the exciting infrared light on to the PCA, thereby increasing the optical-to-THz conversion efficiency of the device.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation

Afshin Jooshesh, Faezeh Fesharaki, Vahid Bahrami-Yekta, Mahsa Mahtab, Thomas Tiedje, Thomas E. Darcie, and Reuven Gordon
Opt. Express 25(18) 22140-22148 (2017)

Plasmonic efficiency enhancement at the anode of strip line photoconductive terahertz emitters

Abhishek Singh, Stephan Winnerl, Jacob C. König-Otto, Daniel R. Stephan, Manfred Helm, and Harald Schneider
Opt. Express 24(20) 22628-22634 (2016)

Nanoplasmonics enhanced terahertz sources

Afshin Jooshesh, Levi Smith, Mostafa Masnadi-Shirazi, Vahid Bahrami-Yekta, Thomas Tiedje, Thomas E. Darcie, and Reuven Gordon
Opt. Express 22(23) 27992-28001 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
    [Crossref]
  2. H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
    [Crossref]
  3. K. Arts, R. Vervuurt, A. Bhattacharya, J. Gómez Rivas, J. W. Oosterbeek, and A. A. Bol, “Broadband optical response of graphene measured by terahertz time-domain spectroscopy and FTIR spectroscopy,” J. Appl. Phys. 124(7), 073105 (2018).
    [Crossref]
  4. A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
    [Crossref]
  5. J. Orenstein and J. S. Dodge, “Terahertz time-domain spectroscopy of transient metallic and superconducting states,” Phys. Rev. B: Condens. Matter Mater. Phys. 92(13), 134507 (2015).
    [Crossref]
  6. Z. Han, A. M. Soehartono, B. Gu, X. Wei, K.-T. Yong, and Y. Shi, “Tunable hybridization induced transparency for efficient terahertz sensing,” Opt. Express 27(6), 9032 (2019).
    [Crossref]
  7. R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
    [Crossref]
  8. I. Malhotra, K. Ranjan Jha, and G. Singh, “Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications,” Opt. Commun. 397, 129–139 (2017).
    [Crossref]
  9. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared, Millimeter, Terahertz Waves 32(2), 143–171 (2011).
    [Crossref]
  10. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  11. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [Crossref]
  12. S. A. Savinov, Y. A. Mityagin, A. A. Chistyakov, K. I. Kozlovsky, Y. A. Kuzishchin, V. A. Krivenkov, V. I. Egorkin, and I. P. Kazakov, “A study of emission power and spectrum of LT-GaAs based THz photoconductive antennas,” Phys. Procedia 73, 54–58 (2015).
    [Crossref]
  13. A. Jooshesh, F. Fesharaki, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation,” Opt. Express 25(18), 22140 (2017).
    [Crossref]
  14. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18(3), 313 (2001).
    [Crossref]
  15. G. Rana, A. Bhattacharya, A. Gupta, D. Ghindani, R. Jain, S. P. Duttagupta, and S. S. Prabhu, “A Polarization-Resolved Study of Nanopatterned Photoconductive Antenna for Enhanced Terahertz Emission,” IEEE Trans. Terahertz Sci. Technol. 9(2), 193–199 (2019).
    [Crossref]
  16. L. Hou and W. Shi, “An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability,” IEEE Trans. Electron Devices 60(5), 1619–1624 (2013).
    [Crossref]
  17. A. Singh and S. S. Prabhu, “Microlensless interdigitated photoconductive terahertz emitters,” Opt. Express 23(2), 1529 (2015).
    [Crossref]
  18. A. Gupta, G. Rana, A. Bhattacharya, A. Singh, R. Jain, R. D. Bapat, S. P. Duttagupta, and S. S. Prabhu, “Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation,” APL Photonics 3(5), 051706 (2018).
    [Crossref]
  19. N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol. 26(7), 075015 (2011).
    [Crossref]
  20. A. Singh, H. Surdi, V. V. Nikesh, S. S. Prabhu, and G. H. Döhler, “Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes,” AIP Adv. 3(12), 122106 (2013).
    [Crossref]
  21. A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T. E. Darcie, and R. Gordon, “Nanoplasmonics enhanced terahertz sources,” Opt. Express 22(23), 27992 (2014).
    [Crossref]
  22. N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small 14(44), 1802437 (2018).
    [Crossref]
  23. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
    [Crossref]
  24. C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high-power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
    [Crossref]
  25. J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
    [Crossref]
  26. W. Shi, X. F. Sun, J. Zeng, and W. L. Jia, “Carrier dynamics and terahertz radiation in large-aperture photoconductive antenna,” Proc. SPIE 6622, 662228 (2008).
    [Crossref]
  27. R. J. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range,” Opt. Express 22(16), 19411 (2014).
    [Crossref]
  28. P. C. Upadhya, W. Fan, A. Burnett, J. Cunningham, A. G. Davies, E. H. Linfield, J. Lloyd-Hughes, E. Castro-Camus, M. B. Johnston, and H. Beere, “Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna,” Opt. Lett. 32(16), 2297 (2007).
    [Crossref]
  29. F. Fesharaki, A. Jooshesh, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmonic antireflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
    [Crossref]
  30. A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
    [Crossref]
  31. A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
    [Crossref]

