Abstract

We report here, to the best of our knowledge, for the first time high-efficiency laser wavelength conversion from 1.5 µm band to 1.7 µm band in deuterium-filled hollow-core photonic crystal fibers by rotational stimulated Raman scattering (SRS). Due to the special transmission properties of this low-loss hollow-core fiber, the ordinary dominant vibrational SRS is suppressed, permitting efficient conversion to the rotational stokes wave in a single-pass configuration pumped by a fiber amplified and modulated tunable 1.55 µm diode laser. Using proper pump pulse energy and gas pressure, the power conversion efficiencies over the whole output laser wavelength range from 1640 nm to 1674 nm are higher than 48%. And the maximum Raman conversion efficiency of 61.2% is achieved with 20 m fiber and 20 bar deuterium pressure pumped at 1540 nm, giving a maximum average power of about 0.8 W (pulse energy of 1.6 µJ). This work points to a new way for engineerable and compact fiber lasers operation at 1.7 µm band, which has significant applications in biological imaging, laser medical treatment, material processing and detecting.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
0.83 W, single-pass, 1.54 μm gas Raman source generated in a CH4-filled hollow-core fiber operating at atmospheric pressure

Zhixian Li, Wei Huang, Yulong Cui, Zefeng Wang, and Wuming Wu
Opt. Express 26(10) 12522-12529 (2018)

Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber

M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. St. J. Russell
J. Opt. Soc. Am. B 29(7) 1563-1568 (2012)

Dominance of backward stimulated Raman scattering in gas-filled hollow-core photonic crystal fibers

Manoj K. Mridha, David Novoa, and Philip St.J. Russell
Optica 5(5) 570-576 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2, and CH4,” Appl. Phys. Lett. 3(10), 181–184 (1963).
    [Crossref]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [Crossref]
  3. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref]
  4. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [Crossref]
  5. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref]
  6. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 µm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref]
  7. F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
    [Crossref]
  8. S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
    [Crossref]
  9. M. S. Habib, J. E. Antonio-Lopez, C. Markos, and A. Schulzgen, “Single-mode, low loss hollow-core anti-resonant fiber designs,” Opt. Express 27(4), 3824–3836 (2019).
    [Crossref]
  10. F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
    [Crossref]
  11. F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
    [Crossref]
  12. Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
    [Crossref]
  13. A. V. Gladysheva, A. N. Kolyadina, A. F. Kosolapova, Y. P. Yatsenkoa, A. D. Pryamikova, A. S. Biryukovab, I. A. Bufetovab, and E. M. Dianova, “Efficient 1.9-µm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45(9), 807–812 (2015).
    [Crossref]
  14. Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “About 400 kW peak-power, 6.3 GHz linewidth, 1.5 µm fiber gas Raman source,” Opt. Lett. 41(21), 5118 (2016).
    [Crossref]
  15. Y. Chen, Z. Wang, Z. Li, W. Huang, X. Xi, and Q. Lu, “Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 µm,” Opt. Express 25(17), 20944–20949 (2017).
    [Crossref]
  16. Z. Wang, B. Gu, Y. Chen, Z. Li, and X. Xi, “Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-µm fiber gas Raman source,” Appl. Opt. 56(27), 7657–7661 (2017).
    [Crossref]
  17. A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3, and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
    [Crossref]
  18. L. Cao, S. Gao, Z. Peng, X. Wang, Y. Wang, and P. Wang, “High peak power 2.8 µm Raman laser in a methane-filled negative-curvature fiber,” Opt. Express 26(5), 5609–5615 (2018).
    [Crossref]
  19. Z. Li, W. Huang, Y. Cui, and Z. Wang, “Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 µm,” Opt. Lett. 43(19), 4671–4674 (2018).
    [Crossref]
  20. M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42-µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
    [Crossref]
  21. A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS), a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
    [Crossref]
  22. Y. Zhang, P. Zhang, P. Liu, K. Han, Q. Du, T. Wang, L. Zhang, S. Tong, and H. Jiang, “Fiber light source at 1.7 µm waveband and its applications,” Laser Optoelectron. Prog. 53(9), 090002 (2016).
    [Crossref]
  23. J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660–1750nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
    [Crossref]
  24. S. V. Firstov, S. V. Alyshev, K. E. Riumkin, M. A. Melkumov, O. I. Medvedkov, and E. M. Dianov, “Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 µm,” Opt. Lett. 40(18), 4360–4363 (2015).
    [Crossref]
  25. P. Zhang, D. Wu, Q. Du, X. Li, K. Han, L. Zhang, T. Wang, and H. Jiang, “1.7 µm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission,” Appl. Opt. 56(35), 9742–9748 (2017).
    [Crossref]
  26. N. B. Terry, T. G. Alley, and T. H. Russell, “An explanation of SRS beam cleanup in graded index fibers and the absence of SRS beam cleanup in step-index fibers,” Opt. Express 15(26), 17509–17519 (2007).
    [Crossref]

