Abstract

In this work, we design a structure of metamaterials that consists of double sliver-ring resonators, in which highly-dispersive unidirectional reflectionlessness and absorption are achieved based on high-order plasmon resonance. Reflections of +z and -z directions at 461.34 THz (456.68 THz) are $\sim$0 (0.82) and $\sim$0.85 (0) when the distance $d=222.9$ nm (259.8 nm), respectively. High absorption of $\sim$0.97 and the quality factor of $\sim$435 can be obtained in the loss metal structure at room temperature. What’s more, unidirectional reflectionlessness is investigated at low temperature.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling

Cong Zhang, Ruiping Bai, Xintong Gu, Xing Ri Jin, Ying Qiao Zhang, and YoungPak Lee
Opt. Express 25(20) 24281-24289 (2017)

Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling

Xintong Gu, Ruiping Bai, Cong Zhang, Xing Ri Jin, Ying Qiao Zhang, Shou Zhang, and Young Pak Lee
Opt. Express 25(10) 11778-11787 (2017)

Unidirectional reflectionless phenomenon in periodic ternary layered material

Erchan Yang, Yonghua Lu, Yong Wang, Yanmeng Dai, and Pei Wang
Opt. Express 24(13) 14311-14321 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of $\epsilon$ϵ and $\mu$μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [Crossref]
  2. M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E 71(3), 037602 (2005).
    [Crossref]
  3. R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76(2), 026606 (2007).
    [Crossref]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref]
  5. J. He, P. Ding, J. Wang, C. Fan, and E. Liang, “Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption,” Opt. Express 23(5), 6083–6091 (2015).
    [Crossref]
  6. Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurface,” IEEE Photonics J. 11(2), 1–7 (2019).
    [Crossref]
  7. M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
    [Crossref]
  8. Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
    [Crossref]
  9. Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
    [Crossref]
  10. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref]
  11. S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
    [Crossref]
  12. N. I. Landy, S. Sajuyigbe, J. J Mock, D. R Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref]
  13. Y. L. Xu, L. Feng, M. H. Lu, M. H. Lu, and Y. F. Chen, “Unidirectional transmission based on a passive PT symmetric grating with a nonlinear silicon distributed bragg reflector cavity,” IEEE Photonics J. 6(1), 1–7 (2014).
    [Crossref]
  14. S. Zhang, Z. Yong, Y. Zhang, and S. He, “Parity-time symmetry breaking in coupled nanobeam cavities,” Sci. Rep. 6(1), 24487 (2016).
    [Crossref]
  15. A. E. Serebryannikov and E. Ozbay, “Unidirectional transmission in non-symmetric gratings containing metallic layers,” Opt. Express 17(16), 13335–13345 (2009).
    [Crossref]
  16. W. M. Ye, X. D. Yuan, C. C. Guo, and C. Zen, “Unidirectional transmission in non-symmetric gratings made of isotropic material,” Opt. Express 18(8), 7590–7595 (2010).
    [Crossref]
  17. W. M. Ye, X. D. Yuan, and C. Zeng, “Unidirectional transmission realized by two nonparallel gratings made of isotropic media,” Opt. Lett. 36(15), 2842–2844 (2011).
    [Crossref]
  18. J. Xu, C. Cheng, M. Kang, J. Chen, Z. Zheng, Y. X. Fan, and H. T. Wang, “Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials,” Opt. Lett. 36(10), 1905–1907 (2011).
    [Crossref]
  19. M. Naruse, H. Hori, S. Ishii, A. Drezet, S. Huant, M. Hoga, Y. Ohyagi, T. Matsumoto, N. Tate, and M. Ohtsu, “Unidirectional light propagation through two-layer nanostructures based on optical near-field interactions,” J. Opt. Soc. Am. B 31(10), 2404–2413 (2014).
    [Crossref]
  20. E. Yang, Y. Lu, Y. Wang, Y. Dai, and P. Wang, “Unidirectional reflectionless phenomenon in periodic ternary layered material,” Opt. Express 24(13), 14311–14321 (2016).
    [Crossref]
  21. Y. Huang, C. Min, and G. Veronis, “Broadband near total light absorption in non-PT-symmetric waveguide-cavity systems,” Opt. Express 24(19), 22219–22231 (2016).
    [Crossref]
  22. L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
    [Crossref]
  23. Y. Huang, G. Veronis, and C. Min, “Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points,” Opt. Express 23(23), 29882–29895 (2015).
    [Crossref]
  24. C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in plasmonic waveguide system based on phase coupling between two stub resonators,” IEEE Photonics J. 9(6), 1–9 (2017).
    [Crossref]
  25. C. Zhang, R. Bai, X. Gu, Y. Jin, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless phenomenon in ultracompact non-Hermitian plasmonic waveguide system based on phase coupling,” J. Opt. 19(12), 125005 (2017).
    [Crossref]
  26. C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling,” Opt. Express 25(20), 24281–24289 (2017).
    [Crossref]
  27. F. Zhao, Y. Dai, C. Zhang, R. Bai, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Dual-band unidirectional reflectionlessness at exceptional points in plasmonic waveguide system based on near-field coupling between two resonators,” Nanotechnology 30(4), 045205 (2019).
    [Crossref]
  28. M. Kang, H. X. Cui, T. F. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89(6), 065801 (2014).
    [Crossref]
  29. M. Kang, W. Zhu, H. T. Wang, and M. Premaratne, “Spawning a ring of exceptional points from a metamaterial,” Opt. Express 25(15), 18265–18273 (2017).
    [Crossref]
  30. R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Switching the unidirectional refectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling,” Sci. Rep. 7(1), 10742 (2017).
    [Crossref]
  31. R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionlessness and perfect nonreciprocal absorption in stacked asymmetric metamaterial based on near-field coupling,” Appl. Phys. Express 10(11), 112001 (2017).
    [Crossref]
  32. X. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25(10), 11778–11787 (2017).
    [Crossref]
  33. G. Han, R. Bai, X. Jin, Y. Zhang, C. An, and Y. Lee, “Dual-band unidirectional reflectionless propagation in metamaterial based on two circular-hole resonators,” Materials 11(12), 2353 (2018).
    [Crossref]
  34. H. Yin, R. Bai, X. Gu, C. Zhang, G. R. Gu, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Unidirectional reflectionless propagation in non-Hermitian metamaterial based on phase coupling between two resonators,” Opt. Commun. 414, 172–176 (2018).
    [Crossref]
  35. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander Jr., and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1120 (1983).
    [Crossref]
  36. J. Chen, C. Wang, R. Zhang, and J. Xiao, “Multiple plasmon-induced transparencies in coupled-resonator systems,” Opt. Lett. 37(24), 5133–5135 (2012).
    [Crossref]
  37. D. R. Lide, “CRC handbook of chemistry and physics,” 90th ed (CRC Press, 2009).

