Abstract

Au nanocages (Au-NCs) have attracted wide attention as low-dimensional materials with broadband absorption, ultrafast optical response, large third-order optical nonlinearity coefficient, and high photothermal stability and thermal tolerance. By employing Au-NCs as saturable absorbers, we demonstrate a widely tunable passively Q-switched erbium-doped fluoride fiber laser at the wavelength of 2.8 µm. When operates at 2778.0 nm, this laser delivers stable Q-switched pulses with a maximum average power of 584.6 mW at a pulse repetition rate of 80.6 kHz. The minimum pulse duration attained was 1.16 µs corresponding with the single pulse energy of 7.25 µJ. Our results present onefold increase in pulse energy over previously published values achieved from Au nanoparticles based 3-µm passively Q-switched fiber lasers. By introducing a plane ruled grating, a tuning rage of 57.0 nm from 2753.0 to 2810.0 nm is achieved, while maintaining stable Q-switched operation. To our knowledge, this is the first time to demonstrate that Au-NCs can realize mid-infrared pulsed laser. Our research results show that Au-NCs are promising broadband nonlinear modulators for mid-infrared pulse generation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Passively Q-switched Yb-doped dual-wavelength fiber laser based on a gold-nanocage saturable absorber

Qiongyu Hu, Ping Li, Baitao Zhang, Binghai Liu, Lili Wang, and Xiaohan Chen
Appl. Opt. 57(28) 8242-8248 (2018)

Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 μm

Hongyu Luo, Zhe Kang, Ying Gao, Hanlin Peng, Jianfeng Li, Guanshi Qin, and Yong Liu
Opt. Express 27(4) 4886-4896 (2019)

Gold nanowires with surface plasmon resonance as saturable absorbers for passively Q-switched fiber lasers at 2 µm

Siqing Li, Zhe Kang, Nan Li, Heng Jia, Mingyi Liu, Jiaxing Liu, Ningning Zhou, Weiping Qin, and Guanshi Qin
Opt. Mater. Express 9(5) 2406-2414 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
    [Crossref]
  2. M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
    [Crossref]
  3. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
    [Crossref]
  4. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37(2-3), 101–114 (2002).
    [Crossref]
  5. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  6. C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 µm,” Electron. Lett. 30(9), 706–707 (1994).
    [Crossref]
  7. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12W Q-switched Er:ZBLAN fiber laser at 2.8 µm,” Opt. Lett. 36(15), 2812–2814 (2011).
    [Crossref]
  8. D. J. Coleman, T. A. King, D. Ko, and J. Lee, “Q-switched operation of a 2.7 µm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” Opt. Commun. 236(4-6), 379–385 (2004).
    [Crossref]
  9. C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 µm,” Opt. Express 25(8), 8816–8827 (2017).
    [Crossref]
  10. M. Gorjan, R. Petkovsek, M. Marincek, and M. Copic, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36(10), 1923–1925 (2011).
    [Crossref]
  11. J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 µm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
    [Crossref]
  12. J. Li, H. Luo, Y. He, Y. Liu, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 µm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
    [Crossref]
  13. Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
    [Crossref]
  14. C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-µm nanosecond fiber laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
    [Crossref]
  15. G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 µm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
    [Crossref]
  16. J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 µm,” Opt. Express 23(17), 22362–22370 (2015).
    [Crossref]
  17. C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-Switched mid-Infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
    [Crossref]
  18. Y. Lü, C. Wei, H. Zhang, Z. Kang, G. Qin, and Y. Liu, “Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber,” Photonics Res. 7(1), 14–18 (2019).
    [Crossref]
  19. C. Wei, Y. Lü, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 µm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
    [Crossref]
  20. C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 µm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
    [Crossref]
  21. J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-µm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
    [Crossref]
  22. P. Tang, M. Wu, Q. Wang, L. Miao, B. Huang, J. Liu, C. Zhao, and S. Wen, “2.8-µm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
    [Crossref]
  23. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 µm,” Opt. Express 23(19), 24713–24718 (2015).
    [Crossref]
  24. C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
    [Crossref]
  25. H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photonics Res. 6(9), 900–907 (2018).
    [Crossref]
  26. L. Zhao, D. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010).
    [Crossref]
  27. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2(7), 623–626 (2015).
    [Crossref]
  28. S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3(12), 1373–1376 (2016).
    [Crossref]
  29. S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 µm,” Proc. SPIE 9728, 972802 (2016).
    [Crossref]
  30. H. I. Elim, J. Yang, J. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
    [Crossref]
  31. L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
    [Crossref]
  32. H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
    [Crossref]
  33. J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-Order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
    [Crossref]
  34. Y. Yu, S. Fan, H. Dai, Z. Ma, X. Wang, J. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
    [Crossref]
  35. M. Hu, H. Petrova, J. Chen, J. M. McLellan, A. R. Siekkinen, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Ultrafast laser studies of the photothermal properties of gold nanocages,” J. Phys. Chem. B 110(4), 1520–1524 (2006).
    [Crossref]
  36. H. Huang, M. Li, P. Liu, L. Jin, H. Wang, and D. Shen, “Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 µm solid-state laser,” Opt. Lett. 41(12), 2700–2703 (2016).
    [Crossref]
  37. Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
    [Crossref]
  38. Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
    [Crossref]
  39. Z. Kang, M. Liu, C. Tang, X. Xu, Z. Jia, G. Qin, and W. Qin, “Microfiber coated with gold nanorods as saturable absorbers for 2 µm femtosecond fiber lasers,” Opt. Mater. Express 8(12), 3841–3850 (2018).
    [Crossref]
  40. H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, and Y. Liu, “Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 µm,” Opt. Express 27(4), 4886–4896 (2019).
    [Crossref]
  41. B. Huang, Z. Kang, J. Li, M. Liu, P. Tang, L. Miao, C. Zhao, G. Qin, W. Qin, S. Wen, and P. N. Prasad, “Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime,” Photonics Res. 7(6), 699–704 (2019).
    [Crossref]
  42. W. Duan, H. Nie, X. Sun, B. Zhang, G. He, Q. Yang, H. Xia, R. Wang, J. Zhan, and J. He, “Passively Q-switched mid-infrared laser pulse generation with gold nanospheres as a saturable absorber,” Opt. Lett. 43(5), 1179–1182 (2018).
    [Crossref]
  43. W. Zhang, H. Zhang, G. Feng, Y. Ju, S. Ning, X. Chen, J. Dai, and S. Zhou, “Gold nanobipyramids as a saturable absorber for passively Q-switched Er3+: ZBLAN fiber laser,” Opt. Laser Technol. 111, 30–34 (2019).
    [Crossref]
  44. W. Zhang, G. Feng, S. Dai, H. Zhang, Y. Ju, S. Ning, C. Yang, Y. Xiao, and S. Zhou, “Q-switched mid-infrared Er3+: ZBLAN fiber laser based on gold nanocrystals,” Laser Phys. 28(9), 095104 (2018).
    [Crossref]
  45. L. Yang, Z. Kang, B. Huang, J. Li, L. Miao, P. Tang, C. Zhao, G. Qin, and S. Wen, “Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser,” Opt. Lett. 43(21), 5459–5462 (2018).
    [Crossref]
  46. X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
    [Crossref]
  47. L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
    [Crossref]
  48. J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
    [Crossref]
  49. S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19(20), 3177–3184 (2007).
    [Crossref]
  50. B. N. Khlebtsov, V. A. Khanadeev, I. L. Maksimova, G. S. Terentyuk, and N. G. Khlebtsov, “Silver nanocubes and gold nanocages: fabrication and optical and photothermal properties,” Nanotechnol. Russ. 5(7-8), 454–468 (2010).
    [Crossref]
  51. J. Chen, B. Wiley, Z. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure for Biomedical Applications,” Adv. Mater. 17(18), 2255–2261 (2005).
    [Crossref]
  52. J. Bai, P. Li, L. Guo, B. Zhang, Q. Hu, L. Wang, B. Liu, and X. Chen, “Au nanocage/SiO2 saturable absorber for passive Q-switching Yb-doped fiber laser,” Laser Phys. 28(5), 055109 (2018).
    [Crossref]
  53. Q. Hu, P. Li, B. Zhang, B. Liu, L. Wang, and X. Chen, “Passively Q-switched Yb-doped dual-wavelength fiber laser based on a gold-nanocage saturable absorber,” Appl. Opt. 57(28), 8242–8248 (2018).
    [Crossref]
  54. J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A. M. EI-Toni, F. Zhang, and D. Zhao, “Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release,” Chem. Mater. 25(15), 3030–3037 (2013).
    [Crossref]
  55. M. H. Tu, K. T. V. Sun, and Grattan, “LSPR Optical Fibre Sensors Based on Hollow Gold Nanostructures,” Sens. Actuators, B 191, 37–44 (2014).
    [Crossref]
  56. T. Demeritte, Z. Fan, S. Sinha, J. Duan, R. Pachter, and P. Ray, “Gold Nanocage Assemblies for Selective Second Harmonic Generation Imaging of Cancer Cell,” Chem. - Eur. J. 20(4), 1017–1022 (2014).
    [Crossref]
  57. K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118(11), 5918–5926 (2014).
    [Crossref]
  58. J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Qwrutsky, A. Piqué, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
    [Crossref]

