Abstract

Ultra-fast lasers can realize selective welding of glasses through nonlinear effect and have the advantages of having high welding accuracy, having small heat-affected zone, having high joint strength and not requiring intermediate absorption layer, which provides a new idea for chip packaging. However, this method is limited to the condition of optical contact, which is difficult to use in engineering applications. To solve this problem, an innovative seal welding method by picosecond laser is presented in this paper. In this method, a picosecond laser performs firstly rapid oscillating scan local welding of the two natural overlap glasses with a large contact gap to form a closed area consisting of spot welds. The glass contact gap in the closed area can be reduced to about 1.5 μm through the solidification shrinkage effect of spot welds. Then a good seal weld without plasma ablation, micro-hole, and micro-crack defects can be achieved by picosecond laser in this closed area to realize seal welding of glasses with a large contact gap. The sealing test results show that the seal welding samples can keep good sealing performance for more than one week.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Picosecond laser welding of glasses with a large gap by a rapid oscillating scan

Hang Chen, Leimin Deng, Jun Duan, and Xiaoyan Zeng
Opt. Lett. 44(10) 2570-2573 (2019)

Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding

Jianyong Chen, Richard M. Carter, Robert R. Thomson, and Duncan P. Hand
Opt. Express 23(14) 18645-18657 (2015)

Ultrashort pulsed fiber laser welding and sealing of transparent materials

Huan Huang, Lih-Mei Yang, and Jian Liu
Appl. Opt. 51(15) 2979-2986 (2012)

References

  • View by:
  • |
  • |
  • |

  1. E. Axinte, “Glasses as engineering materials: A review,” Mater. Des. 32(4), 1717–1732 (2011).
    [Crossref]
  2. A. Elrefaey, J. Janczak-Rusch, and M. M. Koebel, “Direct glass-to-metal joining by simultaneous anodic bonding and soldering with activated liquid tin solder,” J. Mater. Process. Technol. 214(11), 2716–2722 (2014).
    [Crossref]
  3. Y. J. Pan and R. J. Yang, “A glass microfluidic chip adhesive bonding method at room temperature,” J. Micromech. Microeng. 16(12), 2666–2672 (2006).
    [Crossref]
  4. Q. Wu, N. Lorenz, K. M. Cannon, and D. P. Hand, “Glass Frit as a Hermetic Joining Layer in Laser Based Joining of Miniature Devices,” IEEE Trans. Compon. Packag. Tech. 33(2), 470–477 (2010).
    [Crossref]
  5. C. Lin, Y. Shen, C. Huang, and S. Tu, “Laser sealing of organic light-emitting diode using low melting temperature glass frit,” Opt. Quantum Electron. 49(6), 1–10 (2017).
    [Crossref]
  6. U. M. Mescheder, M. Alavi, K. Hiltmann, C. Lietzau, C. Nachtigall, and H. Sandmaier, “Local laser bonding for low temperature budget,” Sens. Actuators A Phys. 97, 422–427 (2002).
    [Crossref]
  7. A. de Pablos-Martín, S. Tismer, F. Naumann, M. Krause, M. Lorenz, M. Grundmann, and T. Höche, “Evaluation of the bond quality of laser-joined sapphire wafers using a fresnoite-glass sealant,” Microsyst. Technol. 22(1), 207–214 (2016).
    [Crossref]
  8. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of Transparent Materials Using Femtosecond Laser Pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
    [Crossref]
  9. T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
    [Crossref] [PubMed]
  10. C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
    [Crossref]
  11. H. Huang, L. M. Yang, and J. Liu, “Ultrashort pulsed fiber laser welding and sealing of transparent materials,” Appl. Opt. 51(15), 2979–2986 (2012).
    [Crossref] [PubMed]
  12. W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B 87(1), 85–89 (2007).
    [Crossref]
  13. I. Miyamoto, A. Horn, and J. Gottmann, “Local Melting of Glass Material and Its Application to Direct Fusion Welding by Ps-laser Pulses,” J. Laser Micro Nanoeng. 2(1), 7–14 (2007).
    [Crossref]
  14. A. Horn, I. Mingareev, and A. Werth, “Investigations on Melting and Welding of Glass by Ultra-short Laser Radiation,” J. Laser Micro Nanoeng. 3(2), 114–118 (2008).
    [Crossref]
  15. I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phys. Procedia 5, 483–493 (2010).
    [Crossref]
  16. S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
    [Crossref]
  17. I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
    [Crossref]
  18. S. Richter, F. Zimmermann, A. Tünnermann, and S. Nolte, “Laser welding of glasses at high repetition rates – Fundamentals and prospects,” Opt. Laser Technol. 83, 59–66 (2016).
    [Crossref]
  19. K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, and M. Schmidt, “Gap bridging in joining of glass using ultra short laser pulses,” Opt. Express 23(5), 5681–5693 (2015).
    [Crossref] [PubMed]
  20. J. Chen, R. M. Carter, R. R. Thomson, and D. P. Hand, “Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding,” Opt. Express 23(14), 18645–18657 (2015).
    [Crossref] [PubMed]
  21. S. Richter, F. Zimmermann, R. Eberhardt, A. Tünnermann, and S. Nolte, “Toward laser welding of glasses without optical contacting,” Appl. Phys., A Mater. Sci. Process. 121(1), 1–9 (2015).
    [Crossref]
  22. H. Chen, L. Deng, J. Duan, and X. Zeng, “Picosecond laser welding of glasses with a large gap by a rapid oscillating scan,” Opt. Lett. 44(10), 2570–2573 (2019).
    [Crossref] [PubMed]