2019 (2)

G. Rana, A. Bhattacharya, A. Gupta, D. Ghindani, R. Jain, S. P. Duttagupta, and S. S. Prabhu, “A Polarization-Resolved Study of Nanopatterned Photoconductive Antenna for Enhanced Terahertz Emission,” IEEE Trans. Terahertz Sci. Technol. 9(2), 193–199 (2019).
[Crossref]

Z. Han, A. M. Soehartono, B. Gu, X. Wei, K.-T. Yong, and Y. Shi, “Tunable hybridization induced transparency for efficient terahertz sensing,” Opt. Express 27(6), 9032 (2019).
[Crossref]

2018 (3)

K. Arts, R. Vervuurt, A. Bhattacharya, J. Gómez Rivas, J. W. Oosterbeek, and A. A. Bol, “Broadband optical response of graphene measured by terahertz time-domain spectroscopy and FTIR spectroscopy,” J. Appl. Phys. 124(7), 073105 (2018).
[Crossref]

A. Gupta, G. Rana, A. Bhattacharya, A. Singh, R. Jain, R. D. Bapat, S. P. Duttagupta, and S. S. Prabhu, “Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation,” APL Photonics 3(5), 051706 (2018).
[Crossref]

N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small 14(44), 1802437 (2018).
[Crossref]

2017 (3)

I. Malhotra, K. Ranjan Jha, and G. Singh, “Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications,” Opt. Commun. 397, 129–139 (2017).
[Crossref]

A. Jooshesh, F. Fesharaki, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation,” Opt. Express 25(18), 22140 (2017).
[Crossref]

F. Fesharaki, A. Jooshesh, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmonic antireflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

2016 (1)

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

2015 (6)

J. Orenstein and J. S. Dodge, “Terahertz time-domain spectroscopy of transient metallic and superconducting states,” Phys. Rev. B: Condens. Matter Mater. Phys. 92(13), 134507 (2015).
[Crossref]

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

S. A. Savinov, Y. A. Mityagin, A. A. Chistyakov, K. I. Kozlovsky, Y. A. Kuzishchin, V. A. Krivenkov, V. I. Egorkin, and I. P. Kazakov, “A study of emission power and spectrum of LT-GaAs based THz photoconductive antennas,” Phys. Procedia 73, 54–58 (2015).
[Crossref]

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref]

A. Singh and S. S. Prabhu, “Microlensless interdigitated photoconductive terahertz emitters,” Opt. Express 23(2), 1529 (2015).
[Crossref]

2014 (4)

R. J. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range,” Opt. Express 22(16), 19411 (2014).
[Crossref]

A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T. E. Darcie, and R. Gordon, “Nanoplasmonics enhanced terahertz sources,” Opt. Express 22(23), 27992 (2014).
[Crossref]

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high-power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

2013 (3)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

L. Hou and W. Shi, “An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability,” IEEE Trans. Electron Devices 60(5), 1619–1624 (2013).
[Crossref]

A. Singh, H. Surdi, V. V. Nikesh, S. S. Prabhu, and G. H. Döhler, “Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes,” AIP Adv. 3(12), 122106 (2013).
[Crossref]

2011 (2)

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol. 26(7), 075015 (2011).
[Crossref]

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared, Millimeter, Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

2008 (1)

W. Shi, X. F. Sun, J. Zeng, and W. L. Jia, “Carrier dynamics and terahertz radiation in large-aperture photoconductive antenna,” Proc. SPIE 6622, 662228 (2008).
[Crossref]

2007 (2)

2006 (1)

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

2005 (2)

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

2001 (1)

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Arts, K.