2019 (5)

Y. Lü, C. Wei, H. Zhang, Z. Kang, G. Qin, and Y. Liu, “Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber,” Photonics Res. 7(1), 14–18 (2019).
[Crossref]

C. Wei, Y. Lü, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 µm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

W. Zhang, H. Zhang, G. Feng, Y. Ju, S. Ning, X. Chen, J. Dai, and S. Zhou, “Gold nanobipyramids as a saturable absorber for passively Q-switched Er3+: ZBLAN fiber laser,” Opt. Laser Technol. 111, 30–34 (2019).
[Crossref]

H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, and Y. Liu, “Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 µm,” Opt. Express 27(4), 4886–4896 (2019).
[Crossref]

B. Huang, Z. Kang, J. Li, M. Liu, P. Tang, L. Miao, C. Zhao, G. Qin, W. Qin, S. Wen, and P. N. Prasad, “Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime,” Photonics Res. 7(6), 699–704 (2019).
[Crossref]

2018 (10)

W. Duan, H. Nie, X. Sun, B. Zhang, G. He, Q. Yang, H. Xia, R. Wang, J. Zhan, and J. He, “Passively Q-switched mid-infrared laser pulse generation with gold nanospheres as a saturable absorber,” Opt. Lett. 43(5), 1179–1182 (2018).
[Crossref]

J. Bai, P. Li, L. Guo, B. Zhang, Q. Hu, L. Wang, B. Liu, and X. Chen, “Au nanocage/SiO2 saturable absorber for passive Q-switching Yb-doped fiber laser,” Laser Phys. 28(5), 055109 (2018).
[Crossref]

Q. Hu, P. Li, B. Zhang, B. Liu, L. Wang, and X. Chen, “Passively Q-switched Yb-doped dual-wavelength fiber laser based on a gold-nanocage saturable absorber,” Appl. Opt. 57(28), 8242–8248 (2018).
[Crossref]

W. Zhang, G. Feng, S. Dai, H. Zhang, Y. Ju, S. Ning, C. Yang, Y. Xiao, and S. Zhou, “Q-switched mid-infrared Er3+: ZBLAN fiber laser based on gold nanocrystals,” Laser Phys. 28(9), 095104 (2018).
[Crossref]

L. Yang, Z. Kang, B. Huang, J. Li, L. Miao, P. Tang, C. Zhao, G. Qin, and S. Wen, “Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser,” Opt. Lett. 43(21), 5459–5462 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Z. Kang, M. Liu, C. Tang, X. Xu, Z. Jia, G. Qin, and W. Qin, “Microfiber coated with gold nanorods as saturable absorbers for 2 µm femtosecond fiber lasers,” Opt. Mater. Express 8(12), 3841–3850 (2018).
[Crossref]

H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photonics Res. 6(9), 900–907 (2018).
[Crossref]

2017 (3)

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-Switched mid-Infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 µm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref]

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Qwrutsky, A. Piqué, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

2016 (6)

H. Huang, M. Li, P. Liu, L. Jin, H. Wang, and D. Shen, “Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 µm solid-state laser,” Opt. Lett. 41(12), 2700–2703 (2016).
[Crossref]

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref]

P. Tang, M. Wu, Q. Wang, L. Miao, B. Huang, J. Liu, C. Zhao, and S. Wen, “2.8-µm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3(12), 1373–1376 (2016).
[Crossref]

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 µm,” Proc. SPIE 9728, 972802 (2016).
[Crossref]

2015 (5)

2014 (6)

M. H. Tu, K. T. V. Sun, and Grattan, “LSPR Optical Fibre Sensors Based on Hollow Gold Nanostructures,” Sens. Actuators, B 191, 37–44 (2014).
[Crossref]

T. Demeritte, Z. Fan, S. Sinha, J. Duan, R. Pachter, and P. Ray, “Gold Nanocage Assemblies for Selective Second Harmonic Generation Imaging of Cancer Cell,” Chem. - Eur. J. 20(4), 1017–1022 (2014).
[Crossref]

K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118(11), 5918–5926 (2014).
[Crossref]

J. Li, H. Luo, Y. He, Y. Liu, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 µm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Y. Yu, S. Fan, H. Dai, Z. Ma, X. Wang, J. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

2013 (4)

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 µm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref]

G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 µm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
[Crossref]

J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A. M. EI-Toni, F. Zhang, and D. Zhao, “Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release,” Chem. Mater. 25(15), 3030–3037 (2013).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

2012 (3)

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-Order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-µm nanosecond fiber laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 µm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref]

2011 (3)

M. Gorjan, R. Petkovsek, M. Marincek, and M. Copic, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36(10), 1923–1925 (2011).
[Crossref]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12W Q-switched Er:ZBLAN fiber laser at 2.8 µm,” Opt. Lett. 36(15), 2812–2814 (2011).
[Crossref]

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref]

2010 (4)

L. Zhao, D. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

B. N. Khlebtsov, V. A. Khanadeev, I. L. Maksimova, G. S. Terentyuk, and N. G. Khlebtsov, “Silver nanocubes and gold nanocages: fabrication and optical and photothermal properties,” Nanotechnol. Russ. 5(7-8), 454–468 (2010).
[Crossref]

2008 (1)

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

2007 (1)

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[Crossref]

2006 (2)

M. Hu, H. Petrova, J. Chen, J. M. McLellan, A. R. Siekkinen, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Ultrafast laser studies of the photothermal properties of gold nanocages,” J. Phys. Chem. B 110(4), 1520–1524 (2006).
[Crossref]

H. I. Elim, J. Yang, J. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

2005 (1)

J. Chen, B. Wiley, Z. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure for Biomedical Applications,” Adv. Mater. 17(18), 2255–2261 (2005).
[Crossref]

2004 (1)

D. J. Coleman, T. A. King, D. Ko, and J. Lee, “Q-switched operation of a 2.7 µm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” Opt. Commun. 236(4-6), 379–385 (2004).
[Crossref]

2003 (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref]

2002 (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37(2-3), 101–114 (2002).
[Crossref]

1994 (1)

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 µm,” Electron. Lett. 30(9), 706–707 (1994).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Antipov, S.