2019 (4)

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurface,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

F. Zhao, Y. Dai, C. Zhang, R. Bai, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Dual-band unidirectional reflectionlessness at exceptional points in plasmonic waveguide system based on near-field coupling between two resonators,” Nanotechnology 30(4), 045205 (2019).
[Crossref]

2018 (3)

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

G. Han, R. Bai, X. Jin, Y. Zhang, C. An, and Y. Lee, “Dual-band unidirectional reflectionless propagation in metamaterial based on two circular-hole resonators,” Materials 11(12), 2353 (2018).
[Crossref]

H. Yin, R. Bai, X. Gu, C. Zhang, G. R. Gu, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Unidirectional reflectionless propagation in non-Hermitian metamaterial based on phase coupling between two resonators,” Opt. Commun. 414, 172–176 (2018).
[Crossref]

2017 (7)

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Switching the unidirectional refectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling,” Sci. Rep. 7(1), 10742 (2017).
[Crossref]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionlessness and perfect nonreciprocal absorption in stacked asymmetric metamaterial based on near-field coupling,” Appl. Phys. Express 10(11), 112001 (2017).
[Crossref]

X. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25(10), 11778–11787 (2017).
[Crossref]

M. Kang, W. Zhu, H. T. Wang, and M. Premaratne, “Spawning a ring of exceptional points from a metamaterial,” Opt. Express 25(15), 18265–18273 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling,” Opt. Express 25(20), 24281–24289 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in plasmonic waveguide system based on phase coupling between two stub resonators,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, Y. Jin, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless phenomenon in ultracompact non-Hermitian plasmonic waveguide system based on phase coupling,” J. Opt. 19(12), 125005 (2017).
[Crossref]

2016 (3)

2015 (2)

2014 (3)

M. Kang, H. X. Cui, T. F. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89(6), 065801 (2014).
[Crossref]

Y. L. Xu, L. Feng, M. H. Lu, M. H. Lu, and Y. F. Chen, “Unidirectional transmission based on a passive PT symmetric grating with a nonlinear silicon distributed bragg reflector cavity,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

M. Naruse, H. Hori, S. Ishii, A. Drezet, S. Huant, M. Hoga, Y. Ohyagi, T. Matsumoto, N. Tate, and M. Ohtsu, “Unidirectional light propagation through two-layer nanostructures based on optical near-field interactions,” J. Opt. Soc. Am. B 31(10), 2404–2413 (2014).
[Crossref]

2013 (2)

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

2012 (1)

2011 (2)

2010 (1)

2009 (2)

A. E. Serebryannikov and E. Ozbay, “Unidirectional transmission in non-symmetric gratings containing metallic layers,” Opt. Express 17(16), 13335–13345 (2009).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J Mock, D. R Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

2007 (1)

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76(2), 026606 (2007).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

2005 (1)

M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E 71(3), 037602 (2005).
[Crossref]

1983 (1)

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of $\epsilon$ϵ and $\mu$μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Alexander Jr., R. W.