2019 (1)

2017 (1)

C. Lin, Y. Shen, C. Huang, and S. Tu, “Laser sealing of organic light-emitting diode using low melting temperature glass frit,” Opt. Quantum Electron. 49(6), 1–10 (2017).
[Crossref]

2016 (2)

A. de Pablos-Martín, S. Tismer, F. Naumann, M. Krause, M. Lorenz, M. Grundmann, and T. Höche, “Evaluation of the bond quality of laser-joined sapphire wafers using a fresnoite-glass sealant,” Microsyst. Technol. 22(1), 207–214 (2016).
[Crossref]

S. Richter, F. Zimmermann, A. Tünnermann, and S. Nolte, “Laser welding of glasses at high repetition rates – Fundamentals and prospects,” Opt. Laser Technol. 83, 59–66 (2016).
[Crossref]

2015 (3)

2014 (2)

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

A. Elrefaey, J. Janczak-Rusch, and M. M. Koebel, “Direct glass-to-metal joining by simultaneous anodic bonding and soldering with activated liquid tin solder,” J. Mater. Process. Technol. 214(11), 2716–2722 (2014).
[Crossref]

2012 (1)

2011 (2)

E. Axinte, “Glasses as engineering materials: A review,” Mater. Des. 32(4), 1717–1732 (2011).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

2010 (2)

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phys. Procedia 5, 483–493 (2010).
[Crossref]

Q. Wu, N. Lorenz, K. M. Cannon, and D. P. Hand, “Glass Frit as a Hermetic Joining Layer in Laser Based Joining of Miniature Devices,” IEEE Trans. Compon. Packag. Tech. 33(2), 470–477 (2010).
[Crossref]

2008 (1)

A. Horn, I. Mingareev, and A. Werth, “Investigations on Melting and Welding of Glass by Ultra-short Laser Radiation,” J. Laser Micro Nanoeng. 3(2), 114–118 (2008).
[Crossref]

2007 (2)

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B 87(1), 85–89 (2007).
[Crossref]

I. Miyamoto, A. Horn, and J. Gottmann, “Local Melting of Glass Material and Its Application to Direct Fusion Welding by Ps-laser Pulses,” J. Laser Micro Nanoeng. 2(1), 7–14 (2007).
[Crossref]

2006 (2)

2005 (1)

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of Transparent Materials Using Femtosecond Laser Pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

2003 (1)

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

2002 (1)

U. M. Mescheder, M. Alavi, K. Hiltmann, C. Lietzau, C. Nachtigall, and H. Sandmaier, “Local laser bonding for low temperature budget,” Sens. Actuators A Phys. 97, 422–427 (2002).
[Crossref]

Alavi, M.