Au, L.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[Crossref]

J. Chen, B. Wiley, Z. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure for Biomedical Applications,” Adv. Mater. 17(18), 2255–2261 (2005).
[Crossref]

Bachelier, G.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref]

Bai, J.

J. Bai, P. Li, L. Guo, B. Zhang, Q. Hu, L. Wang, B. Liu, and X. Chen, “Au nanocage/SiO2 saturable absorber for passive Q-switching Yb-doped fiber laser,” Laser Phys. 28(5), 055109 (2018).
[Crossref]

Baida, H.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref]

Balakrishnan, K.

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bao, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bernier, M.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 µm,” Proc. SPIE 9728, 972802 (2016).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2(7), 623–626 (2015).
[Crossref]

Biswas, S.

K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118(11), 5918–5926 (2014).
[Crossref]

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Bragagna, T.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Campbell, D.

J. Chen, B. Wiley, Z. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure for Biomedical Applications,” Adv. Mater. 17(18), 2255–2261 (2005).
[Crossref]

Cang, H.

J. Chen, B. Wiley, Z. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure for Biomedical Applications,” Adv. Mater. 17(18), 2255–2261 (2005).
[Crossref]

Cao, R.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Charipar, N.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Qwrutsky, A. Piqué, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Chen, H.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref]

Chen, J.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[Crossref]

M. Hu, H. Petrova, J. Chen, J. M. McLellan, A. R. Siekkinen, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Ultrafast laser studies of the photothermal properties of gold nanocages,” J. Phys. Chem. B 110(4), 1520–1524 (2006).
[Crossref]

J. Chen, B. Wiley, Z. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure for Biomedical Applications,” Adv. Mater. 17(18), 2255–2261 (2005).
[Crossref]

Chen, X.

W. Zhang, H. Zhang, G. Feng, Y. Ju, S. Ning, X. Chen, J. Dai, and S. Zhou, “Gold nanobipyramids as a saturable absorber for passively Q-switched Er3+: ZBLAN fiber laser,” Opt. Laser Technol. 111, 30–34 (2019).
[Crossref]

J. Bai, P. Li, L. Guo, B. Zhang, Q. Hu, L. Wang, B. Liu, and X. Chen, “Au nanocage/SiO2 saturable absorber for passive Q-switching Yb-doped fiber laser,” Laser Phys. 28(5), 055109 (2018).
[Crossref]

Q. Hu, P. Li, B. Zhang, B. Liu, L. Wang, and X. Chen, “Passively Q-switched Yb-doped dual-wavelength fiber laser based on a gold-nanocage saturable absorber,” Appl. Opt. 57(28), 8242–8248 (2018).
[Crossref]

Chen, Y.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Christofilos, D.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref]

Coleman, D. J.

D. J. Coleman, T. A. King, D. Ko, and J. Lee, “Q-switched operation of a 2.7 µm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” Opt. Commun. 236(4-6), 379–385 (2004).
[Crossref]

Copic, M.

Crut, A.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref]

Dai, H.

Y. Yu, S. Fan, H. Dai, Z. Ma, X. Wang, J. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Dai, J.

W. Zhang, H. Zhang, G. Feng, Y. Ju, S. Ning, X. Chen, J. Dai, and S. Zhou, “Gold nanobipyramids as a saturable absorber for passively Q-switched Er3+: ZBLAN fiber laser,” Opt. Laser Technol. 111, 30–34 (2019).
[Crossref]

Dai, S.

W. Zhang, G. Feng, S. Dai, H. Zhang, Y. Ju, S. Ning, C. Yang, Y. Xiao, and S. Zhou, “Q-switched mid-infrared Er3+: ZBLAN fiber laser based on gold nanocrystals,” Laser Phys. 28(9), 095104 (2018).
[Crossref]

De Boni, L.

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Del Fatti, N.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref]

Demeritte, T.

T. Demeritte, Z. Fan, S. Sinha, J. Duan, R. Pachter, and P. Ray, “Gold Nanocage Assemblies for Selective Second Harmonic Generation Imaging of Cancer Cell,” Chem. - Eur. J. 20(4), 1017–1022 (2014).
[Crossref]

Dhanabalan, S. C.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Dong, B.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Duan, J.

T. Demeritte, Z. Fan, S. Sinha, J. Duan, R. Pachter, and P. Ray, “Gold Nanocage Assemblies for Selective Second Harmonic Generation Imaging of Cancer Cell,” Chem. - Eur. J. 20(4), 1017–1022 (2014).
[Crossref]

Duan, W.

Dunkelberger, A.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Qwrutsky, A. Piqué, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Duval, S.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 µm,” Proc. SPIE 9728, 972802 (2016).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2(7), 623–626 (2015).
[Crossref]

EI-Toni, A. M.

J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A. M. EI-Toni, F. Zhang, and D. Zhao, “Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release,” Chem. Mater. 25(15), 3030–3037 (2013).
[Crossref]

Elim, H. I.

H. I. Elim, J. Yang, J. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Fan, D.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref]

Fan, S.

Y. Yu, S. Fan, H. Dai, Z. Ma, X. Wang, J. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Fan, Z.

T. Demeritte, Z. Fan, S. Sinha, J. Duan, R. Pachter, and P. Ray, “Gold Nanocage Assemblies for Selective Second Harmonic Generation Imaging of Cancer Cell,” Chem. - Eur. J. 20(4), 1017–1022 (2014).
[Crossref]

Feng, G.

W. Zhang, H. Zhang, G. Feng, Y. Ju, S. Ning, X. Chen, J. Dai, and S. Zhou, “Gold nanobipyramids as a saturable absorber for passively Q-switched Er3+: ZBLAN fiber laser,” Opt. Laser Technol. 111, 30–34 (2019).
[Crossref]

W. Zhang, G. Feng, S. Dai, H. Zhang, Y. Ju, S. Ning, C. Yang, Y. Xiao, and S. Zhou, “Q-switched mid-infrared Er3+: ZBLAN fiber laser based on gold nanocrystals,” Laser Phys. 28(9), 095104 (2018).
[Crossref]

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref]

Feng, Y.

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Fontana, J.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Qwrutsky, A. Piqué, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Fortin, V.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 µm,” Proc. SPIE 9728, 972802 (2016).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2(7), 623–626 (2015).
[Crossref]

Frerichs, C.

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 µm,” Electron. Lett. 30(9), 706–707 (1994).
[Crossref]

Fuerbach, A.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Galecki, L.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Gao, Y.

H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, and Y. Liu, “Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 µm,” Opt. Express 27(4), 4886–4896 (2019).
[Crossref]

H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photonics Res. 6(9), 900–907 (2018).
[Crossref]

Ge, Y.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Genest, J.

Gordel, M.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-Order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Gorjan, M.

Grattan,

M. H. Tu, K. T. V. Sun, and Grattan, “LSPR Optical Fibre Sensors Based on Hollow Gold Nanostructures,” Sens. Actuators, B 191, 37–44 (2014).
[Crossref]

Gross, S.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Guo, L.

J. Bai, P. Li, L. Guo, B. Zhang, Q. Hu, L. Wang, B. Liu, and X. Chen, “Au nanocage/SiO2 saturable absorber for passive Q-switching Yb-doped fiber laser,” Laser Phys. 28(5), 055109 (2018).
[Crossref]

Guo, Z.