2019 (2)

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42-µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
[Crossref]

M. S. Habib, J. E. Antonio-Lopez, C. Markos, and A. Schulzgen, “Single-mode, low loss hollow-core anti-resonant fiber designs,” Opt. Express 27(4), 3824–3836 (2019).
[Crossref]

2018 (4)

L. Cao, S. Gao, Z. Peng, X. Wang, Y. Wang, and P. Wang, “High peak power 2.8 µm Raman laser in a methane-filled negative-curvature fiber,” Opt. Express 26(5), 5609–5615 (2018).
[Crossref]

Z. Li, W. Huang, Y. Cui, and Z. Wang, “Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 µm,” Opt. Lett. 43(19), 4671–4674 (2018).
[Crossref]

S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3, and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

2017 (3)

2016 (3)

Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “About 400 kW peak-power, 6.3 GHz linewidth, 1.5 µm fiber gas Raman source,” Opt. Lett. 41(21), 5118 (2016).
[Crossref]

Y. Zhang, P. Zhang, P. Liu, K. Han, Q. Du, T. Wang, L. Zhang, S. Tong, and H. Jiang, “Fiber light source at 1.7 µm waveband and its applications,” Laser Optoelectron. Prog. 53(9), 090002 (2016).
[Crossref]

F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

2015 (3)

2014 (1)

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

2012 (2)

2011 (1)

2007 (2)

N. B. Terry, T. G. Alley, and T. H. Russell, “An explanation of SRS beam cleanup in graded index fibers and the absence of SRS beam cleanup in step-index fibers,” Opt. Express 15(26), 17509–17519 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref]

2006 (1)

2004 (1)

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

1963 (1)

R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2, and CH4,” Appl. Phys. Lett. 3(10), 181–184 (1963).
[Crossref]

Alharbi, M.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Alley, T. G.

Alyshev, S. V.

Antonio-Lopez, J. E.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

Astapovich, M. S.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42-µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
[Crossref]

Baumgart, B.

Benabid, F.

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS), a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

Biriukov, A. S.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Biryukovab, A. S.

A. V. Gladysheva, A. N. Kolyadina, A. F. Kosolapova, Y. P. Yatsenkoa, A. D. Pryamikova, A. S. Biryukovab, I. A. Bufetovab, and E. M. Dianova, “Efficient 1.9-µm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref]

Bradley, T.

Bufetov, I. A.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42-µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
[Crossref]

Bufetovab, I. A.

A. V. Gladysheva, A. N. Kolyadina, A. F. Kosolapova, Y. P. Yatsenkoa, A. D. Pryamikova, A. S. Biryukovab, I. A. Bufetovab, and E. M. Dianova, “Efficient 1.9-µm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

Campbell, N.

Cao, L.

Chen, Y.

Clarkson, W. A.

Corwin, K. L.

Couny, F.

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Cui, Y.

Dadashzadeh, N.

Daniel, J. M. O.

Dianov, E. M.

Dianova, E. M.

A. V. Gladysheva, A. N. Kolyadina, A. F. Kosolapova, Y. P. Yatsenkoa, A. D. Pryamikova, A. S. Biryukovab, I. A. Bufetovab, and E. M. Dianova, “Efficient 1.9-µm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

Ding, W.

S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Du, Q.