K. Arts, R. Vervuurt, A. Bhattacharya, J. Gómez Rivas, J. W. Oosterbeek, and A. A. Bol, “Broadband optical response of graphene measured by terahertz time-domain spectroscopy and FTIR spectroscopy,” J. Appl. Phys. 124(7), 073105 (2018).
[Crossref]

Averitt, R. D.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Bahrami-Yekta, V.

A. Jooshesh, F. Fesharaki, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation,” Opt. Express 25(18), 22140 (2017).
[Crossref]

F. Fesharaki, A. Jooshesh, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmonic antireflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref]

A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T. E. Darcie, and R. Gordon, “Nanoplasmonics enhanced terahertz sources,” Opt. Express 22(23), 27992 (2014).
[Crossref]

Bakker, H. J.

Bapat, R. D.

A. Gupta, G. Rana, A. Bhattacharya, A. Singh, R. Jain, R. D. Bapat, S. P. Duttagupta, and S. S. Prabhu, “Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation,” APL Photonics 3(5), 051706 (2018).
[Crossref]

Beere, H.

Berry, C. W.

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high-power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

Bhattacharya, A.

G. Rana, A. Bhattacharya, A. Gupta, D. Ghindani, R. Jain, S. P. Duttagupta, and S. S. Prabhu, “A Polarization-Resolved Study of Nanopatterned Photoconductive Antenna for Enhanced Terahertz Emission,” IEEE Trans. Terahertz Sci. Technol. 9(2), 193–199 (2019).
[Crossref]

A. Gupta, G. Rana, A. Bhattacharya, A. Singh, R. Jain, R. D. Bapat, S. P. Duttagupta, and S. S. Prabhu, “Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation,” APL Photonics 3(5), 051706 (2018).
[Crossref]

K. Arts, R. Vervuurt, A. Bhattacharya, J. Gómez Rivas, J. W. Oosterbeek, and A. A. Bol, “Broadband optical response of graphene measured by terahertz time-domain spectroscopy and FTIR spectroscopy,” J. Appl. Phys. 124(7), 073105 (2018).
[Crossref]

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Bol, A. A.

K. Arts, R. Vervuurt, A. Bhattacharya, J. Gómez Rivas, J. W. Oosterbeek, and A. A. Bol, “Broadband optical response of graphene measured by terahertz time-domain spectroscopy and FTIR spectroscopy,” J. Appl. Phys. 124(7), 073105 (2018).
[Crossref]

Brandt, N. C.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Burnett, A.

Castro-Camus, E.

P. C. Upadhya, W. Fan, A. Burnett, J. Cunningham, A. G. Davies, E. H. Linfield, J. Lloyd-Hughes, E. Castro-Camus, M. B. Johnston, and H. Beere, “Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna,” Opt. Lett. 32(16), 2297 (2007).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Cataluna, M. A.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol. 26(7), 075015 (2011).
[Crossref]

Chistyakov, A. A.

S. A. Savinov, Y. A. Mityagin, A. A. Chistyakov, K. I. Kozlovsky, Y. A. Kuzishchin, V. A. Krivenkov, V. I. Egorkin, and I. P. Kazakov, “A study of emission power and spectrum of LT-GaAs based THz photoconductive antennas,” Phys. Procedia 73, 54–58 (2015).
[Crossref]

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Cong, L.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Cunningham, J.

Daghestani, N. S.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol. 26(7), 075015 (2011).
[Crossref]

Darcie, T. E.