Han, J.

Y. Yu, S. Fan, H. Dai, Z. Ma, X. Wang, J. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Hartland, G. V.

M. Hu, H. Petrova, J. Chen, J. M. McLellan, A. R. Siekkinen, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Ultrafast laser studies of the photothermal properties of gold nanocages,” J. Phys. Chem. B 110(4), 1520–1524 (2006).
[Crossref]

Hashida, M.

He, G.

He, J.

He, Y.

J. Li, H. Luo, Y. He, Y. Liu, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 µm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

He, Z.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Heinrich, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Hernandez, F. E.

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Hu, M.

M. Hu, H. Petrova, J. Chen, J. M. McLellan, A. R. Siekkinen, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Ultrafast laser studies of the photothermal properties of gold nanocages,” J. Phys. Chem. B 110(4), 1520–1524 (2006).
[Crossref]

Hu, Q.

J. Bai, P. Li, L. Guo, B. Zhang, Q. Hu, L. Wang, B. Liu, and X. Chen, “Au nanocage/SiO2 saturable absorber for passive Q-switching Yb-doped fiber laser,” Laser Phys. 28(5), 055109 (2018).
[Crossref]

Q. Hu, P. Li, B. Zhang, B. Liu, L. Wang, and X. Chen, “Passively Q-switched Yb-doped dual-wavelength fiber laser based on a gold-nanocage saturable absorber,” Appl. Opt. 57(28), 8242–8248 (2018).
[Crossref]

Huang, B.

B. Huang, Z. Kang, J. Li, M. Liu, P. Tang, L. Miao, C. Zhao, G. Qin, W. Qin, S. Wen, and P. N. Prasad, “Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime,” Photonics Res. 7(6), 699–704 (2019).
[Crossref]

L. Yang, Z. Kang, B. Huang, J. Li, L. Miao, P. Tang, C. Zhao, G. Qin, and S. Wen, “Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser,” Opt. Lett. 43(21), 5459–5462 (2018).
[Crossref]

P. Tang, M. Wu, Q. Wang, L. Miao, B. Huang, J. Liu, C. Zhao, and S. Wen, “2.8-µm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Huang, H.

Huang, K.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref]

Hudson, D. D.

Jackson, S. D.

Jänker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37(2-3), 101–114 (2002).
[Crossref]

Ji, W.

H. I. Elim, J. Yang, J. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Jia, Z.

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Z. Kang, M. Liu, C. Tang, X. Xu, Z. Jia, G. Qin, and W. Qin, “Microfiber coated with gold nanorods as saturable absorbers for 2 µm femtosecond fiber lasers,” Opt. Mater. Express 8(12), 3841–3850 (2018).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Jiang, X.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Jin, L.

Ju, Y.

W. Zhang, H. Zhang, G. Feng, Y. Ju, S. Ning, X. Chen, J. Dai, and S. Zhou, “Gold nanobipyramids as a saturable absorber for passively Q-switched Er3+: ZBLAN fiber laser,” Opt. Laser Technol. 111, 30–34 (2019).
[Crossref]

W. Zhang, G. Feng, S. Dai, H. Zhang, Y. Ju, S. Ning, C. Yang, Y. Xiao, and S. Zhou, “Q-switched mid-infrared Er3+: ZBLAN fiber laser based on gold nanocrystals,” Laser Phys. 28(9), 095104 (2018).
[Crossref]

Kanel, S.

K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118(11), 5918–5926 (2014).
[Crossref]

Kang, Z.

B. Huang, Z. Kang, J. Li, M. Liu, P. Tang, L. Miao, C. Zhao, G. Qin, W. Qin, S. Wen, and P. N. Prasad, “Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime,” Photonics Res. 7(6), 699–704 (2019).
[Crossref]

C. Wei, Y. Lü, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 µm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

Y. Lü, C. Wei, H. Zhang, Z. Kang, G. Qin, and Y. Liu, “Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber,” Photonics Res. 7(1), 14–18 (2019).
[Crossref]

H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, and Y. Liu, “Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 µm,” Opt. Express 27(4), 4886–4896 (2019).
[Crossref]

L. Yang, Z. Kang, B. Huang, J. Li, L. Miao, P. Tang, C. Zhao, G. Qin, and S. Wen, “Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser,” Opt. Lett. 43(21), 5459–5462 (2018).
[Crossref]

Z. Kang, M. Liu, C. Tang, X. Xu, Z. Jia, G. Qin, and W. Qin, “Microfiber coated with gold nanorods as saturable absorbers for 2 µm femtosecond fiber lasers,” Opt. Mater. Express 8(12), 3841–3850 (2018).
[Crossref]

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Kasprzak, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Khanadeev, V. A.

B. N. Khlebtsov, V. A. Khanadeev, I. L. Maksimova, G. S. Terentyuk, and N. G. Khlebtsov, “Silver nanocubes and gold nanocages: fabrication and optical and photothermal properties,” Nanotechnol. Russ. 5(7-8), 454–468 (2010).
[Crossref]

Khlebtsov, B. N.

B. N. Khlebtsov, V. A. Khanadeev, I. L. Maksimova, G. S. Terentyuk, and N. G. Khlebtsov, “Silver nanocubes and gold nanocages: fabrication and optical and photothermal properties,” Nanotechnol. Russ. 5(7-8), 454–468 (2010).
[Crossref]

Khlebtsov, N. G.

B. N. Khlebtsov, V. A. Khanadeev, I. L. Maksimova, G. S. Terentyuk, and N. G. Khlebtsov, “Silver nanocubes and gold nanocages: fabrication and optical and photothermal properties,” Nanotechnol. Russ. 5(7-8), 454–468 (2010).
[Crossref]

King, T. A.

D. J. Coleman, T. A. King, D. Ko, and J. Lee, “Q-switched operation of a 2.7 µm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” Opt. Commun. 236(4-6), 379–385 (2004).
[Crossref]

Ko, D.

D. J. Coleman, T. A. King, D. Ko, and J. Lee, “Q-switched operation of a 2.7 µm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” Opt. Commun. 236(4-6), 379–385 (2004).
[Crossref]

Kolkowski, R.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-Order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Konynenbelt, K.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-Switched mid-Infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37(2-3), 101–114 (2002).
[Crossref]

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Lee, J.

H. I. Elim, J. Yang, J. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

J. Chen, B. Wiley, Z. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure for Biomedical Applications,” Adv. Mater. 17(18), 2255–2261 (2005).
[Crossref]

D. J. Coleman, T. A. King, D. Ko, and J. Lee, “Q-switched operation of a 2.7 µm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” Opt. Commun. 236(4-6), 379–385 (2004).
[Crossref]

Li, C.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Li, H.

Li, J.

H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, and Y. Liu, “Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 µm,” Opt. Express 27(4), 4886–4896 (2019).
[Crossref]

B. Huang, Z. Kang, J. Li, M. Liu, P. Tang, L. Miao, C. Zhao, G. Qin, W. Qin, S. Wen, and P. N. Prasad, “Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime,” Photonics Res. 7(6), 699–704 (2019).
[Crossref]

H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photonics Res. 6(9), 900–907 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

L. Yang, Z. Kang, B. Huang, J. Li, L. Miao, P. Tang, C. Zhao, G. Qin, and S. Wen, “Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser,” Opt. Lett. 43(21), 5459–5462 (2018).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 µm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-µm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref]

J. Li, H. Luo, Y. He, Y. Liu, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 µm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 µm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref]

Li, L.

Y. Yu, S. Fan, H. Dai, Z. Ma, X. Wang, J. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Li, M.

Li, P.