P. Zhang, D. Wu, Q. Du, X. Li, K. Han, L. Zhang, T. Wang, and H. Jiang, “1.7 µm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission,” Appl. Opt. 56(35), 9742–9748 (2017).
[Crossref]

Y. Zhang, P. Zhang, P. Liu, K. Han, Q. Du, T. Wang, L. Zhang, S. Tong, and H. Jiang, “Fiber light source at 1.7 µm waveband and its applications,” Laser Optoelectron. Prog. 53(9), 090002 (2016).
[Crossref]

Firstov, S. V.

Fourcade-Dutin, C.

Gao, S.

L. Cao, S. Gao, Z. Peng, X. Wang, Y. Wang, and P. Wang, “High peak power 2.8 µm Raman laser in a methane-filled negative-curvature fiber,” Opt. Express 26(5), 5609–5615 (2018).
[Crossref]

S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Gladyshev, A. V.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42-µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3, and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Gladysheva, A. V.

A. V. Gladysheva, A. N. Kolyadina, A. F. Kosolapova, Y. P. Yatsenkoa, A. D. Pryamikova, A. S. Biryukovab, I. A. Bufetovab, and E. M. Dianova, “Efficient 1.9-µm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

Gu, B.

Habib, M. S.

Han, K.

P. Zhang, D. Wu, Q. Du, X. Li, K. Han, L. Zhang, T. Wang, and H. Jiang, “1.7 µm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission,” Appl. Opt. 56(35), 9742–9748 (2017).
[Crossref]

Y. Zhang, P. Zhang, P. Liu, K. Han, Q. Du, T. Wang, L. Zhang, S. Tong, and H. Jiang, “Fiber light source at 1.7 µm waveband and its applications,” Laser Optoelectron. Prog. 53(9), 090002 (2016).
[Crossref]

Huang, W.

Ibsen, M.

Jiang, H.

P. Zhang, D. Wu, Q. Du, X. Li, K. Han, L. Zhang, T. Wang, and H. Jiang, “1.7 µm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission,” Appl. Opt. 56(35), 9742–9748 (2017).
[Crossref]

Y. Zhang, P. Zhang, P. Liu, K. Han, Q. Du, T. Wang, L. Zhang, S. Tong, and H. Jiang, “Fiber light source at 1.7 µm waveband and its applications,” Laser Optoelectron. Prog. 53(9), 090002 (2016).
[Crossref]

Jones, A. M.

Khudyakov, M. M.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42-µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3, and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Knight, J. C.

F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 µm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Kolyadin, A. N.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3, and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Kolyadina, A. N.

A. V. Gladysheva, A. N. Kolyadina, A. F. Kosolapova, Y. P. Yatsenkoa, A. D. Pryamikova, A. S. Biryukovab, I. A. Bufetovab, and E. M. Dianova, “Efficient 1.9-µm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

Kosolapov, A. F.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42-µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3, and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref]

Kosolapova, A. F.

A. V. Gladysheva, A. N. Kolyadina, A. F. Kosolapova, Y. P. Yatsenkoa, A. D. Pryamikova, A. S. Biryukovab, I. A. Bufetovab, and E. M. Dianova, “Efficient 1.9-µm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

Krylov, A. A.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3, and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Li, X.

Li, Z.

Liang, D.

S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Light, P. S.

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref]

Likhachev, M. E.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42-µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
[Crossref]

Liu, P.

Y. Zhang, P. Zhang, P. Liu, K. Han, Q. Du, T. Wang, L. Zhang, S. Tong, and H. Jiang, “Fiber light source at 1.7 µm waveband and its applications,” Laser Optoelectron. Prog. 53(9), 090002 (2016).
[Crossref]

Lu, Q.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Mao, C.

Markos, C.

Medvedkov, O. I.

Melkumov, M. A.

Minck, R. W.

R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2, and CH4,” Appl. Phys. Lett. 3(10), 181–184 (1963).
[Crossref]

Nampoothiri, A. V. V.

Peng, Z.

Plotnichenko, V. G.

Pryamikov, A. D.

Pryamikova, A. D.

