Abstract

We present an investigation on the use of oblique incidence condition to enhance the sensitivity of guided-mode resonance (GMR) sensors. By adjusting the incident angle, the enhancement of GMR sensitivity in non-subwavelength regime can be obtained. The measured results show that the bulk sensitivity of the GMR sensors with period of 809 nm climbs to 177% or 292% as the incident angle increases from 15° to 25° or 35°, respectively. The same trend is also obtained for the grating period of 994 nm. Simulations based on the rigorous coupled wave analysis (RCWA) method were performed, and we also built a new slab waveguide model to describe the relationship between bulk sensitivity and the incident angle. The present investigation demonstrates a new method for enhancing the bulk sensitivity of GMR sensor. Moreover, simple fabrication techniques can be utilized since a large grating period was used.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution

Sheng-Fu Lin, Chih-Ming Wang, Ting-Jou Ding, Ya-Lun Tsai, Tsung-Hsun Yang, Wen-Yih Chen, and Jenq-Yang Chang
Opt. Express 20(13) 14584-14595 (2012)

Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers

Yi-Fan Ku, Hsun-Yuan Li, Wen-Hsin Hsieh, Lai-Kwan Chau, and Guo-En Chang
Opt. Express 23(11) 14850-14859 (2015)

Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence

Muhammad Rizwan Saleem, Dandan Zheng, Benfeng Bai, Petri Stenberg, Markku Kuittinen, Seppo Honkanen, and Jari Turunen
Opt. Express 20(15) 16974-16980 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7(8), 1470–1474 (1990).
    [Crossref]
  2. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref]
  3. Y. H. Ko and R. Magnusson, “Flat-top bandpass filters enabled by cascaded resonant gratings,” Opt. Lett. 41(20), 4704–4707 (2016).
    [Crossref]
  4. J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Visualized Exp. (97), e52159 (2015).
    [Crossref]
  5. R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
    [Crossref]
  6. B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators, B 81(2-3), 316–328 (2002).
    [Crossref]
  7. B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screening 9(6), 481–490 (2004).
    [Crossref]
  8. I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
    [Crossref]
  9. S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
    [Crossref]
  10. M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18(22), 22702–22714 (2010).
    [Crossref]
  11. Y. Nazirizadeh, F. Oertzen, T. Karrock, J. Greve, and M. Gerken, “Enhanced sensitivity of photonic crystal slab transducers by oblique-angle layer deposition,” Opt. Express 21(16), 18661–18670 (2013).
    [Crossref]
  12. W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. 28(4), 996–1001 (2010).
    [Crossref]
  13. S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B 176, 1197–1203 (2013).
    [Crossref]
  14. S. A. J. Moghaddas, M. Shahabadi, and M. Mohammad-Taheri, “Guided mode resonance sensor with enhanced surface sensitivity using coupled cross-stacked gratings,” IEEE Sens. J. 14(4), 1216–1222 (2014).
    [Crossref]
  15. M. Niraula, J. W. Yoon, and R. Magnusson, “Concurrent spatial and spectral filtering by resonant nanogratings,” Opt. Express 23(18), 23428–23435 (2015).
    [Crossref]
  16. A. Talneau, F. Lemarchand, A. L. Fehrembach, and A. Sentenac, “Impact of electron-beam lithography irregularities across millimeter-scale resonant grating filter performances,” Appl. Opt. 49(4), 658–662 (2010).
    [Crossref]
  17. H. Y. Hsu, Y. H. Lan, and C. S. Huang, “A gradient grating period guided-mode resonance spectrometer,” IEEE Photonics J. 10(1), 1–9 (2018).
    [Crossref]
  18. L. Y. Qian, D. W. Zhang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching,” Opt. Lett. 41(5), 982–985 (2016).
    [Crossref]
  19. G. Zheng, J. Cong, L. Xu, and W. Su, “Angle-insensitive and narrow band grating filter with a gradient-index layer,” Opt. Lett. 39(20), 5929–5932 (2014).
    [Crossref]
  20. H. A. Lin and C. S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28(9), 1042–1045 (2016).
    [Crossref]
  21. L. Liu, H. A. Khan, J. Li, A. C. Hillier, and M. Lu, “A strain-tunable nanoimprint lithography for linear variable photonic crystal filters,” Nanotechnology 27(29), 295301 (2016).
    [Crossref]
  22. L. Y. Qian, D. W. Zhang, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Performance of a double-layer guided mode resonance filter with non-subwavelength grating period at oblique incidence,” Opt. Laser Technol. 72, 42–47 (2015).
    [Crossref]
  23. D. Lacour, G. Granet, J. P. Plumey, and A. Mure-Ravaud, “Polarization independence of a one-dimensional grating in conical mounting,” J. Opt. Soc. Am. A 20(8), 1546–1552 (2003).
    [Crossref]
  24. Y. F. Ku, H. Y. Li, W. H. Hsieh, L. K. Chau, and G. E. Chang, “Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers,” Opt. Express 23(11), 14850–14859 (2015).
    [Crossref]