Q. Hu, P. Li, B. Zhang, B. Liu, L. Wang, and X. Chen, “Passively Q-switched Yb-doped dual-wavelength fiber laser based on a gold-nanocage saturable absorber,” Appl. Opt. 57(28), 8242–8248 (2018).
[Crossref]

J. Bai, P. Li, L. Guo, B. Zhang, Q. Hu, L. Wang, B. Liu, and X. Chen, “Au nanocage/SiO2 saturable absorber for passive Q-switching Yb-doped fiber laser,” Laser Phys. 28(5), 055109 (2018).
[Crossref]

Li, S.

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Li, W.

J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A. M. EI-Toni, F. Zhang, and D. Zhao, “Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release,” Chem. Mater. 25(15), 3030–3037 (2013).
[Crossref]

Li, X.

J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A. M. EI-Toni, F. Zhang, and D. Zhao, “Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release,” Chem. Mater. 25(15), 3030–3037 (2013).
[Crossref]

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[Crossref]

M. Hu, H. Petrova, J. Chen, J. M. McLellan, A. R. Siekkinen, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Ultrafast laser studies of the photothermal properties of gold nanocages,” J. Phys. Chem. B 110(4), 1520–1524 (2006).
[Crossref]

J. Chen, B. Wiley, Z. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure for Biomedical Applications,” Adv. Mater. 17(18), 2255–2261 (2005).
[Crossref]

Li, Z.

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

J. Chen, B. Wiley, Z. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure for Biomedical Applications,” Adv. Mater. 17(18), 2255–2261 (2005).
[Crossref]

Liang, W.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Liang, Z.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Liu, B.

J. Bai, P. Li, L. Guo, B. Zhang, Q. Hu, L. Wang, B. Liu, and X. Chen, “Au nanocage/SiO2 saturable absorber for passive Q-switching Yb-doped fiber laser,” Laser Phys. 28(5), 055109 (2018).
[Crossref]

Q. Hu, P. Li, B. Zhang, B. Liu, L. Wang, and X. Chen, “Passively Q-switched Yb-doped dual-wavelength fiber laser based on a gold-nanocage saturable absorber,” Appl. Opt. 57(28), 8242–8248 (2018).
[Crossref]

Liu, C.

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Liu, J.

P. Tang, M. Wu, Q. Wang, L. Miao, B. Huang, J. Liu, C. Zhao, and S. Wen, “2.8-µm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Liu, L.

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Liu, M.

B. Huang, Z. Kang, J. Li, M. Liu, P. Tang, L. Miao, C. Zhao, G. Qin, W. Qin, S. Wen, and P. N. Prasad, “Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime,” Photonics Res. 7(6), 699–704 (2019).
[Crossref]

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Z. Kang, M. Liu, C. Tang, X. Xu, Z. Jia, G. Qin, and W. Qin, “Microfiber coated with gold nanorods as saturable absorbers for 2 µm femtosecond fiber lasers,” Opt. Mater. Express 8(12), 3841–3850 (2018).
[Crossref]

Liu, P.

Liu, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Liu, Y.

Y. Lü, C. Wei, H. Zhang, Z. Kang, G. Qin, and Y. Liu, “Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber,” Photonics Res. 7(1), 14–18 (2019).
[Crossref]

C. Wei, Y. Lü, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 µm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, and Y. Liu, “Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 µm,” Opt. Express 27(4), 4886–4896 (2019).
[Crossref]

H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photonics Res. 6(9), 900–907 (2018).
[Crossref]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-Switched mid-Infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 µm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-µm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 µm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref]

J. Li, H. Luo, Y. He, Y. Liu, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 µm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 µm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref]

Lu, L.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Lu, S.

Lu, X.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[Crossref]

Lü, Y.

Y. Lü, C. Wei, H. Zhang, Z. Kang, G. Qin, and Y. Liu, “Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber,” Photonics Res. 7(1), 14–18 (2019).
[Crossref]

C. Wei, Y. Lü, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 µm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

Luan, K.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref]

Luo, H.

H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, and Y. Liu, “Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 µm,” Opt. Express 27(4), 4886–4896 (2019).
[Crossref]

H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photonics Res. 6(9), 900–907 (2018).
[Crossref]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-Switched mid-Infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 µm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 µm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-µm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref]

J. Li, H. Luo, Y. He, Y. Liu, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 µm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

Luo, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Lyu, Y.

Ma, J.

Ma, Z.

Y. Yu, S. Fan, H. Dai, Z. Ma, X. Wang, J. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Maciejewska, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Maioli, P.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref]

Maksimova, I. L.

B. N. Khlebtsov, V. A. Khanadeev, I. L. Maksimova, G. S. Terentyuk, and N. G. Khlebtsov, “Silver nanocubes and gold nanocages: fabrication and optical and photothermal properties,” Nanotechnol. Russ. 5(7-8), 454–468 (2010).
[Crossref]

Marincek, M.

Marquez, M.

M. Hu, H. Petrova, J. Chen, J. M. McLellan, A. R. Siekkinen, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Ultrafast laser studies of the photothermal properties of gold nanocages,” J. Phys. Chem. B 110(4), 1520–1524 (2006).
[Crossref]

Matczyszyn, K.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-Order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37(2-3), 101–114 (2002).
[Crossref]

McLellan, J. M.

M. Hu, H. Petrova, J. Chen, J. M. McLellan, A. R. Siekkinen, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Ultrafast laser studies of the photothermal properties of gold nanocages,” J. Phys. Chem. B 110(4), 1520–1524 (2006).
[Crossref]

Mi, J.

H. I. Elim, J. Yang, J. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Miao, L.

B. Huang, Z. Kang, J. Li, M. Liu, P. Tang, L. Miao, C. Zhao, G. Qin, W. Qin, S. Wen, and P. N. Prasad, “Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime,” Photonics Res. 7(6), 699–704 (2019).
[Crossref]

L. Yang, Z. Kang, B. Huang, J. Li, L. Miao, P. Tang, C. Zhao, G. Qin, and S. Wen, “Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser,” Opt. Lett. 43(21), 5459–5462 (2018).
[Crossref]

P. Tang, M. Wu, Q. Wang, L. Miao, B. Huang, J. Liu, C. Zhao, and S. Wen, “2.8-µm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Mongin, D.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref]

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Mücke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37(2-3), 101–114 (2002).
[Crossref]

Murakami, M.

Naciri, J.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Qwrutsky, A. Piqué, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Nepal, D.

K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118(11), 5918–5926 (2014).
[Crossref]

Nie, H.

Ning, S.

W. Zhang, H. Zhang, G. Feng, Y. Ju, S. Ning, X. Chen, J. Dai, and S. Zhou, “Gold nanobipyramids as a saturable absorber for passively Q-switched Er3+: ZBLAN fiber laser,” Opt. Laser Technol. 111, 30–34 (2019).
[Crossref]

W. Zhang, G. Feng, S. Dai, H. Zhang, Y. Ju, S. Ning, C. Yang, Y. Xiao, and S. Zhou, “Q-switched mid-infrared Er3+: ZBLAN fiber laser based on gold nanocrystals,” Laser Phys. 28(9), 095104 (2018).
[Crossref]

Nita, R.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Qwrutsky, A. Piqué, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Norwood, R. A.

Nyga, P.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Olesiak-Banska, J.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-Order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Olivier, M.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 µm,” Proc. SPIE 9728, 972802 (2016).
[Crossref]

Pachter, R.