F. Fesharaki, A. Jooshesh, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmonic antireflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

A. Jooshesh, F. Fesharaki, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation,” Opt. Express 25(18), 22140 (2017).
[Crossref]

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref]

A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T. E. Darcie, and R. Gordon, “Nanoplasmonics enhanced terahertz sources,” Opt. Express 22(23), 27992 (2014).
[Crossref]

Davies, A. G.

Dekorsy, T.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Dietz, R. J. B.

Dodge, J. S.

J. Orenstein and J. S. Dodge, “Terahertz time-domain spectroscopy of transient metallic and superconducting states,” Phys. Rev. B: Condens. Matter Mater. Phys. 92(13), 134507 (2015).
[Crossref]

Döhler, G. H.

A. Singh, H. Surdi, V. V. Nikesh, S. S. Prabhu, and G. H. Döhler, “Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes,” AIP Adv. 3(12), 122106 (2013).
[Crossref]

Dreyhaupt, A.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Duttagupta, S. P.

G. Rana, A. Bhattacharya, A. Gupta, D. Ghindani, R. Jain, S. P. Duttagupta, and S. S. Prabhu, “A Polarization-Resolved Study of Nanopatterned Photoconductive Antenna for Enhanced Terahertz Emission,” IEEE Trans. Terahertz Sci. Technol. 9(2), 193–199 (2019).
[Crossref]

A. Gupta, G. Rana, A. Bhattacharya, A. Singh, R. Jain, R. D. Bapat, S. P. Duttagupta, and S. S. Prabhu, “Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation,” APL Photonics 3(5), 051706 (2018).
[Crossref]

Egorkin, V. I.

S. A. Savinov, Y. A. Mityagin, A. A. Chistyakov, K. I. Kozlovsky, Y. A. Kuzishchin, V. A. Krivenkov, V. I. Egorkin, and I. P. Kazakov, “A study of emission power and spectrum of LT-GaAs based THz photoconductive antennas,” Phys. Procedia 73, 54–58 (2015).
[Crossref]

Fan, K.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Fan, W.

Fesharaki, F.

A. Jooshesh, F. Fesharaki, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation,” Opt. Express 25(18), 22140 (2017).
[Crossref]

F. Fesharaki, A. Jooshesh, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmonic antireflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

Fleischer, S.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Fu, L.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Geižutis, A.

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Ghindani, D.

G. Rana, A. Bhattacharya, A. Gupta, D. Ghindani, R. Jain, S. P. Duttagupta, and S. S. Prabhu, “A Polarization-Resolved Study of Nanopatterned Photoconductive Antenna for Enhanced Terahertz Emission,” IEEE Trans. Terahertz Sci. Technol. 9(2), 193–199 (2019).
[Crossref]

Globisch, B.

Göbel, T.

Gómez Rivas, J.

K. Arts, R. Vervuurt, A. Bhattacharya, J. Gómez Rivas, J. W. Oosterbeek, and A. A. Bol, “Broadband optical response of graphene measured by terahertz time-domain spectroscopy and FTIR spectroscopy,” J. Appl. Phys. 124(7), 073105 (2018).
[Crossref]

Gordon, R.

A. Jooshesh, F. Fesharaki, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation,” Opt. Express 25(18), 22140 (2017).
[Crossref]

F. Fesharaki, A. Jooshesh, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmonic antireflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref]

A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T. E. Darcie, and R. Gordon, “Nanoplasmonics enhanced terahertz sources,” Opt. Express 22(23), 27992 (2014).
[Crossref]

Gu, B.

Gupta, A.

G. Rana, A. Bhattacharya, A. Gupta, D. Ghindani, R. Jain, S. P. Duttagupta, and S. S. Prabhu, “A Polarization-Resolved Study of Nanopatterned Photoconductive Antenna for Enhanced Terahertz Emission,” IEEE Trans. Terahertz Sci. Technol. 9(2), 193–199 (2019).
[Crossref]

A. Gupta, G. Rana, A. Bhattacharya, A. Singh, R. Jain, R. D. Bapat, S. P. Duttagupta, and S. S. Prabhu, “Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation,” APL Photonics 3(5), 051706 (2018).
[Crossref]

Han, Z.

Hashemi, M. R.

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high-power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

Helm, M.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hou, L.