U. M. Mescheder, M. Alavi, K. Hiltmann, C. Lietzau, C. Nachtigall, and H. Sandmaier, “Local laser bonding for low temperature budget,” Sens. Actuators A Phys. 97, 422–427 (2002).
[Crossref]

Axinte, E.

E. Axinte, “Glasses as engineering materials: A review,” Mater. Des. 32(4), 1717–1732 (2011).
[Crossref]

Cannon, K. M.

Q. Wu, N. Lorenz, K. M. Cannon, and D. P. Hand, “Glass Frit as a Hermetic Joining Layer in Laser Based Joining of Miniature Devices,” IEEE Trans. Compon. Packag. Tech. 33(2), 470–477 (2010).
[Crossref]

Carter, R. M.

Chen, H.

Chen, J.

Cvecek, K.

K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, and M. Schmidt, “Gap bridging in joining of glass using ultra short laser pulses,” Opt. Express 23(5), 5681–5693 (2015).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phys. Procedia 5, 483–493 (2010).
[Crossref]

de Pablos-Martín, A.

A. de Pablos-Martín, S. Tismer, F. Naumann, M. Krause, M. Lorenz, M. Grundmann, and T. Höche, “Evaluation of the bond quality of laser-joined sapphire wafers using a fresnoite-glass sealant,” Microsyst. Technol. 22(1), 207–214 (2016).
[Crossref]

Dehmel, S.

Deng, L.

Döring, S.

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

Duan, J.

Eberhardt, R.

S. Richter, F. Zimmermann, R. Eberhardt, A. Tünnermann, and S. Nolte, “Toward laser welding of glasses without optical contacting,” Appl. Phys., A Mater. Sci. Process. 121(1), 1–9 (2015).
[Crossref]

Elrefaey, A.

A. Elrefaey, J. Janczak-Rusch, and M. M. Koebel, “Direct glass-to-metal joining by simultaneous anodic bonding and soldering with activated liquid tin solder,” J. Mater. Process. Technol. 214(11), 2716–2722 (2014).
[Crossref]

García, J. F.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Gottmann, J.

I. Miyamoto, A. Horn, and J. Gottmann, “Local Melting of Glass Material and Its Application to Direct Fusion Welding by Ps-laser Pulses,” J. Laser Micro Nanoeng. 2(1), 7–14 (2007).
[Crossref]

Grundmann, M.

A. de Pablos-Martín, S. Tismer, F. Naumann, M. Krause, M. Lorenz, M. Grundmann, and T. Höche, “Evaluation of the bond quality of laser-joined sapphire wafers using a fresnoite-glass sealant,” Microsyst. Technol. 22(1), 207–214 (2016).
[Crossref]

Hand, D. P.

J. Chen, R. M. Carter, R. R. Thomson, and D. P. Hand, “Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding,” Opt. Express 23(14), 18645–18657 (2015).
[Crossref] [PubMed]

Q. Wu, N. Lorenz, K. M. Cannon, and D. P. Hand, “Glass Frit as a Hermetic Joining Layer in Laser Based Joining of Miniature Devices,” IEEE Trans. Compon. Packag. Tech. 33(2), 470–477 (2010).
[Crossref]

Hiltmann, K.

U. M. Mescheder, M. Alavi, K. Hiltmann, C. Lietzau, C. Nachtigall, and H. Sandmaier, “Local laser bonding for low temperature budget,” Sens. Actuators A Phys. 97, 422–427 (2002).
[Crossref]

Höche, T.