T. Demeritte, Z. Fan, S. Sinha, J. Duan, R. Pachter, and P. Ray, “Gold Nanocage Assemblies for Selective Second Harmonic Generation Imaging of Cancer Cell,” Chem. - Eur. J. 20(4), 1017–1022 (2014).
[Crossref]

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Park, K.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Qwrutsky, A. Piqué, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118(11), 5918–5926 (2014).
[Crossref]

Peng, H.

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Petkovsek, R.

Petrova, H.

M. Hu, H. Petrova, J. Chen, J. M. McLellan, A. R. Siekkinen, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Ultrafast laser studies of the photothermal properties of gold nanocages,” J. Phys. Chem. B 110(4), 1520–1524 (2006).
[Crossref]

Peyghambarian, N.

Piché, M.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 µm,” Proc. SPIE 9728, 972802 (2016).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2(7), 623–626 (2015).
[Crossref]

Pichola, W.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Piqué, A.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Qwrutsky, A. Piqué, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Ponraj, J. S.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Prasad, P. N.

B. Huang, Z. Kang, J. Li, M. Liu, P. Tang, L. Miao, C. Zhao, G. Qin, W. Qin, S. Wen, and P. N. Prasad, “Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime,” Photonics Res. 7(6), 699–704 (2019).
[Crossref]

Qian, L.

Qin, G.

H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, and Y. Liu, “Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 µm,” Opt. Express 27(4), 4886–4896 (2019).
[Crossref]

B. Huang, Z. Kang, J. Li, M. Liu, P. Tang, L. Miao, C. Zhao, G. Qin, W. Qin, S. Wen, and P. N. Prasad, “Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime,” Photonics Res. 7(6), 699–704 (2019).
[Crossref]

C. Wei, Y. Lü, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 µm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

Y. Lü, C. Wei, H. Zhang, Z. Kang, G. Qin, and Y. Liu, “Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber,” Photonics Res. 7(1), 14–18 (2019).
[Crossref]

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Z. Kang, M. Liu, C. Tang, X. Xu, Z. Jia, G. Qin, and W. Qin, “Microfiber coated with gold nanorods as saturable absorbers for 2 µm femtosecond fiber lasers,” Opt. Mater. Express 8(12), 3841–3850 (2018).
[Crossref]

L. Yang, Z. Kang, B. Huang, J. Li, L. Miao, P. Tang, C. Zhao, G. Qin, and S. Wen, “Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser,” Opt. Lett. 43(21), 5459–5462 (2018).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Qin, W.

B. Huang, Z. Kang, J. Li, M. Liu, P. Tang, L. Miao, C. Zhao, G. Qin, W. Qin, S. Wen, and P. N. Prasad, “Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime,” Photonics Res. 7(6), 699–704 (2019).
[Crossref]

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Z. Kang, M. Liu, C. Tang, X. Xu, Z. Jia, G. Qin, and W. Qin, “Microfiber coated with gold nanorods as saturable absorbers for 2 µm femtosecond fiber lasers,” Opt. Mater. Express 8(12), 3841–3850 (2018).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Qin, Z.

Qiu, J.

H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photonics Res. 6(9), 900–907 (2018).
[Crossref]

Qwrutsky, J.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Qwrutsky, A. Piqué, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Radic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ratna, B.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Qwrutsky, A. Piqué, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Ray, P.

T. Demeritte, Z. Fan, S. Sinha, J. Duan, R. Pachter, and P. Ray, “Gold Nanocage Assemblies for Selective Second Harmonic Generation Imaging of Cancer Cell,” Chem. - Eur. J. 20(4), 1017–1022 (2014).
[Crossref]

Saeki, F.

J. Chen, B. Wiley, Z. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure for Biomedical Applications,” Adv. Mater. 17(18), 2255–2261 (2005).
[Crossref]

Sakabe, S.

Samoc, M.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-Order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Shen, D.

H. Huang, M. Li, P. Liu, L. Jin, H. Wang, and D. Shen, “Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 µm solid-state laser,” Opt. Lett. 41(12), 2700–2703 (2016).
[Crossref]

J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A. M. EI-Toni, F. Zhang, and D. Zhao, “Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release,” Chem. Mater. 25(15), 3030–3037 (2013).
[Crossref]

Shen, Y.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref]

Shi, H.

C. Wei, Y. Lü, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 µm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-Switched mid-Infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 µm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref]

Shimizu, S.

Si, J.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref]

Siekkinen, A. R.

M. Hu, H. Petrova, J. Chen, J. M. McLellan, A. R. Siekkinen, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Ultrafast laser studies of the photothermal properties of gold nanocages,” J. Phys. Chem. B 110(4), 1520–1524 (2006).
[Crossref]

Sinha, S.

T. Demeritte, Z. Fan, S. Sinha, J. Duan, R. Pachter, and P. Ray, “Gold Nanocage Assemblies for Selective Second Harmonic Generation Imaging of Cancer Cell,” Chem. - Eur. J. 20(4), 1017–1022 (2014).
[Crossref]

Skorczakowski, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Skrabalak, S. E.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[Crossref]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37(2-3), 101–114 (2002).
[Crossref]

Song, F.

Song, Y.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sun, K. T. V.

M. H. Tu, K. T. V. Sun, and Grattan, “LSPR Optical Fibre Sensors Based on Hollow Gold Nanostructures,” Sens. Actuators, B 191, 37–44 (2014).
[Crossref]

Sun, X.

Swiderski, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Tang, C.

Tang, D.

Tang, P.

B. Huang, Z. Kang, J. Li, M. Liu, P. Tang, L. Miao, C. Zhao, G. Qin, W. Qin, S. Wen, and P. N. Prasad, “Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime,” Photonics Res. 7(6), 699–704 (2019).
[Crossref]

L. Yang, Z. Kang, B. Huang, J. Li, L. Miao, P. Tang, C. Zhao, G. Qin, and S. Wen, “Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser,” Opt. Lett. 43(21), 5459–5462 (2018).
[Crossref]

P. Tang, M. Wu, Q. Wang, L. Miao, B. Huang, J. Liu, C. Zhao, and S. Wen, “2.8-µm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tao, M.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref]

Tauermann, T.

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 µm,” Electron. Lett. 30(9), 706–707 (1994).
[Crossref]

Terentyuk, G. S.

B. N. Khlebtsov, V. A. Khanadeev, I. L. Maksimova, G. S. Terentyuk, and N. G. Khlebtsov, “Silver nanocubes and gold nanocages: fabrication and optical and photothermal properties,” Nanotechnol. Russ. 5(7-8), 454–468 (2010).
[Crossref]

Tian, X.

H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photonics Res. 6(9), 900–907 (2018).
[Crossref]

Tokita, S.

Toro, C.

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Tu, M. H.

M. H. Tu, K. T. V. Sun, and Grattan, “LSPR Optical Fibre Sensors Based on Hollow Gold Nanostructures,” Sens. Actuators, B 191, 37–44 (2014).
[Crossref]

Turistyn, S. K.

J. Li, H. Luo, Y. He, Y. Liu, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 µm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

Vaia, R.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Qwrutsky, A. Piqué, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Vaia, R. A.

K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118(11), 5918–5926 (2014).
[Crossref]

Vallée, F.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref]

Vallée, R.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 µm,” Proc. SPIE 9728, 972802 (2016).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2(7), 623–626 (2015).
[Crossref]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref]

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref]

Wang, F.

Wang, H.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

H. Huang, M. Li, P. Liu, L. Jin, H. Wang, and D. Shen, “Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 µm solid-state laser,” Opt. Lett. 41(12), 2700–2703 (2016).
[Crossref]

Wang, L.