L. Hou and W. Shi, “An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability,” IEEE Trans. Electron Devices 60(5), 1619–1624 (2013).
[Crossref]

Hwang, H. Y.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Jagadish, C.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Jain, R.

G. Rana, A. Bhattacharya, A. Gupta, D. Ghindani, R. Jain, S. P. Duttagupta, and S. S. Prabhu, “A Polarization-Resolved Study of Nanopatterned Photoconductive Antenna for Enhanced Terahertz Emission,” IEEE Trans. Terahertz Sci. Technol. 9(2), 193–199 (2019).
[Crossref]

A. Gupta, G. Rana, A. Bhattacharya, A. Singh, R. Jain, R. D. Bapat, S. P. Duttagupta, and S. S. Prabhu, “Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation,” APL Photonics 3(5), 051706 (2018).
[Crossref]

Jarrahi, M.

N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small 14(44), 1802437 (2018).
[Crossref]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high-power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

Jia, W. L.

W. Shi, X. F. Sun, J. Zeng, and W. L. Jia, “Carrier dynamics and terahertz radiation in large-aperture photoconductive antenna,” Proc. SPIE 6622, 662228 (2008).
[Crossref]

Johnston, M. B.

P. C. Upadhya, W. Fan, A. Burnett, J. Cunningham, A. G. Davies, E. H. Linfield, J. Lloyd-Hughes, E. Castro-Camus, M. B. Johnston, and H. Beere, “Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna,” Opt. Lett. 32(16), 2297 (2007).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Jooshesh, A.

F. Fesharaki, A. Jooshesh, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmonic antireflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

A. Jooshesh, F. Fesharaki, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation,” Opt. Express 25(18), 22140 (2017).
[Crossref]

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref]

A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T. E. Darcie, and R. Gordon, “Nanoplasmonics enhanced terahertz sources,” Opt. Express 22(23), 27992 (2014).
[Crossref]

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kazakov, I. P.

S. A. Savinov, Y. A. Mityagin, A. A. Chistyakov, K. I. Kozlovsky, Y. A. Kuzishchin, V. A. Krivenkov, V. I. Egorkin, and I. P. Kazakov, “A study of emission power and spectrum of LT-GaAs based THz photoconductive antennas,” Phys. Procedia 73, 54–58 (2015).
[Crossref]

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Kleine-Ostmann, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared, Millimeter, Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kozlovsky, K. I.

S. A. Savinov, Y. A. Mityagin, A. A. Chistyakov, K. I. Kozlovsky, Y. A. Kuzishchin, V. A. Krivenkov, V. I. Egorkin, and I. P. Kazakov, “A study of emission power and spectrum of LT-GaAs based THz photoconductive antennas,” Phys. Procedia 73, 54–58 (2015).
[Crossref]

Krivenkov, V. A.

S. A. Savinov, Y. A. Mityagin, A. A. Chistyakov, K. I. Kozlovsky, Y. A. Kuzishchin, V. A. Krivenkov, V. I. Egorkin, and I. P. Kazakov, “A study of emission power and spectrum of LT-GaAs based THz photoconductive antennas,” Phys. Procedia 73, 54–58 (2015).
[Crossref]

Krotkus, A.

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Kuzishchin, Y. A.

S. A. Savinov, Y. A. Mityagin, A. A. Chistyakov, K. I. Kozlovsky, Y. A. Kuzishchin, V. A. Krivenkov, V. I. Egorkin, and I. P. Kazakov, “A study of emission power and spectrum of LT-GaAs based THz photoconductive antennas,” Phys. Procedia 73, 54–58 (2015).
[Crossref]

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Linfield, E. H.

Liu, M.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Lloyd-Hughes, J.

P. C. Upadhya, W. Fan, A. Burnett, J. Cunningham, A. G. Davies, E. H. Linfield, J. Lloyd-Hughes, E. Castro-Camus, M. B. Johnston, and H. Beere, “Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna,” Opt. Lett. 32(16), 2297 (2007).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Mahtab, M.

F. Fesharaki, A. Jooshesh, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmonic antireflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

A. Jooshesh, F. Fesharaki, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation,” Opt. Express 25(18), 22140 (2017).
[Crossref]

Malhotra, I.