2018 (1)

H. Y. Hsu, Y. H. Lan, and C. S. Huang, “A gradient grating period guided-mode resonance spectrometer,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

2016 (4)

L. Y. Qian, D. W. Zhang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching,” Opt. Lett. 41(5), 982–985 (2016).
[Crossref]

Y. H. Ko and R. Magnusson, “Flat-top bandpass filters enabled by cascaded resonant gratings,” Opt. Lett. 41(20), 4704–4707 (2016).
[Crossref]

H. A. Lin and C. S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28(9), 1042–1045 (2016).
[Crossref]

L. Liu, H. A. Khan, J. Li, A. C. Hillier, and M. Lu, “A strain-tunable nanoimprint lithography for linear variable photonic crystal filters,” Nanotechnology 27(29), 295301 (2016).
[Crossref]

2015 (3)

2014 (2)

G. Zheng, J. Cong, L. Xu, and W. Su, “Angle-insensitive and narrow band grating filter with a gradient-index layer,” Opt. Lett. 39(20), 5929–5932 (2014).
[Crossref]

S. A. J. Moghaddas, M. Shahabadi, and M. Mohammad-Taheri, “Guided mode resonance sensor with enhanced surface sensitivity using coupled cross-stacked gratings,” IEEE Sens. J. 14(4), 1216–1222 (2014).
[Crossref]

2013 (2)

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B 176, 1197–1203 (2013).
[Crossref]

Y. Nazirizadeh, F. Oertzen, T. Karrock, J. Greve, and M. Gerken, “Enhanced sensitivity of photonic crystal slab transducers by oblique-angle layer deposition,” Opt. Express 21(16), 18661–18670 (2013).
[Crossref]

2012 (1)

2010 (4)

M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18(22), 22702–22714 (2010).
[Crossref]

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. 28(4), 996–1001 (2010).
[Crossref]

A. Talneau, F. Lemarchand, A. L. Fehrembach, and A. Sentenac, “Impact of electron-beam lithography irregularities across millimeter-scale resonant grating filter performances,” Appl. Opt. 49(4), 658–662 (2010).
[Crossref]

2008 (1)

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[Crossref]

2004 (1)

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screening 9(6), 481–490 (2004).
[Crossref]

2003 (1)

2002 (1)

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators, B 81(2-3), 316–328 (2002).
[Crossref]

1993 (1)

1990 (1)

Bagby, J. S.

Baird, C.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screening 9(6), 481–490 (2004).
[Crossref]

Block, I. D.

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. 28(4), 996–1001 (2010).
[Crossref]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[Crossref]

Chang, G. E.

Chang, J. Y.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B 176, 1197–1203 (2013).
[Crossref]

S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
[Crossref]

Chau, L. K.

Chen, W. Y.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B 176, 1197–1203 (2013).
[Crossref]

S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
[Crossref]

Cong, J.

Cunningham, B. T.

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. 28(4), 996–1001 (2010).
[Crossref]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[Crossref]

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screening 9(6), 481–490 (2004).
[Crossref]

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators, B 81(2-3), 316–328 (2002).
[Crossref]

Ding, T. J.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B 176, 1197–1203 (2013).
[Crossref]

S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
[Crossref]

Ding, Y.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Doll, K. L.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Visualized Exp. (97), e52159 (2015).
[Crossref]

El Beheiry, M.

Fan, S.

Fehrembach, A. L.

Fine, E.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screening 9(6), 481–490 (2004).
[Crossref]

Ganesh, N.

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. 28(4), 996–1001 (2010).
[Crossref]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[Crossref]

Genick, C.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screening 9(6), 481–490 (2004).
[Crossref]

Gerken, M.

Gerstenmaier, J.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screening 9(6), 481–490 (2004).
[Crossref]

Gimlin, S.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Visualized Exp. (97), e52159 (2015).
[Crossref]

Granet, G.