Wang, Q.

P. Tang, M. Wu, Q. Wang, L. Miao, B. Huang, J. Liu, C. Zhao, and S. Wen, “2.8-µm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Wang, R.

W. Duan, H. Nie, X. Sun, B. Zhang, G. He, Q. Yang, H. Xia, R. Wang, J. Zhan, and J. He, “Passively Q-switched mid-infrared laser pulse generation with gold nanospheres as a saturable absorber,” Opt. Lett. 43(5), 1179–1182 (2018).
[Crossref]

J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A. M. EI-Toni, F. Zhang, and D. Zhao, “Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release,” Chem. Mater. 25(15), 3030–3037 (2013).
[Crossref]

Wang, X.

Y. Yu, S. Fan, H. Dai, Z. Ma, X. Wang, J. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Wang, Y.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref]

Wei, C.

C. Wei, Y. Lü, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 µm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

Y. Lü, C. Wei, H. Zhang, Z. Kang, G. Qin, and Y. Liu, “Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber,” Photonics Res. 7(1), 14–18 (2019).
[Crossref]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-Switched mid-Infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 µm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 µm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-µm nanosecond fiber laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

Wei, R.

H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photonics Res. 6(9), 900–907 (2018).
[Crossref]

Wen, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Wen, S.

B. Huang, Z. Kang, J. Li, M. Liu, P. Tang, L. Miao, C. Zhao, G. Qin, W. Qin, S. Wen, and P. N. Prasad, “Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime,” Photonics Res. 7(6), 699–704 (2019).
[Crossref]

L. Yang, Z. Kang, B. Huang, J. Li, L. Miao, P. Tang, C. Zhao, G. Qin, and S. Wen, “Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser,” Opt. Lett. 43(21), 5459–5462 (2018).
[Crossref]

P. Tang, M. Wu, Q. Wang, L. Miao, B. Huang, J. Liu, C. Zhao, and S. Wen, “2.8-µm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 µm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref]

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37(2-3), 101–114 (2002).
[Crossref]

Wiley, B.

J. Chen, B. Wiley, Z. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure for Biomedical Applications,” Adv. Mater. 17(18), 2255–2261 (2005).
[Crossref]

Wood, E. L.

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Wu, L.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Wu, M.

P. Tang, M. Wu, Q. Wang, L. Miao, B. Huang, J. Liu, C. Zhao, and S. Wen, “2.8-µm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Wu, X.

Xia, H.

Xia, Y.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[Crossref]

M. Hu, H. Petrova, J. Chen, J. M. McLellan, A. R. Siekkinen, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Ultrafast laser studies of the photothermal properties of gold nanocages,” J. Phys. Chem. B 110(4), 1520–1524 (2006).
[Crossref]

J. Chen, B. Wiley, Z. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure for Biomedical Applications,” Adv. Mater. 17(18), 2255–2261 (2005).
[Crossref]

Xiang, Y.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Xiao, Y.

W. Zhang, G. Feng, S. Dai, H. Zhang, Y. Ju, S. Ning, C. Yang, Y. Xiao, and S. Zhou, “Q-switched mid-infrared Er3+: ZBLAN fiber laser based on gold nanocrystals,” Laser Phys. 28(9), 095104 (2018).
[Crossref]

Xie, G.

Xie, J.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Xing, F.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Xu, X.

Xu, Y.

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 µm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Yang, C.

W. Zhang, G. Feng, S. Dai, H. Zhang, Y. Ju, S. Ning, C. Yang, Y. Xiao, and S. Zhou, “Q-switched mid-infrared Er3+: ZBLAN fiber laser based on gold nanocrystals,” Laser Phys. 28(9), 095104 (2018).
[Crossref]

Yang, J.

J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A. M. EI-Toni, F. Zhang, and D. Zhao, “Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release,” Chem. Mater. 25(15), 3030–3037 (2013).
[Crossref]

H. I. Elim, J. Yang, J. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Yang, L.

Yang, Q.

Yao, C.

J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A. M. EI-Toni, F. Zhang, and D. Zhao, “Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release,” Chem. Mater. 25(15), 3030–3037 (2013).
[Crossref]

Yi, A.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref]

Yu, Y.

Y. Yu, S. Fan, H. Dai, Z. Ma, X. Wang, J. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Yuan, P.

Zajac, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Zhai, B.

Zhan, J.

Zhang, B.

Zhang, F.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A. M. EI-Toni, F. Zhang, and D. Zhao, “Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release,” Chem. Mater. 25(15), 3030–3037 (2013).
[Crossref]

Zhang, H.

W. Zhang, H. Zhang, G. Feng, Y. Ju, S. Ning, X. Chen, J. Dai, and S. Zhou, “Gold nanobipyramids as a saturable absorber for passively Q-switched Er3+: ZBLAN fiber laser,” Opt. Laser Technol. 111, 30–34 (2019).
[Crossref]

Y. Lü, C. Wei, H. Zhang, Z. Kang, G. Qin, and Y. Liu, “Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber,” Photonics Res. 7(1), 14–18 (2019).
[Crossref]

C. Wei, Y. Lü, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 µm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

W. Zhang, G. Feng, S. Dai, H. Zhang, Y. Ju, S. Ning, C. Yang, Y. Xiao, and S. Zhou, “Q-switched mid-infrared Er3+: ZBLAN fiber laser based on gold nanocrystals,” Laser Phys. 28(9), 095104 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-Switched mid-Infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 µm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 µm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-µm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref]

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref]

L. Zhao, D. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010).
[Crossref]

Zhang, L.

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhang, W.

W. Zhang, H. Zhang, G. Feng, Y. Ju, S. Ning, X. Chen, J. Dai, and S. Zhou, “Gold nanobipyramids as a saturable absorber for passively Q-switched Er3+: ZBLAN fiber laser,” Opt. Laser Technol. 111, 30–34 (2019).
[Crossref]

W. Zhang, G. Feng, S. Dai, H. Zhang, Y. Ju, S. Ning, C. Yang, Y. Xiao, and S. Zhou, “Q-switched mid-infrared Er3+: ZBLAN fiber laser based on gold nanocrystals,” Laser Phys. 28(9), 095104 (2018).
[Crossref]

Zhao, C.

B. Huang, Z. Kang, J. Li, M. Liu, P. Tang, L. Miao, C. Zhao, G. Qin, W. Qin, S. Wen, and P. N. Prasad, “Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime,” Photonics Res. 7(6), 699–704 (2019).
[Crossref]

L. Yang, Z. Kang, B. Huang, J. Li, L. Miao, P. Tang, C. Zhao, G. Qin, and S. Wen, “Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser,” Opt. Lett. 43(21), 5459–5462 (2018).
[Crossref]

P. Tang, M. Wu, Q. Wang, L. Miao, B. Huang, J. Liu, C. Zhao, and S. Wen, “2.8-µm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 µm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-µm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref]

Zhao, D.

J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A. M. EI-Toni, F. Zhang, and D. Zhao, “Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release,” Chem. Mater. 25(15), 3030–3037 (2013).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhao, L.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zhou, L.

J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A. M. EI-Toni, F. Zhang, and D. Zhao, “Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release,” Chem. Mater. 25(15), 3030–3037 (2013).
[Crossref]

Zhou, S.