I. Malhotra, K. Ranjan Jha, and G. Singh, “Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications,” Opt. Commun. 397, 129–139 (2017).
[Crossref]

Masnadi-Shirazi, M.

Merchant, S. K. E.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Mityagin, Y. A.

S. A. Savinov, Y. A. Mityagin, A. A. Chistyakov, K. I. Kozlovsky, Y. A. Kuzishchin, V. A. Krivenkov, V. I. Egorkin, and I. P. Kazakov, “A study of emission power and spectrum of LT-GaAs based THz photoconductive antennas,” Phys. Procedia 73, 54–58 (2015).
[Crossref]

Nagatsuma, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared, Millimeter, Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Nanal, V.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Nelson, K. A.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Nienhuys, H.-K.

Nikesh, V. V.

A. Singh, H. Surdi, V. V. Nikesh, S. S. Prabhu, and G. H. Döhler, “Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes,” AIP Adv. 3(12), 122106 (2013).
[Crossref]

Oosterbeek, J. W.

K. Arts, R. Vervuurt, A. Bhattacharya, J. Gómez Rivas, J. W. Oosterbeek, and A. A. Bol, “Broadband optical response of graphene measured by terahertz time-domain spectroscopy and FTIR spectroscopy,” J. Appl. Phys. 124(7), 073105 (2018).
[Crossref]

Orenstein, J.

J. Orenstein and J. S. Dodge, “Terahertz time-domain spectroscopy of transient metallic and superconducting states,” Phys. Rev. B: Condens. Matter Mater. Phys. 92(13), 134507 (2015).
[Crossref]

Pacebutas, V.

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Pal, S.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Perkins, B. G.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Persheyev, S.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol. 26(7), 075015 (2011).
[Crossref]

Pillay, R. G.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Planken, P. C. M.

Prabhu, S. S.

G. Rana, A. Bhattacharya, A. Gupta, D. Ghindani, R. Jain, S. P. Duttagupta, and S. S. Prabhu, “A Polarization-Resolved Study of Nanopatterned Photoconductive Antenna for Enhanced Terahertz Emission,” IEEE Trans. Terahertz Sci. Technol. 9(2), 193–199 (2019).
[Crossref]

A. Gupta, G. Rana, A. Bhattacharya, A. Singh, R. Jain, R. D. Bapat, S. P. Duttagupta, and S. S. Prabhu, “Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation,” APL Photonics 3(5), 051706 (2018).
[Crossref]

A. Singh and S. S. Prabhu, “Microlensless interdigitated photoconductive terahertz emitters,” Opt. Express 23(2), 1529 (2015).
[Crossref]

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

A. Singh, H. Surdi, V. V. Nikesh, S. S. Prabhu, and G. H. Döhler, “Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes,” AIP Adv. 3(12), 122106 (2013).
[Crossref]

Rana, G.

G. Rana, A. Bhattacharya, A. Gupta, D. Ghindani, R. Jain, S. P. Duttagupta, and S. S. Prabhu, “A Polarization-Resolved Study of Nanopatterned Photoconductive Antenna for Enhanced Terahertz Emission,” IEEE Trans. Terahertz Sci. Technol. 9(2), 193–199 (2019).
[Crossref]

A. Gupta, G. Rana, A. Bhattacharya, A. Singh, R. Jain, R. D. Bapat, S. P. Duttagupta, and S. S. Prabhu, “Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation,” APL Photonics 3(5), 051706 (2018).
[Crossref]

Ranjan Jha, K.

I. Malhotra, K. Ranjan Jha, and G. Singh, “Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications,” Opt. Commun. 397, 129–139 (2017).
[Crossref]

Roehle, H.

Rose, M. J.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol. 26(7), 075015 (2011).
[Crossref]

Ross, G.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol. 26(7), 075015 (2011).
[Crossref]

Savinov, S. A.

S. A. Savinov, Y. A. Mityagin, A. A. Chistyakov, K. I. Kozlovsky, Y. A. Kuzishchin, V. A. Krivenkov, V. I. Egorkin, and I. P. Kazakov, “A study of emission power and spectrum of LT-GaAs based THz photoconductive antennas,” Phys. Procedia 73, 54–58 (2015).
[Crossref]

Schell, M.