Greve, J.

Hawkins, O. E.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Visualized Exp. (97), e52159 (2015).
[Crossref]

Hillier, A. C.

L. Liu, H. A. Khan, J. Li, A. C. Hillier, and M. Lu, “A strain-tunable nanoimprint lithography for linear variable photonic crystal filters,” Nanotechnology 27(29), 295301 (2016).
[Crossref]

Hong, R. J.

L. Y. Qian, D. W. Zhang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching,” Opt. Lett. 41(5), 982–985 (2016).
[Crossref]

L. Y. Qian, D. W. Zhang, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Performance of a double-layer guided mode resonance filter with non-subwavelength grating period at oblique incidence,” Opt. Laser Technol. 72, 42–47 (2015).
[Crossref]

Hsieh, W. H.

Hsu, H. Y.

H. Y. Hsu, Y. H. Lan, and C. S. Huang, “A gradient grating period guided-mode resonance spectrometer,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Huang, C. S.

H. Y. Hsu, Y. H. Lan, and C. S. Huang, “A gradient grating period guided-mode resonance spectrometer,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

H. A. Lin and C. S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28(9), 1042–1045 (2016).
[Crossref]

Huang, Y. S.

L. Y. Qian, D. W. Zhang, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Performance of a double-layer guided mode resonance filter with non-subwavelength grating period at oblique incidence,” Opt. Laser Technol. 72, 42–47 (2015).
[Crossref]

Karrock, T.

Khan, H. A.

L. Liu, H. A. Khan, J. Li, A. C. Hillier, and M. Lu, “A strain-tunable nanoimprint lithography for linear variable photonic crystal filters,” Nanotechnology 27(29), 295301 (2016).
[Crossref]

Kim, S.

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. 28(4), 996–1001 (2010).
[Crossref]

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Ko, Y. H.

Ku, Y. F.

Lacour, D.

Laing, L.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screening 9(6), 481–490 (2004).
[Crossref]

Lan, Y. H.

H. Y. Hsu, Y. H. Lan, and C. S. Huang, “A gradient grating period guided-mode resonance spectrometer,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Lee, K. J.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Lemarchand, F.

Levi, O.

Li, H. Y.

Li, J.

L. Liu, H. A. Khan, J. Li, A. C. Hillier, and M. Lu, “A strain-tunable nanoimprint lithography for linear variable photonic crystal filters,” Nanotechnology 27(29), 295301 (2016).
[Crossref]

Li, P.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screening 9(6), 481–490 (2004).
[Crossref]

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators, B 81(2-3), 316–328 (2002).
[Crossref]

Lin, B.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screening 9(6), 481–490 (2004).
[Crossref]

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators, B 81(2-3), 316–328 (2002).
[Crossref]

Lin, H. A.

H. A. Lin and C. S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28(9), 1042–1045 (2016).
[Crossref]

Lin, S. F.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B 176, 1197–1203 (2013).
[Crossref]

S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
[Crossref]

Liu, L.

L. Liu, H. A. Khan, J. Li, A. C. Hillier, and M. Lu, “A strain-tunable nanoimprint lithography for linear variable photonic crystal filters,” Nanotechnology 27(29), 295301 (2016).
[Crossref]

Liu, V.

Lowe, D. B.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Visualized Exp. (97), e52159 (2015).
[Crossref]

Lu, M.

L. Liu, H. A. Khan, J. Li, A. C. Hillier, and M. Lu, “A strain-tunable nanoimprint lithography for linear variable photonic crystal filters,” Nanotechnology 27(29), 295301 (2016).
[Crossref]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[Crossref]

Magnusson, R.

Y. H. Ko and R. Magnusson, “Flat-top bandpass filters enabled by cascaded resonant gratings,” Opt. Lett. 41(20), 4704–4707 (2016).
[Crossref]

M. Niraula, J. W. Yoon, and R. Magnusson, “Concurrent spatial and spectral filtering by resonant nanogratings,” Opt. Express 23(18), 23428–23435 (2015).
[Crossref]

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[Crossref]

S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7(8), 1470–1474 (1990).
[Crossref]

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Visualized Exp. (97), e52159 (2015).
[Crossref]

Mathias, P. C.

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. 28(4), 996–1001 (2010).
[Crossref]

Moghaddas, S. A. J.