A. de Pablos-Martín, S. Tismer, F. Naumann, M. Krause, M. Lorenz, M. Grundmann, and T. Höche, “Evaluation of the bond quality of laser-joined sapphire wafers using a fresnoite-glass sealant,” Microsyst. Technol. 22(1), 207–214 (2016).
[Crossref]

Horn, A.

A. Horn, I. Mingareev, and A. Werth, “Investigations on Melting and Welding of Glass by Ultra-short Laser Radiation,” J. Laser Micro Nanoeng. 3(2), 114–118 (2008).
[Crossref]

I. Miyamoto, A. Horn, and J. Gottmann, “Local Melting of Glass Material and Its Application to Direct Fusion Welding by Ps-laser Pulses,” J. Laser Micro Nanoeng. 2(1), 7–14 (2007).
[Crossref]

Huang, C.

C. Lin, Y. Shen, C. Huang, and S. Tu, “Laser sealing of organic light-emitting diode using low melting temperature glass frit,” Opt. Quantum Electron. 49(6), 1–10 (2017).
[Crossref]

Huang, H.

Itoh, K.

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B 87(1), 85–89 (2007).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of Transparent Materials Using Femtosecond Laser Pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Janczak-Rusch, J.

A. Elrefaey, J. Janczak-Rusch, and M. M. Koebel, “Direct glass-to-metal joining by simultaneous anodic bonding and soldering with activated liquid tin solder,” J. Mater. Process. Technol. 214(11), 2716–2722 (2014).
[Crossref]

Koebel, M. M.

A. Elrefaey, J. Janczak-Rusch, and M. M. Koebel, “Direct glass-to-metal joining by simultaneous anodic bonding and soldering with activated liquid tin solder,” J. Mater. Process. Technol. 214(11), 2716–2722 (2014).
[Crossref]

Krause, M.

A. de Pablos-Martín, S. Tismer, F. Naumann, M. Krause, M. Lorenz, M. Grundmann, and T. Höche, “Evaluation of the bond quality of laser-joined sapphire wafers using a fresnoite-glass sealant,” Microsyst. Technol. 22(1), 207–214 (2016).
[Crossref]

Lietzau, C.

U. M. Mescheder, M. Alavi, K. Hiltmann, C. Lietzau, C. Nachtigall, and H. Sandmaier, “Local laser bonding for low temperature budget,” Sens. Actuators A Phys. 97, 422–427 (2002).
[Crossref]

Lin, C.

C. Lin, Y. Shen, C. Huang, and S. Tu, “Laser sealing of organic light-emitting diode using low melting temperature glass frit,” Opt. Quantum Electron. 49(6), 1–10 (2017).
[Crossref]

Liu, J.

Lorenz, M.

A. de Pablos-Martín, S. Tismer, F. Naumann, M. Krause, M. Lorenz, M. Grundmann, and T. Höche, “Evaluation of the bond quality of laser-joined sapphire wafers using a fresnoite-glass sealant,” Microsyst. Technol. 22(1), 207–214 (2016).
[Crossref]

Lorenz, N.

Q. Wu, N. Lorenz, K. M. Cannon, and D. P. Hand, “Glass Frit as a Hermetic Joining Layer in Laser Based Joining of Miniature Devices,” IEEE Trans. Compon. Packag. Tech. 33(2), 470–477 (2010).
[Crossref]

Mazur, E.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Mescheder, U. M.

U. M. Mescheder, M. Alavi, K. Hiltmann, C. Lietzau, C. Nachtigall, and H. Sandmaier, “Local laser bonding for low temperature budget,” Sens. Actuators A Phys. 97, 422–427 (2002).
[Crossref]

Mingareev, I.

A. Horn, I. Mingareev, and A. Werth, “Investigations on Melting and Welding of Glass by Ultra-short Laser Radiation,” J. Laser Micro Nanoeng. 3(2), 114–118 (2008).
[Crossref]

Miyamoto, I.