A. V. Gladysheva, A. N. Kolyadina, A. F. Kosolapova, Y. P. Yatsenkoa, A. D. Pryamikova, A. S. Biryukovab, I. A. Bufetovab, and E. M. Dianova, “Efficient 1.9-µm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

Rado, W. G.

R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2, and CH4,” Appl. Phys. Lett. 3(10), 181–184 (1963).
[Crossref]

Riumkin, K. E.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Rudolph, W.

Russell, P. S. J.

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Russell, T. H.

Schulzgen, A.

Semjonov, S. L.

Shuai, G.

S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Simakov, N.

Terhune, R. W.

R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2, and CH4,” Appl. Phys. Lett. 3(10), 181–184 (1963).
[Crossref]

Terry, N. B.

Tokurakawa, M.

Tong, S.

Y. Zhang, P. Zhang, P. Liu, K. Han, Q. Du, T. Wang, L. Zhang, S. Tong, and H. Jiang, “Fiber light source at 1.7 µm waveband and its applications,” Laser Optoelectron. Prog. 53(9), 090002 (2016).
[Crossref]

Wadsworth, W. J.

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 µm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref]

Wang, P.

Wang, T.

P. Zhang, D. Wu, Q. Du, X. Li, K. Han, L. Zhang, T. Wang, and H. Jiang, “1.7 µm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission,” Appl. Opt. 56(35), 9742–9748 (2017).
[Crossref]

Y. Zhang, P. Zhang, P. Liu, K. Han, Q. Du, T. Wang, L. Zhang, S. Tong, and H. Jiang, “Fiber light source at 1.7 µm waveband and its applications,” Laser Optoelectron. Prog. 53(9), 090002 (2016).
[Crossref]

Wang, X.

Wang, Y.

L. Cao, S. Gao, Z. Peng, X. Wang, Y. Wang, and P. Wang, “High peak power 2.8 µm Raman laser in a methane-filled negative-curvature fiber,” Opt. Express 26(5), 5609–5615 (2018).
[Crossref]

S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Wang, Y. Y.

Wang, Z.

Washburn, B. R.

Wu, D.

Xi, X.

Xin, Z.

S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Yatsenko, Y.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3, and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Yatsenkoa, Y. P.

A. V. Gladysheva, A. N. Kolyadina, A. F. Kosolapova, Y. P. Yatsenkoa, A. D. Pryamikova, A. S. Biryukovab, I. A. Bufetovab, and E. M. Dianova, “Efficient 1.9-µm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

Yu, F.

F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “About 400 kW peak-power, 6.3 GHz linewidth, 1.5 µm fiber gas Raman source,” Opt. Lett. 41(21), 5118 (2016).
[Crossref]

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 µm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref]

Zhang, L.

P. Zhang, D. Wu, Q. Du, X. Li, K. Han, L. Zhang, T. Wang, and H. Jiang, “1.7 µm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission,” Appl. Opt. 56(35), 9742–9748 (2017).
[Crossref]

Y. Zhang, P. Zhang, P. Liu, K. Han, Q. Du, T. Wang, L. Zhang, S. Tong, and H. Jiang, “Fiber light source at 1.7 µm waveband and its applications,” Laser Optoelectron. Prog. 53(9), 090002 (2016).
[Crossref]

Zhang, P.

P. Zhang, D. Wu, Q. Du, X. Li, K. Han, L. Zhang, T. Wang, and H. Jiang, “1.7 µm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission,” Appl. Opt. 56(35), 9742–9748 (2017).
[Crossref]

Y. Zhang, P. Zhang, P. Liu, K. Han, Q. Du, T. Wang, L. Zhang, S. Tong, and H. Jiang, “Fiber light source at 1.7 µm waveband and its applications,” Laser Optoelectron. Prog. 53(9), 090002 (2016).
[Crossref]

Zhang, Y.