S. A. J. Moghaddas, M. Shahabadi, and M. Mohammad-Taheri, “Guided mode resonance sensor with enhanced surface sensitivity using coupled cross-stacked gratings,” IEEE Sens. J. 14(4), 1216–1222 (2014).
[Crossref]

Mohammad-Taheri, M.

S. A. J. Moghaddas, M. Shahabadi, and M. Mohammad-Taheri, “Guided mode resonance sensor with enhanced surface sensitivity using coupled cross-stacked gratings,” IEEE Sens. J. 14(4), 1216–1222 (2014).
[Crossref]

Mohana-Sundaram, S.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Visualized Exp. (97), e52159 (2015).
[Crossref]

Moharam, M. G.

Mure-Ravaud, A.

Nazirizadeh, Y.

Niraula, M.

Oertzen, F.

Pepper, J.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators, B 81(2-3), 316–328 (2002).
[Crossref]

Plumey, J. P.

Qian, L. Y.

L. Y. Qian, D. W. Zhang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching,” Opt. Lett. 41(5), 982–985 (2016).
[Crossref]

L. Y. Qian, D. W. Zhang, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Performance of a double-layer guided mode resonance filter with non-subwavelength grating period at oblique incidence,” Opt. Laser Technol. 72, 42–47 (2015).
[Crossref]

Schulz, S.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screening 9(6), 481–490 (2004).
[Crossref]

Sentenac, A.

Shahabadi, M.

S. A. J. Moghaddas, M. Shahabadi, and M. Mohammad-Taheri, “Guided mode resonance sensor with enhanced surface sensitivity using coupled cross-stacked gratings,” IEEE Sens. J. 14(4), 1216–1222 (2014).
[Crossref]

Shokooh-Saremi, M.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Song, S. H.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Su, W.

Talneau, A.

Tao, C. X.

L. Y. Qian, D. W. Zhang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching,” Opt. Lett. 41(5), 982–985 (2016).
[Crossref]

L. Y. Qian, D. W. Zhang, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Performance of a double-layer guided mode resonance filter with non-subwavelength grating period at oblique incidence,” Opt. Laser Technol. 72, 42–47 (2015).
[Crossref]

Tsai, Y. L.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B 176, 1197–1203 (2013).
[Crossref]

S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
[Crossref]

Ussery, D.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Wang, C. M.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B 176, 1197–1203 (2013).
[Crossref]

S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
[Crossref]

Wang, F.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screening 9(6), 481–490 (2004).
[Crossref]

Wang, S. S.

Wawro, D.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Wawro Weidanz, D.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Visualized Exp. (97), e52159 (2015).
[Crossref]

Weidanz, J. A.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Visualized Exp. (97), e52159 (2015).
[Crossref]

Wichner, T.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Visualized Exp. (97), e52159 (2015).
[Crossref]

Wu, H.-Y.

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. 28(4), 996–1001 (2010).
[Crossref]

Xu, L.

Yang, T. H.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B 176, 1197–1203 (2013).
[Crossref]

S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
[Crossref]

Yoon, J. W.

Zhang, D. W.

L. Y. Qian, D. W. Zhang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching,” Opt. Lett. 41(5), 982–985 (2016).
[Crossref]

L. Y. Qian, D. W. Zhang, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Performance of a double-layer guided mode resonance filter with non-subwavelength grating period at oblique incidence,” Opt. Laser Technol. 72, 42–47 (2015).
[Crossref]

Zhang, W.

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. 28(4), 996–1001 (2010).
[Crossref]

Zheng, G.

Zhuang, S. L.

L. Y. Qian, D. W. Zhang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching,” Opt. Lett. 41(5), 982–985 (2016).
[Crossref]

L. Y. Qian, D. W. Zhang, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Performance of a double-layer guided mode resonance filter with non-subwavelength grating period at oblique incidence,” Opt. Laser Technol. 72, 42–47 (2015).
[Crossref]

Zimmerman, S.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Appl. Opt. (2)

IEEE Photonics J. (1)

H. Y. Hsu, Y. H. Lan, and C. S. Huang, “A gradient grating period guided-mode resonance spectrometer,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. A. Lin and C. S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28(9), 1042–1045 (2016).
[Crossref]

IEEE Sens. J. (2)

S. A. J. Moghaddas, M. Shahabadi, and M. Mohammad-Taheri, “Guided mode resonance sensor with enhanced surface sensitivity using coupled cross-stacked gratings,” IEEE Sens. J. 14(4), 1216–1222 (2014).
[Crossref]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[Crossref]