K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, and M. Schmidt, “Gap bridging in joining of glass using ultra short laser pulses,” Opt. Express 23(5), 5681–5693 (2015).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phys. Procedia 5, 483–493 (2010).
[Crossref]

I. Miyamoto, A. Horn, and J. Gottmann, “Local Melting of Glass Material and Its Application to Direct Fusion Welding by Ps-laser Pulses,” J. Laser Micro Nanoeng. 2(1), 7–14 (2007).
[Crossref]

Nachtigall, C.

U. M. Mescheder, M. Alavi, K. Hiltmann, C. Lietzau, C. Nachtigall, and H. Sandmaier, “Local laser bonding for low temperature budget,” Sens. Actuators A Phys. 97, 422–427 (2002).
[Crossref]

Naumann, F.

A. de Pablos-Martín, S. Tismer, F. Naumann, M. Krause, M. Lorenz, M. Grundmann, and T. Höche, “Evaluation of the bond quality of laser-joined sapphire wafers using a fresnoite-glass sealant,” Microsyst. Technol. 22(1), 207–214 (2016).
[Crossref]

Nishii, J.

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of Transparent Materials Using Femtosecond Laser Pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Nolte, S.

S. Richter, F. Zimmermann, A. Tünnermann, and S. Nolte, “Laser welding of glasses at high repetition rates – Fundamentals and prospects,” Opt. Laser Technol. 83, 59–66 (2016).
[Crossref]

S. Richter, F. Zimmermann, R. Eberhardt, A. Tünnermann, and S. Nolte, “Toward laser welding of glasses without optical contacting,” Appl. Phys., A Mater. Sci. Process. 121(1), 1–9 (2015).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

Odato, R.

Okamoto, Y.

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phys. Procedia 5, 483–493 (2010).
[Crossref]

Onda, S.

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B 87(1), 85–89 (2007).
[Crossref]

Pan, Y. J.

Y. J. Pan and R. J. Yang, “A glass microfluidic chip adhesive bonding method at room temperature,” J. Micromech. Microeng. 16(12), 2666–2672 (2006).
[Crossref]

Richter, S.

S. Richter, F. Zimmermann, A. Tünnermann, and S. Nolte, “Laser welding of glasses at high repetition rates – Fundamentals and prospects,” Opt. Laser Technol. 83, 59–66 (2016).
[Crossref]

S. Richter, F. Zimmermann, R. Eberhardt, A. Tünnermann, and S. Nolte, “Toward laser welding of glasses without optical contacting,” Appl. Phys., A Mater. Sci. Process. 121(1), 1–9 (2015).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

Sandmaier, H.

U. M. Mescheder, M. Alavi, K. Hiltmann, C. Lietzau, C. Nachtigall, and H. Sandmaier, “Local laser bonding for low temperature budget,” Sens. Actuators A Phys. 97, 422–427 (2002).
[Crossref]

Schaffer, C. B.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Schmidt, M.

K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, and M. Schmidt, “Gap bridging in joining of glass using ultra short laser pulses,” Opt. Express 23(5), 5681–5693 (2015).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phys. Procedia 5, 483–493 (2010).
[Crossref]

Shen, Y.

C. Lin, Y. Shen, C. Huang, and S. Tu, “Laser sealing of organic light-emitting diode using low melting temperature glass frit,” Opt. Quantum Electron. 49(6), 1–10 (2017).
[Crossref]

Tamaki, T.

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B 87(1), 85–89 (2007).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of Transparent Materials Using Femtosecond Laser Pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Thomson, R. R.

Tismer, S.

A. de Pablos-Martín, S. Tismer, F. Naumann, M. Krause, M. Lorenz, M. Grundmann, and T. Höche, “Evaluation of the bond quality of laser-joined sapphire wafers using a fresnoite-glass sealant,” Microsyst. Technol. 22(1), 207–214 (2016).
[Crossref]

Tu, S.