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Shi, W.

L. Hou and W. Shi, “An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability,” IEEE Trans. Electron Devices 60(5), 1619–1624 (2013).
[Crossref]

W. Shi, X. F. Sun, J. Zeng, and W. L. Jia, “Carrier dynamics and terahertz radiation in large-aperture photoconductive antenna,” Proc. SPIE 6622, 662228 (2008).
[Crossref]

Shi, Y.

Singh, A.

A. Gupta, G. Rana, A. Bhattacharya, A. Singh, R. Jain, R. D. Bapat, S. P. Duttagupta, and S. S. Prabhu, “Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation,” APL Photonics 3(5), 051706 (2018).
[Crossref]

A. Singh and S. S. Prabhu, “Microlensless interdigitated photoconductive terahertz emitters,” Opt. Express 23(2), 1529 (2015).
[Crossref]

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

A. Singh, H. Surdi, V. V. Nikesh, S. S. Prabhu, and G. H. Döhler, “Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes,” AIP Adv. 3(12), 122106 (2013).
[Crossref]

Singh, G.

I. Malhotra, K. Ranjan Jha, and G. Singh, “Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications,” Opt. Commun. 397, 129–139 (2017).
[Crossref]

Singh, R.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Smith, L.

Soehartono, A. M.

Stanionyte, S.

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Stanze, D.

Sternbach, A.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Sun, X. F.

W. Shi, X. F. Sun, J. Zeng, and W. L. Jia, “Carrier dynamics and terahertz radiation in large-aperture photoconductive antenna,” Proc. SPIE 6622, 662228 (2008).
[Crossref]

Surdi, H.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

A. Singh, H. Surdi, V. V. Nikesh, S. S. Prabhu, and G. H. Döhler, “Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes,” AIP Adv. 3(12), 122106 (2013).
[Crossref]

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Tan, H. H.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Tan, S.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Tiedje, T.

F. Fesharaki, A. Jooshesh, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmonic antireflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

A. Jooshesh, F. Fesharaki, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation,” Opt. Express 25(18), 22140 (2017).
[Crossref]

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref]

A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T. E. Darcie, and R. Gordon, “Nanoplasmonics enhanced terahertz sources,” Opt. Express 22(23), 27992 (2014).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Upadhya, P. C.

Urbanowicz, A.

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Vervuurt, R.

K. Arts, R. Vervuurt, A. Bhattacharya, J. Gómez Rivas, J. W. Oosterbeek, and A. A. Bol, “Broadband optical response of graphene measured by terahertz time-domain spectroscopy and FTIR spectroscopy,” J. Appl. Phys. 124(7), 073105 (2018).
[Crossref]

Wei, X.

Wenckebach, T.

Winnerl, S.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Yahiaoui, R.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Yan, F.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Yardimci, N. T.

N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small 14(44), 1802437 (2018).
[Crossref]

Yong, K.-T.

Zeng, J.

W. Shi, X. F. Sun, J. Zeng, and W. L. Jia, “Carrier dynamics and terahertz radiation in large-aperture photoconductive antenna,” Proc. SPIE 6622, 662228 (2008).
[Crossref]

Zhang, J.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref]

Zhang, W.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Zhang, X.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

ACS Photonics (1)

F. Fesharaki, A. Jooshesh, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmonic antireflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

AIP Adv. (2)

A. Singh, H. Surdi, V. V. Nikesh, S. S. Prabhu, and G. H. Döhler, “Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes,” AIP Adv. 3(12), 122106 (2013).
[Crossref]

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

APL Photonics (1)

A. Gupta, G. Rana, A. Bhattacharya, A. Singh, R. Jain, R. D. Bapat, S. P. Duttagupta, and S. S. Prabhu, “Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation,” APL Photonics 3(5), 051706 (2018).
[Crossref]

Appl. Phys. Lett. (5)

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high-power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

IEEE Trans. Electron Devices (1)

L. Hou and W. Shi, “An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability,” IEEE Trans. Electron Devices 60(5), 1619–1624 (2013).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