W. Zhang, H. Zhang, G. Feng, Y. Ju, S. Ning, X. Chen, J. Dai, and S. Zhou, “Gold nanobipyramids as a saturable absorber for passively Q-switched Er3+: ZBLAN fiber laser,” Opt. Laser Technol. 111, 30–34 (2019).
[Crossref]

W. Zhang, G. Feng, S. Dai, H. Zhang, Y. Ju, S. Ning, C. Yang, Y. Xiao, and S. Zhou, “Q-switched mid-infrared Er3+: ZBLAN fiber laser based on gold nanocrystals,” Laser Phys. 28(9), 095104 (2018).
[Crossref]

Zhu, G.

Zhu, X.

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Adv. Mater. (2)

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[Crossref]

J. Chen, B. Wiley, Z. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure for Biomedical Applications,” Adv. Mater. 17(18), 2255–2261 (2005).
[Crossref]

Adv. Opt. Mater. (1)

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Qwrutsky, A. Piqué, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Yu, S. Fan, H. Dai, Z. Ma, X. Wang, J. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

H. I. Elim, J. Yang, J. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Chem. - Eur. J. (1)

T. Demeritte, Z. Fan, S. Sinha, J. Duan, R. Pachter, and P. Ray, “Gold Nanocage Assemblies for Selective Second Harmonic Generation Imaging of Cancer Cell,” Chem. - Eur. J. 20(4), 1017–1022 (2014).
[Crossref]

Chem. Mater. (1)

J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A. M. EI-Toni, F. Zhang, and D. Zhao, “Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release,” Chem. Mater. 25(15), 3030–3037 (2013).
[Crossref]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref]

Electron. Lett. (1)

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 µm,” Electron. Lett. 30(9), 706–707 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Wei, Y. Lü, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 µm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (3)

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-Switched mid-Infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

P. Tang, M. Wu, Q. Wang, L. Miao, B. Huang, J. Liu, C. Zhao, and S. Wen, “2.8-µm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-µm nanosecond fiber laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

J. Phys. Chem. B (1)

M. Hu, H. Petrova, J. Chen, J. M. McLellan, A. R. Siekkinen, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Ultrafast laser studies of the photothermal properties of gold nanocages,” J. Phys. Chem. B 110(4), 1520–1524 (2006).
[Crossref]

J. Phys. Chem. C (2)

K. Park, S. Biswas, S. Kanel, D. Nepal, and R. A. Vaia, “Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section,” J. Phys. Chem. C 118(11), 5918–5926 (2014).
[Crossref]

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-Order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Laser Photonics Rev. (2)

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Laser Phys. (2)

W. Zhang, G. Feng, S. Dai, H. Zhang, Y. Ju, S. Ning, C. Yang, Y. Xiao, and S. Zhou, “Q-switched mid-infrared Er3+: ZBLAN fiber laser based on gold nanocrystals,” Laser Phys. 28(9), 095104 (2018).
[Crossref]

J. Bai, P. Li, L. Guo, B. Zhang, Q. Hu, L. Wang, B. Liu, and X. Chen, “Au nanocage/SiO2 saturable absorber for passive Q-switching Yb-doped fiber laser,” Laser Phys. 28(5), 055109 (2018).
[Crossref]

Laser Phys. Lett. (3)

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. Li, H. Luo, Y. He, Y. Liu, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 µm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Nanotechnol. Russ. (1)

B. N. Khlebtsov, V. A. Khanadeev, I. L. Maksimova, G. S. Terentyuk, and N. G. Khlebtsov, “Silver nanocubes and gold nanocages: fabrication and optical and photothermal properties,” Nanotechnol. Russ. 5(7-8), 454–468 (2010).
[Crossref]

Nat. Photonics (2)

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Commun. (1)

D. J. Coleman, T. A. King, D. Ko, and J. Lee, “Q-switched operation of a 2.7 µm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” Opt. Commun. 236(4-6), 379–385 (2004).
[Crossref]

Opt. Express (5)

Opt. Laser Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37(2-3), 101–114 (2002).
[Crossref]

Opt. Laser Technol. (1)

W. Zhang, H. Zhang, G. Feng, Y. Ju, S. Ning, X. Chen, J. Dai, and S. Zhou, “Gold nanobipyramids as a saturable absorber for passively Q-switched Er3+: ZBLAN fiber laser,” Opt. Laser Technol. 111, 30–34 (2019).
[Crossref]

Opt. Lett. (9)

W. Duan, H. Nie, X. Sun, B. Zhang, G. He, Q. Yang, H. Xia, R. Wang, J. Zhan, and J. He, “Passively Q-switched mid-infrared laser pulse generation with gold nanospheres as a saturable absorber,” Opt. Lett. 43(5), 1179–1182 (2018).
[Crossref]

H. Huang, M. Li, P. Liu, L. Jin, H. Wang, and D. Shen, “Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 µm solid-state laser,” Opt. Lett. 41(12), 2700–2703 (2016).
[Crossref]

L. Yang, Z. Kang, B. Huang, J. Li, L. Miao, P. Tang, C. Zhao, G. Qin, and S. Wen, “Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser,” Opt. Lett. 43(21), 5459–5462 (2018).
[Crossref]

M. Gorjan, R. Petkovsek, M. Marincek, and M. Copic, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36(10), 1923–1925 (2011).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 µm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12W Q-switched Er:ZBLAN fiber laser at 2.8 µm,” Opt. Lett. 36(15), 2812–2814 (2011).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 µm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-µm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref]

L. Zhao, D. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010).
[Crossref]

Opt. Mater. Express (2)

Optica (2)

Photonics Res. (4)

Y. Lü, C. Wei, H. Zhang, Z. Kang, G. Qin, and Y. Liu, “Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber,” Photonics Res. 7(1), 14–18 (2019).
[Crossref]

H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photonics Res. 6(9), 900–907 (2018).
[Crossref]

B. Huang, Z. Kang, J. Li, M. Liu, P. Tang, L. Miao, C. Zhao, G. Qin, W. Qin, S. Wen, and P. N. Prasad, “Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime,” Photonics Res. 7(6), 699–704 (2019).
[Crossref]

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Phys. Rev. Lett. (1)

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref]

Plasmonics (1)

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Proc. SPIE (1)

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 µm,” Proc. SPIE 9728, 972802 (2016).
[Crossref]

Sci. Rep. (1)

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref]

Sens. Actuators, B (1)

M. H. Tu, K. T. V. Sun, and Grattan, “LSPR Optical Fibre Sensors Based on Hollow Gold Nanostructures,” Sens. Actuators, B 191, 37–44 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) TEM image of Au-NCs on the scale of 100 nm. (b) Linear absorption spectrum of the Au-NCs.
Fig. 2.
Fig. 2. (a) Nonlinear transmission of the Au-NCs sample. (b) AMF image and (c) the corresponding height profile of Au-NCs.
Fig. 3.
Fig. 3. Schematic diagram of the passively Q-switched Er3+ doped ZBLAN fiber laser using the Au-NCs-based SA.
Fig. 4.
Fig. 4. Q-switched pulse trains (a, b) and single pulse waveforms (c) at the launched pump power of 1.85 W and 6.86 W, with corresponding repetition rate of 32.5 kHz and 80.6 kHz, respectively.
Fig. 5.
Fig. 5. (a) RF spectrum and (b) optical spectrum of the passively Q-switched Er3+ doped ZBLAN fiber laser using an Au-NCs based SA.
Fig. 6.
Fig. 6. (a) Output power and single pulse energy, (b) repetition rate and pulse duration as functions of the launched pump power.
Fig. 7.
Fig. 7. Normalized spectra and the corresponding average output power of the tunable passively Q-switched Er3+: ZBLAN fiber laser.

Tables (1)

Tables Icon

Table 1. Comparison of Laser Performance of Mid-IR Passively Q-switched Fiber Lasers with Different Gold Nanomaterials

Metrics