C. Lin, Y. Shen, C. Huang, and S. Tu, “Laser sealing of organic light-emitting diode using low melting temperature glass frit,” Opt. Quantum Electron. 49(6), 1–10 (2017).
[Crossref]

Tünnermann, A.

S. Richter, F. Zimmermann, A. Tünnermann, and S. Nolte, “Laser welding of glasses at high repetition rates – Fundamentals and prospects,” Opt. Laser Technol. 83, 59–66 (2016).
[Crossref]

S. Richter, F. Zimmermann, R. Eberhardt, A. Tünnermann, and S. Nolte, “Toward laser welding of glasses without optical contacting,” Appl. Phys., A Mater. Sci. Process. 121(1), 1–9 (2015).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

Watanabe, W.

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B 87(1), 85–89 (2007).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of Transparent Materials Using Femtosecond Laser Pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Werth, A.

A. Horn, I. Mingareev, and A. Werth, “Investigations on Melting and Welding of Glass by Ultra-short Laser Radiation,” J. Laser Micro Nanoeng. 3(2), 114–118 (2008).
[Crossref]

Wu, Q.

Q. Wu, N. Lorenz, K. M. Cannon, and D. P. Hand, “Glass Frit as a Hermetic Joining Layer in Laser Based Joining of Miniature Devices,” IEEE Trans. Compon. Packag. Tech. 33(2), 470–477 (2010).
[Crossref]

Yang, L. M.

Yang, R. J.

Y. J. Pan and R. J. Yang, “A glass microfluidic chip adhesive bonding method at room temperature,” J. Micromech. Microeng. 16(12), 2666–2672 (2006).
[Crossref]

Zeng, X.

Zimmermann, F.

S. Richter, F. Zimmermann, A. Tünnermann, and S. Nolte, “Laser welding of glasses at high repetition rates – Fundamentals and prospects,” Opt. Laser Technol. 83, 59–66 (2016).
[Crossref]

S. Richter, F. Zimmermann, R. Eberhardt, A. Tünnermann, and S. Nolte, “Toward laser welding of glasses without optical contacting,” Appl. Phys., A Mater. Sci. Process. 121(1), 1–9 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B 87(1), 85–89 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (4)

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

S. Richter, F. Zimmermann, R. Eberhardt, A. Tünnermann, and S. Nolte, “Toward laser welding of glasses without optical contacting,” Appl. Phys., A Mater. Sci. Process. 121(1), 1–9 (2015).
[Crossref]

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

IEEE Trans. Compon. Packag. Tech. (1)

Q. Wu, N. Lorenz, K. M. Cannon, and D. P. Hand, “Glass Frit as a Hermetic Joining Layer in Laser Based Joining of Miniature Devices,” IEEE Trans. Compon. Packag. Tech. 33(2), 470–477 (2010).
[Crossref]

J. Laser Micro Nanoeng. (2)

I. Miyamoto, A. Horn, and J. Gottmann, “Local Melting of Glass Material and Its Application to Direct Fusion Welding by Ps-laser Pulses,” J. Laser Micro Nanoeng. 2(1), 7–14 (2007).
[Crossref]

A. Horn, I. Mingareev, and A. Werth, “Investigations on Melting and Welding of Glass by Ultra-short Laser Radiation,” J. Laser Micro Nanoeng. 3(2), 114–118 (2008).
[Crossref]

J. Mater. Process. Technol. (1)

A. Elrefaey, J. Janczak-Rusch, and M. M. Koebel, “Direct glass-to-metal joining by simultaneous anodic bonding and soldering with activated liquid tin solder,” J. Mater. Process. Technol. 214(11), 2716–2722 (2014).
[Crossref]

J. Micromech. Microeng. (1)

Y. J. Pan and R. J. Yang, “A glass microfluidic chip adhesive bonding method at room temperature,” J. Micromech. Microeng. 16(12), 2666–2672 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of Transparent Materials Using Femtosecond Laser Pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Mater. Des. (1)

