Abstract

We experimentally demonstrate for the first time a successful fabrication of a tellurite hollow core optical fiber which has a mid-infrared transmission range. The wall thickness of each cladding air-hole is about 2.8 µm and the outer diameter of the full air-hole structure D is approximately 110 µm. The results show that the measured transmission spectrum can expand up to 3.9 µm. In addition, it is expected that the transmission can extend to around 6 µm. When the input light is linearly polarized, it can be maintained after propagating through a 17-cm-long fiber.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Light transmission in negative curvature hollow core fiber in extremely high material loss region

Anton N. Kolyadin, Alexey F. Kosolapov, Andrey D. Pryamikov, Alexander S. Biriukov, Victor G. Plotnichenko, and Evgeny M. Dianov
Opt. Express 21(8) 9514-9519 (2013)

Spectral attenuation limits of silica hollow core negative curvature fiber

Fei Yu and Jonathan C. Knight
Opt. Express 21(18) 21466-21471 (2013)

Dual-core antiresonant hollow core fibers

Xuesong Liu, Zhongwei Fan, Zhaohui Shi, Yunfeng Ma, Jin Yu, and Jing Zhang
Opt. Express 24(15) 17453-17458 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
    [Crossref]
  2. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
    [Crossref]
  3. P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
    [Crossref]
  4. P. Uebel, M. C. Gunendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J. M. Menard, and P. S. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
    [Crossref]
  5. Z. F. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22(18), 21872–21878 (2014).
    [Crossref]
  6. F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
    [Crossref]
  7. M. I. Hasan, N. Akhmediev, and W. Chang, “Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers,” Opt. Lett. 41(21), 5122–5125 (2016).
    [Crossref]
  8. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
    [Crossref]
  9. J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. S. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12(4), 717–723 (2004).
    [Crossref]
  10. M. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
    [Crossref]
  11. C. L. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
    [Crossref]
  12. W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
    [Crossref]
  13. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
    [Crossref]
  14. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref]
  15. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
    [Crossref]
  16. M. S. Habib, J. E. Antonio-Lopez, C. Markos, A. Schulzgen, and R. Amezcua-Correa, “Single-mode, low loss hollow-core anti-resonant fiber designs,” Opt. Express 27(4), 3824–3836 (2019).
    [Crossref]
  17. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref]
  18. C. L. Wei, C. R. Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 1–9 (2016).
    [Crossref]
  19. F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
    [Crossref]
  20. J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. X. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
    [Crossref]
  21. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [Crossref]
  22. W. L. Lu and A. Argyros, “Terahertz Spectroscopy and Imaging With Flexible Tube-Lattice Fiber Probe,” J. Lightwave Technol. 32(23), 4621–4627 (2014).
    [Crossref]
  23. S. Atakaramians, A. Stefani, H. S. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. L. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1162–1178 (2017).
    [Crossref]
  24. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
    [Crossref]
  25. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
    [Crossref]
  26. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
    [Crossref]
  27. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
    [Crossref]
  28. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sorensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
    [Crossref]
  29. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
    [Crossref]
  30. V. S. Shiryaev, “Chalcogenide glass hollow-core microstructured optical fibers,” Front. Mater. (2015).
    [Crossref]
  31. V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9-10), SoTu2B.3 (2014).
    [Crossref]
  32. A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
    [Crossref]
  33. H. T. Tong, N. Nishiharaguchi, T. Suzuki, and Y. Ohishi, “Fabrication of a novel tellurite hollow core optical fiber,” J. Ceram. Soc. Jpn. 127(4), 187–190 (2019).
    [Crossref]
  34. A. J. Werner, “Methods in High Precision Refractometry of Optical Glasses,” Appl. Opt. 7(5), 837–843 (1968).
    [Crossref]
  35. W. S. Rodney, I. H. Malitson, and T. A. King, “Refractive index of arsenic trisulfide,” J. Opt. Soc. Am. A 48(9), 633–636 (1958).
    [Crossref]
  36. B. Tatian, “Fitting Refractive-Index Data with the Sellmeier Dispersion Formula,” Appl. Opt. 23(24), 4477–4485 (1984).
    [Crossref]
  37. M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical Formulae for Dispersion and Effective Mode Area in Hollow-Core Antiresonant Fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
    [Crossref]
  38. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
    [Crossref]

2019 (2)

H. T. Tong, N. Nishiharaguchi, T. Suzuki, and Y. Ohishi, “Fabrication of a novel tellurite hollow core optical fiber,” J. Ceram. Soc. Jpn. 127(4), 187–190 (2019).
[Crossref]