G. Rana, A. Bhattacharya, A. Gupta, D. Ghindani, R. Jain, S. P. Duttagupta, and S. S. Prabhu, “A Polarization-Resolved Study of Nanopatterned Photoconductive Antenna for Enhanced Terahertz Emission,” IEEE Trans. Terahertz Sci. Technol. 9(2), 193–199 (2019).
[Crossref]

J. Appl. Phys. (2)

K. Arts, R. Vervuurt, A. Bhattacharya, J. Gómez Rivas, J. W. Oosterbeek, and A. A. Bol, “Broadband optical response of graphene measured by terahertz time-domain spectroscopy and FTIR spectroscopy,” J. Appl. Phys. 124(7), 073105 (2018).
[Crossref]

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared, Millimeter, Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

J. Mod. Opt. (1)

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Opt. Commun. (1)

I. Malhotra, K. Ranjan Jha, and G. Singh, “Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications,” Opt. Commun. 397, 129–139 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Procedia (1)

S. A. Savinov, Y. A. Mityagin, A. A. Chistyakov, K. I. Kozlovsky, Y. A. Kuzishchin, V. A. Krivenkov, V. I. Egorkin, and I. P. Kazakov, “A study of emission power and spectrum of LT-GaAs based THz photoconductive antennas,” Phys. Procedia 73, 54–58 (2015).
[Crossref]

Phys. Rev. B: Condens. Matter Mater. Phys. (1)

J. Orenstein and J. S. Dodge, “Terahertz time-domain spectroscopy of transient metallic and superconducting states,” Phys. Rev. B: Condens. Matter Mater. Phys. 92(13), 134507 (2015).
[Crossref]

Proc. SPIE (1)

W. Shi, X. F. Sun, J. Zeng, and W. L. Jia, “Carrier dynamics and terahertz radiation in large-aperture photoconductive antenna,” Proc. SPIE 6622, 662228 (2008).
[Crossref]

Semicond. Sci. Technol. (1)

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol. 26(7), 075015 (2011).
[Crossref]

Small (1)

N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small 14(44), 1802437 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic showing the fabricated PCA on SI-GaAs substrate. Inset shows the embedded metasurface in the photoconductive gap of the PCA. The TiO2 antireflection coating has not been shown here. (b) SEM image of the fabricated devices. The First and the third devices have nanostructured PC gap, while the second and the fourth are bare PCAs for reference.
Fig. 2.
Fig. 2. (a) Carrier recombination dynamics from pump-probe studies performed on the Au nano-patterned (blurred red circles) and the unpatterned (blurred black squares) photo-conductive gap in Photoconductive antenna (PCA) emitters. Both the signals were measured in reflection mode and have been normalized. The solid black and the solid red lines indicate the exponential fit to the data points. (b) Shows the current-voltage (I-V) characteristics of both the devices: patterned (solid curves,) and unpatterned (dotted) for different pump fluences.
Fig. 3.
Fig. 3. (a) Spectra of emitted THz from the patterned (red solid curve) and the unpatterned (black dotted curve) PCA. The horizontal red solid and black dotted lines mark the position of the noise levels in the signals. The spectra are vertically shifted for clarity. (b) Shows the normalized emitted THz peak amplitude as a function of applied bias voltage at different infrared pump powers (black = 20 mW, red = 40 mW, green = 60 mW, blue = 80 mW and magenta = 100 mW). The solid curves represent the emitted THz amplitudes from the patterned PCA whereas the emitted THz amplitude from the unpatterned PCA is represented by the dotted curves.
Fig. 4.
Fig. 4. (a) Simulated referenced reflectance spectrum of the nanostructured SI-GaAs substrate. (b) Simulated near-field intensity distribution at the surface of the SI-GaAs (X-Y plane) in the vicinity of the Au nano-pillar. The direction of polarization is indicated by the white double arrow. The translucent black circle indicates the position of the Au nano-pillar. (c) and (d) Shows the electric near-field intensity distributions along crosscut through the device along the two longitudinal planes (XZ and YZ planes) along the propagation direction. The translucent black rectangles indicate the position of the Au nanopillars. The white curve shows the intensity profile along the edge of the Au nanopillar.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N ( t ) = N 0 e t / τ ,

Metrics