E. Axinte, “Glasses as engineering materials: A review,” Mater. Des. 32(4), 1717–1732 (2011).
[Crossref]

Microsyst. Technol. (1)

A. de Pablos-Martín, S. Tismer, F. Naumann, M. Krause, M. Lorenz, M. Grundmann, and T. Höche, “Evaluation of the bond quality of laser-joined sapphire wafers using a fresnoite-glass sealant,” Microsyst. Technol. 22(1), 207–214 (2016).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

S. Richter, F. Zimmermann, A. Tünnermann, and S. Nolte, “Laser welding of glasses at high repetition rates – Fundamentals and prospects,” Opt. Laser Technol. 83, 59–66 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

C. Lin, Y. Shen, C. Huang, and S. Tu, “Laser sealing of organic light-emitting diode using low melting temperature glass frit,” Opt. Quantum Electron. 49(6), 1–10 (2017).
[Crossref]

Phys. Procedia (1)

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phys. Procedia 5, 483–493 (2010).
[Crossref]

Sens. Actuators A Phys. (1)

U. M. Mescheder, M. Alavi, K. Hiltmann, C. Lietzau, C. Nachtigall, and H. Sandmaier, “Local laser bonding for low temperature budget,” Sens. Actuators A Phys. 97, 422–427 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of laser welding equipment.
Fig. 2
Fig. 2 Schematic diagram of the welding method. (a) Spot welding spacing diagram; (b) Spot welding enclosure mode; (c) Schematic diagram of the sealing method.
Fig. 3
Fig. 3 Schematic diagram of the calculation method of the contact gap. (a) Distribution of interference fringes; (b) Micrograph of the contact gap corresponding to the x-level interference fringe.
Fig. 4
Fig. 4 Influence of various parameters on the contact gap. (a) m = 150, v = 1000 mm/s, g = 1 mm, influence rule of single pulse energy on the contact gap; (b) J = 12 μJ, v = 1000 mm/s, g = 1 mm, influence rule of scanning times on the contact gap; (c) J = 12 μJ, m = 150, g = 1 mm, the influence rule of scanning speed on the contact gap; (d) J = 12 μJ, v = 1000 mm/s, m = 150, influence rule of spot welding spacing on the contact gap.
Fig. 5
Fig. 5 Comparison between measured values and calculated results.
Fig. 6
Fig. 6 Effect of spot welding enclosure mode on the quality of seal welding: (a)/(c)/(e)/(g) Type I/L/Π/; (b)/(d)/(f)/(h) Seal weld microstructure in different spot welding enclosure mode.
Fig. 7
Fig. 7 Sealing test. (a) Rectangular seal weld sample; (b) Rectangular seal weld sample in water for 1 hour; (c) The sealing of the sample failed after 1 h; (d) Ring seal weld sample; (e) Ring seal weld sample in water for 1 hour; (f) The sealing of the sample was good after one week.
Fig. 8
Fig. 8 (a) SEM image of spot weld with a spacing of 1 mm; (b) Enlarged image of shrinkage contact gap between two spot welds.
Fig. 9
Fig. 9 SEM section microstructure of seal weld.

Tables (1)

Tables Icon

Table 1 The physical parameters of soda-lime glass

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δh=hh'h(1 1 n )
δ=2 n 0 dcosθ+λ/2
2 n 0 dcosθ+λ/2={ kλ,k=1,2...(Bright stripe) (1+2k)λ/2,k=0,1,2...(Dark stripe) }
2d+λ/2={ kλ,k=1,2...(Bright stripe) (1+2k)λ/2,k=0,1,2...(Dark stripe) }
2 d x +λ/2={ xλ,x=1,2...(Bright stripe) (1+2x)λ/2,x=0,1,2...(Dark stripe) }

Metrics