M. S. Habib, J. E. Antonio-Lopez, C. Markos, A. Schulzgen, and R. Amezcua-Correa, “Single-mode, low loss hollow-core anti-resonant fiber designs,” Opt. Express 27(4), 3824–3836 (2019).
[Crossref]

2018 (1)

2017 (3)

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. X. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

C. L. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

S. Atakaramians, A. Stefani, H. S. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. L. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1162–1178 (2017).
[Crossref]

2016 (3)

2015 (1)

2014 (6)

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
[Crossref]

Z. F. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22(18), 21872–21878 (2014).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref]

W. L. Lu and A. Argyros, “Terahertz Spectroscopy and Imaging With Flexible Tube-Lattice Fiber Probe,” J. Lightwave Technol. 32(23), 4621–4627 (2014).
[Crossref]

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9-10), SoTu2B.3 (2014).
[Crossref]

2013 (8)

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[Crossref]

W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
[Crossref]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
[Crossref]

2011 (3)

2008 (1)

A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
[Crossref]

2005 (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]

2004 (2)

2003 (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref]

1986 (1)

M. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

1984 (1)

1968 (1)

1958 (1)

W. S. Rodney, I. H. Malitson, and T. A. King, “Refractive index of arsenic trisulfide,” J. Opt. Soc. Am. A 48(9), 633–636 (1958).
[Crossref]

Abdolvand, A.

Ahmed, G.

Akhmediev, N.

Alagashev, G. K.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9-10), SoTu2B.3 (2014).
[Crossref]

Amezcua-Correa, R.

Anthony, J.

S. Atakaramians, A. Stefani, H. S. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. L. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1162–1178 (2017).
[Crossref]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
[Crossref]

Antonio-Lopez, J. E.

Argyros, A.

S. Atakaramians, A. Stefani, H. S. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. L. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1162–1178 (2017).
[Crossref]

W. L. Lu and A. Argyros, “Terahertz Spectroscopy and Imaging With Flexible Tube-Lattice Fiber Probe,” J. Lightwave Technol. 32(23), 4621–4627 (2014).
[Crossref]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
[Crossref]

Astapovich, M. S.

Atakaramians, S.

S. Atakaramians, A. Stefani, H. S. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. L. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1162–1178 (2017).
[Crossref]

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Belardi, W.

Belli, F.

Benabid, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]

Biriukov, A. S.

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref]

Bouwmans, G.

Bradley, T. D.

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref]

Chang, W.

Chen, Y.

Churbanov, M. F.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9-10), SoTu2B.3 (2014).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref]

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]

Cubillas, A. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref]

Dianov, E. M.

Duguay, M.

M. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Edavalath, N. N.

Etzold, B. J. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref]

Euser, T. G.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref]

Fleming, S. C.

S. Atakaramians, A. Stefani, H. S. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. L. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1162–1178 (2017).
[Crossref]

Fokoua, E. N.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. X. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Frosz, M. H.

Gouveia, M. A.

Gray, D. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Gunendi, M. C.

Habib, M. S.

M. S. Habib, J. E. Antonio-Lopez, C. Markos, A. Schulzgen, and R. Amezcua-Correa, “Single-mode, low loss hollow-core anti-resonant fiber designs,” Opt. Express 27(4), 3824–3836 (2019).
[Crossref]

S. Atakaramians, A. Stefani, H. S. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. L. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1162–1178 (2017).
[Crossref]

Hand, D. P.

Hansen, T. P.

Hasan, M. I.

Hayashi, J. G.

S. Atakaramians, A. Stefani, H. S. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. L. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1162–1178 (2017).
[Crossref]

Hayes, J. R.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. X. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Hu, J.

C. L. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

C. L. Wei, C. R. Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

Jasion, G.

Jaworski, P.

Jones, A. C.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref]

Jones, J. D. C.

King, T. A.

W. S. Rodney, I. H. Malitson, and T. A. King, “Refractive index of arsenic trisulfide,” J. Opt. Soc. Am. A 48(9), 633–636 (1958).
[Crossref]

Knight, J. C.

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
[Crossref]

Z. F. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22(18), 21872–21878 (2014).
[Crossref]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[Crossref]

W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
[Crossref]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. S. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12(4), 717–723 (2004).
[Crossref]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref]

Koch, T. L.

M. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Kokubun, Y.

M. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Kolyadin, A. N.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9-10), SoTu2B.3 (2014).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref]

Kosolapov, A. F.

Kotereva, T. V.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9-10), SoTu2B.3 (2014).
[Crossref]

Kuhlmey, B. T.

S. Atakaramians, A. Stefani, H. S. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. L. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1162–1178 (2017).
[Crossref]

Leonhardt, R.

Leon-Saval, S. G.

Li, H. S.

S. Atakaramians, A. Stefani, H. S. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. L. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1162–1178 (2017).
[Crossref]

Li, Z.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Liu, Z. X.

Lu, W. L.

W. L. Lu and A. Argyros, “Terahertz Spectroscopy and Imaging With Flexible Tube-Lattice Fiber Probe,” J. Lightwave Technol. 32(23), 4621–4627 (2014).
[Crossref]

Ludvigsen, H.

Lwin, R.

S. Atakaramians, A. Stefani, H. S. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. L. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1162–1178 (2017).
[Crossref]

Maier, R. R. J.

Malitson, I. H.

W. S. Rodney, I. H. Malitson, and T. A. King, “Refractive index of arsenic trisulfide,” J. Opt. Soc. Am. A 48(9), 633–636 (1958).
[Crossref]

Mangan, B. J.

Markos, C.

Menard, J. M.

Menyuk, C. R.

C. L. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

C. L. Wei, C. R. Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

Mishinov, S. V.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9-10), SoTu2B.3 (2014).
[Crossref]

Mori, A.

A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
[Crossref]

Nishiharaguchi, N.

H. T. Tong, N. Nishiharaguchi, T. Suzuki, and Y. Ohishi, “Fabrication of a novel tellurite hollow core optical fiber,” J. Ceram. Soc. Jpn. 127(4), 187–190 (2019).
[Crossref]

Ohishi, Y.

H. T. Tong, N. Nishiharaguchi, T. Suzuki, and Y. Ohishi, “Fabrication of a novel tellurite hollow core optical fiber,” J. Ceram. Soc. Jpn. 127(4), 187–190 (2019).
[Crossref]

Petersen, J.

Petrovich, M. N.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. X. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Pfeiffer, L.

M. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Plotnichenko, V. G.

Poletti, F.

Pryamikov, A. D.

Richardson, D. J.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. X. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Ritari, T.

Rodney, W. S.

W. S. Rodney, I. H. Malitson, and T. A. King, “Refractive index of arsenic trisulfide,” J. Opt. Soc. Am. A 48(9), 633–636 (1958).
[Crossref]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

Russell, P. S.

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. S. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12(4), 717–723 (2004).
[Crossref]

Russell, P. S. J.

Sadler, P. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref]

Sandoghchi, S. R.

Schulzgen, A.

Semjonov, S. L.

Shephard, J. D.

Shiryaev, V. S.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9-10), SoTu2B.3 (2014).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref]

V. S. Shiryaev, “Chalcogenide glass hollow-core microstructured optical fibers,” Front. Mater. (2015).
[Crossref]

Simonsen, H. R.

Slavik, R.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. X. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Snopatin, G. E.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9-10), SoTu2B.3 (2014).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref]

Sorensen, T.

Stefani, A.

S. Atakaramians, A. Stefani, H. S. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. L. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1162–1178 (2017).
[Crossref]

Suzuki, T.

H. T. Tong, N. Nishiharaguchi, T. Suzuki, and Y. Ohishi, “Fabrication of a novel tellurite hollow core optical fiber,” J. Ceram. Soc. Jpn. 127(4), 187–190 (2019).
[Crossref]

Tang, X. L.

S. Atakaramians, A. Stefani, H. S. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. L. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1162–1178 (2017).
[Crossref]

Tatian, B.

Tong, H. T.

H. T. Tong, N. Nishiharaguchi, T. Suzuki, and Y. Ohishi, “Fabrication of a novel tellurite hollow core optical fiber,” J. Ceram. Soc. Jpn. 127(4), 187–190 (2019).
[Crossref]

Travers, J. C.

Tuniz, A.

S. Atakaramians, A. Stefani, H. S. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. L. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1162–1178 (2017).
[Crossref]

Tuominen, J.

Uebel, P.

Unterkofler, S.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref]

Urich, A.

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
[Crossref]

Wadsworth, W. J.

Wang, Z. F.

Wasserscheid, P.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref]

Wei, C. L.

C. L. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

C. L. Wei, C. R. Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

Weiblen, R. J.