J. Biomol. Screening (1)

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screening 9(6), 481–490 (2004).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. (1)

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. 28(4), 996–1001 (2010).
[Crossref]

Nanotechnology (1)

L. Liu, H. A. Khan, J. Li, A. C. Hillier, and M. Lu, “A strain-tunable nanoimprint lithography for linear variable photonic crystal filters,” Nanotechnology 27(29), 295301 (2016).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

L. Y. Qian, D. W. Zhang, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Performance of a double-layer guided mode resonance filter with non-subwavelength grating period at oblique incidence,” Opt. Laser Technol. 72, 42–47 (2015).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (1)

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Sens. Actuators, B (2)

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators, B 81(2-3), 316–328 (2002).
[Crossref]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B 176, 1197–1203 (2013).
[Crossref]

Other (1)

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Visualized Exp. (97), e52159 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of a typical GMR structure. (b) Calculated relation between the incident angle and the value of λ/Λ, λ = 800 nm. (c) Calculated TE mode spectrum under normal incidence. (d) Calculated TE mode spectrum under an incident angle of 34.74°.
Fig. 2.
Fig. 2. (a) Simulated transmission spectrum at normal incidence for a TE mode. Simulated transmitted spectrum at an incident angle of (b) 34.74° and (c) 0°. The grating periods are 800 nm in both panels. (d) GMR wavelength as a function of incident angle. The black and red lines were calculated for nc = 1.33 and 1.39, respectively.
Fig. 3.
Fig. 3. Basic slab waveguides model.
Fig. 4.
Fig. 4. GMR wavelength shift as a function of incident angles: RCWA simulations (dashed line) and slab waveguide model (solid red line).
Fig. 5.
Fig. 5. SEM micrographs of the fabricated GMR samples. The measured grating periods in SEM are 450, 809, and 994 nm for (a), (b), and (c), respectively. (d) Photograph of the fabricated GMR samples.
Fig. 6.
Fig. 6. (a) Setup for transmission spectrum and sensitivity measurements. (b)-(d) Experimental transmission spectra for samples A, B and C, with different grating periods at incidence angles of 0°, 35°, and 45°, respectively. (e) Resonance wavelength versus the refractive index of the surrounding medium. The slopes of the fitting curves show that the refractive index sensitivities corresponding to data in (b)-(d).
Fig. 7.
Fig. 7. Transmission spectra for (a) sample B at incident angle of 15° and (b) sample C at incident angle of 35°.

Tables (2)

Tables Icon

Table 1. GMRs shift under various angles based on the RCWA (R) and slab waveguide model (M)

Tables Icon

Table 2. Bulk sensitivity comparison for different oblique incident angles

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

max { n c , n s } | n c sin θ i λ / λ Λ Λ | < n e f f ,
S   =   Δ λ / Δ n c ,
arg R 1 + arg R 2 + 2 d w k _ z = 2 π m .
k _ x 2 + k _ z 2 = k 0 2 n w 2 ,
k _ x = k 0 n c sin θ + 2 π Λ i .
( 2 π m arg R 1 arg R 2 2 d w ) 2 = ( 2 π λ ) 2 n w 2 ( 2 π λ n c sin θ 2 π Λ i ) 2 .
( 2 π m arg R 1 arg R 2 2 d w ) 2 = ( 2 π λ 0 ) 2 n w 2 ( 2 π Λ i ) 2 .
( n c λ sin θ i Λ ) 2 ( i Λ ) 2 = n w 2 ( 1 λ 2 1 λ 0 2 ) .
λ = i n c λ 0 2 sin θ + λ 0 Λ 2 n w 4 + n c 2 ( i 2 λ 0 2 Λ 2 n w 2 ) si n 2 θ Λ n w 2 .
S   =   d λ d n c = λ 0 Λ n w 2 ( n c ( i 2 λ 0 2 Λ 2 n w 2 ) si n 2 θ Λ 2 n w 4 + n c 2 ( i 2 λ 0 2 Λ 2 n w 2 ) si n 2 θ + i λ 0 sin θ ) .
Δ λ = λ 0 Λ n w 2 ( n c ( λ 0 2 Λ 2 n w 2 ) si n 2 θ Λ 2 n w 4 + n c 2 ( λ 0 2 Λ 2 n w 2 ) si n 2 θ λ 0 sin θ ) Δ n c .

Metrics