Y. Zhang, P. Zhang, P. Liu, K. Han, Q. Du, T. Wang, L. Zhang, S. Tong, and H. Jiang, “Fiber light source at 1.7 µm waveband and its applications,” Laser Optoelectron. Prog. 53(9), 090002 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2, and CH4,” Appl. Phys. Lett. 3(10), 181–184 (1963).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3, and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42-µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
[Crossref]

Laser Optoelectron. Prog. (1)

Y. Zhang, P. Zhang, P. Liu, K. Han, Q. Du, T. Wang, L. Zhang, S. Tong, and H. Jiang, “Fiber light source at 1.7 µm waveband and its applications,” Laser Optoelectron. Prog. 53(9), 090002 (2016).
[Crossref]

Laser Phys. Lett. (1)

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

Nat. Commun. (1)

S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Opt. Express (7)

N. B. Terry, T. G. Alley, and T. H. Russell, “An explanation of SRS beam cleanup in graded index fibers and the absence of SRS beam cleanup in step-index fibers,” Opt. Express 15(26), 17509–17519 (2007).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 µm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref]

L. Cao, S. Gao, Z. Peng, X. Wang, Y. Wang, and P. Wang, “High peak power 2.8 µm Raman laser in a methane-filled negative-curvature fiber,” Opt. Express 26(5), 5609–5615 (2018).
[Crossref]

J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660–1750nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
[Crossref]

Y. Chen, Z. Wang, Z. Li, W. Huang, X. Xi, and Q. Lu, “Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 µm,” Opt. Express 25(17), 20944–20949 (2017).
[Crossref]

M. S. Habib, J. E. Antonio-Lopez, C. Markos, and A. Schulzgen, “Single-mode, low loss hollow-core anti-resonant fiber designs,” Opt. Express 27(4), 3824–3836 (2019).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Rev. Lett. (2)

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref]

Quantum Electron. (1)

A. V. Gladysheva, A. N. Kolyadina, A. F. Kosolapova, Y. P. Yatsenkoa, A. D. Pryamikova, A. S. Biryukovab, I. A. Bufetovab, and E. M. Dianova, “Efficient 1.9-µm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

Science (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup: L: convex-plane lens; W: output windows; LPF: long pass filter; BPF: band pass filter; PM: power meter. Inset: the attenuation spectrum of the HC-PCF and the schematic cross section of the HCF (from the product manual).
Fig. 2.
Fig. 2. (a) Schematic of the fiber amplified and modulated tunable 1.55 µm pump diode laser. AOM: acousto-optical modulator; EDFA: erbium-doped fiber amplifier; (b) The measured spectra of the maximum output of the tunable pump laser operating at different wavelengths, from left to right are 1535, 1540, 1545, 1550, 1555, 1560, 1565 nm respectively; (c) The measured maximum output power of the pump laser operating at different wavelength.
Fig. 3.
Fig. 3. (a) The measured optical spectrum at 20 bar pressure with the maximum output pumped at different wavelengths. The pump wavelengths from left to right are 1535, 1540, 1545, 1550, 1555, 1560, 1565 nm and the Raman wavelengths from left to right are 1640, 1645, 1651, 1656, 1662, 1668, 1674 nm. Near-field pattern of the transmitted (b) 1540 nm pump wave and (c) 1645 nm Raman light.
Fig. 4.
Fig. 4. Variation of (a) Raman power (b) efficiency with coupled pump power at different pump wavelengths when the gas pressure is 20 bar; variation of (c) Raman power (d) efficiency with coupled pump power at different gas pressure when pumped at 1540 nm.
Fig. 5.
Fig. 5. (a), (c), (e) the measured pulse shapes of Stokes light (1645 nm) versus the pump power at repetition frequency of 500, 200, and 100 kHz (corresponding to the maximum coupled peak power of 220, 550, 1100 W respectively respectively); (b), (d), (f) the corresponding measured pulse shapes of the residual pump light.
Fig. 6.
Fig. 6. The measured optical spectrum when the repetition frequency is (a) 500 kHz (c) 200 kHz and (e) 100 kHz at 20 bar gas pressure when 1540 nm pump; Variation of Raman power, residual pump power and efficiency (Raman power/coupled pump power) with coupled pump power when the repetition frequency is (b) 500 kHz (d) 200 kHz and (f) 100 kHz (corresponding to the maximum coupled peak power of 220, 550, 1100 W respectively) at 20 bar gas pressure when 1540 nm pump. Inset: Measured pulse shapes of Raman light, residual pump light and pump light at maximum pump at different repetition frequencies.

Metrics