C. L. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Werner, A. J.

Wheeler, N. V.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. X. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Yu, F.

Adv. Opt. Photonics (1)

C. L. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Biomed. Opt. Express (1)

Chem. Soc. Rev. (1)

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref]

IEEE Photonics J. (1)

C. L. Wei, C. R. Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

J. Ceram. Soc. Jpn. (2)

A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
[Crossref]

H. T. Tong, N. Nishiharaguchi, T. Suzuki, and Y. Ohishi, “Fabrication of a novel tellurite hollow core optical fiber,” J. Ceram. Soc. Jpn. 127(4), 187–190 (2019).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

S. Atakaramians, A. Stefani, H. S. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. L. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1162–1178 (2017).
[Crossref]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

W. S. Rodney, I. H. Malitson, and T. A. King, “Refractive index of arsenic trisulfide,” J. Opt. Soc. Am. A 48(9), 633–636 (1958).
[Crossref]

J. Optoelectron. Adv. M. (1)

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9-10), SoTu2B.3 (2014).
[Crossref]

Nat. Photonics (1)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]

Opt. Express (13)

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. S. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12(4), 717–723 (2004).
[Crossref]

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sorensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref]

M. S. Habib, J. E. Antonio-Lopez, C. Markos, A. Schulzgen, and R. Amezcua-Correa, “Single-mode, low loss hollow-core anti-resonant fiber designs,” Opt. Express 27(4), 3824–3836 (2019).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[Crossref]

W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
[Crossref]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
[Crossref]

Z. F. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22(18), 21872–21878 (2014).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref]

Opt. Lett. (3)

Optica (1)

Science (2)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

Other (1)

V. S. Shiryaev, “Chalcogenide glass hollow-core microstructured optical fibers,” Front. Mater. (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1. Measured transmission spectra of the TZLB 76.5TeO2-6ZnO-11.5Li2O-6Bi2O3 glass (bolded line).
Fig. 2.
Fig. 2. Wavelength-dependent refractive index of the TZLB glass.
Fig. 3.
Fig. 3. DSC measurement result from room temperature to 600 °C of the TZLB glass.
Fig. 4.
Fig. 4. TMA measurement result from 100 to 350 °C of the TZLB glass.
Fig. 5.
Fig. 5. Schematic image of tellurite NCF with 6 non-touching cladding air-hole structure.
Fig. 6.
Fig. 6. Calculated confinement loss spectra of the fundamental mode with the different value of N (5, 6 and 7).
Fig. 7.
Fig. 7. Calculated intensity distribution of the fundamental mode and the 1st order mode in the air-core when N = 6 and R = 0.5.
Fig. 8.
Fig. 8. Calculated intensity distribution of the fundamental mode in the air-core when N = 6 and R = 0.1, 0.5 and 0.86, respectively.
Fig. 9.
Fig. 9. Calculated confinement loss spectra of the fundamental mode and 1st order mode with different value of R (from 0.1 to 0.86).
Fig. 10.
Fig. 10. Calculated mode profile in the glass wall when N = 6 and R = 0.86 (the walls of two nearby cladding air-hole touch each other).
Fig. 11.
Fig. 11. Schematic diagram depicts the fiber fabrication of tellurite NCF with a 6 non-touching cladding air-hole structure.
Fig. 12.
Fig. 12. Experimental capillary tubes prepared for the fabrication of tellurite NCF.
Fig. 13.
Fig. 13. Cross-sectional image of the fabricated tellurite NCF taken by a scanning electron microscope.
Fig. 14.
Fig. 14. (a) Experimental setup for the transmission measurement of the tellurite NCF; (b) measured and calculated transmission spectra.
Fig. 15.
Fig. 15. Experimental setup to investigate mode field intensity distribution of a 17-cm-long fabricated tellurite NCF at 3.1 and 3.4 µm.
Fig. 16.
Fig. 16. (a) Experimental setup to study polarization properties of the fabricated tellurite NCF at 2.1 µm. (b) The dependence of LP2 rotation angle on the output intensity after a 17-cm-long fiber.
Fig. 17.
Fig. 17. Measured mode field intensity distribution when LP2 in Fig. 16 is at 90 and 270 degree and the calculated mode field of the 1st order mode.

Tables (1)

Tables Icon

Table 1. Sellmeier coefficients of the TZLB glass (76.5TeO2-6ZnO-11.5Li2O-6Bi2O3).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ ) = 1 + i = 1 3 A i λ 2 λ 2 L i 2

Metrics