Almeida, V. R.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

An, C.

G. Han, R. Bai, X. Jin, Y. Zhang, C. An, and Y. Lee, “Dual-band unidirectional reflectionless propagation in metamaterial based on two circular-hole resonators,” Materials 11(12), 2353 (2018).
[Crossref]

Bai, R.

F. Zhao, Y. Dai, C. Zhang, R. Bai, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Dual-band unidirectional reflectionlessness at exceptional points in plasmonic waveguide system based on near-field coupling between two resonators,” Nanotechnology 30(4), 045205 (2019).
[Crossref]

G. Han, R. Bai, X. Jin, Y. Zhang, C. An, and Y. Lee, “Dual-band unidirectional reflectionless propagation in metamaterial based on two circular-hole resonators,” Materials 11(12), 2353 (2018).
[Crossref]

H. Yin, R. Bai, X. Gu, C. Zhang, G. R. Gu, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Unidirectional reflectionless propagation in non-Hermitian metamaterial based on phase coupling between two resonators,” Opt. Commun. 414, 172–176 (2018).
[Crossref]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionlessness and perfect nonreciprocal absorption in stacked asymmetric metamaterial based on near-field coupling,” Appl. Phys. Express 10(11), 112001 (2017).
[Crossref]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Switching the unidirectional refectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling,” Sci. Rep. 7(1), 10742 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in plasmonic waveguide system based on phase coupling between two stub resonators,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, Y. Jin, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless phenomenon in ultracompact non-Hermitian plasmonic waveguide system based on phase coupling,” J. Opt. 19(12), 125005 (2017).
[Crossref]

X. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25(10), 11778–11787 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling,” Opt. Express 25(20), 24281–24289 (2017).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Biswas, S.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref]

Cai, G.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurface,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Chen, J.

Chen, Q.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Chen, Y. F.

Y. L. Xu, L. Feng, M. H. Lu, M. H. Lu, and Y. F. Chen, “Unidirectional transmission based on a passive PT symmetric grating with a nonlinear silicon distributed bragg reflector cavity,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Cheng, C.

Chu, Q.

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Cui, H. X.

M. Kang, H. X. Cui, T. F. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89(6), 065801 (2014).
[Crossref]

Cui, T. J.

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76(2), 026606 (2007).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Dai, Y.

F. Zhao, Y. Dai, C. Zhang, R. Bai, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Dual-band unidirectional reflectionlessness at exceptional points in plasmonic waveguide system based on near-field coupling between two resonators,” Nanotechnology 30(4), 045205 (2019).
[Crossref]

E. Yang, Y. Lu, Y. Wang, Y. Dai, and P. Wang, “Unidirectional reflectionless phenomenon in periodic ternary layered material,” Opt. Express 24(13), 14311–14321 (2016).
[Crossref]

Deng, Y.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Ding, P.

Drezet, A.

Duan, J.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref]

Fan, C.

Fan, Y. X.

Fegadolli, W. S.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Feise, M. W.

M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E 71(3), 037602 (2005).
[Crossref]

Feng, L.

Y. L. Xu, L. Feng, M. H. Lu, M. H. Lu, and Y. F. Chen, “Unidirectional transmission based on a passive PT symmetric grating with a nonlinear silicon distributed bragg reflector cavity,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Gu, G. R.

H. Yin, R. Bai, X. Gu, C. Zhang, G. R. Gu, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Unidirectional reflectionless propagation in non-Hermitian metamaterial based on phase coupling between two resonators,” Opt. Commun. 414, 172–176 (2018).
[Crossref]

Gu, X.

H. Yin, R. Bai, X. Gu, C. Zhang, G. R. Gu, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Unidirectional reflectionless propagation in non-Hermitian metamaterial based on phase coupling between two resonators,” Opt. Commun. 414, 172–176 (2018).
[Crossref]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Switching the unidirectional refectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling,” Sci. Rep. 7(1), 10742 (2017).
[Crossref]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionlessness and perfect nonreciprocal absorption in stacked asymmetric metamaterial based on near-field coupling,” Appl. Phys. Express 10(11), 112001 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, Y. Jin, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless phenomenon in ultracompact non-Hermitian plasmonic waveguide system based on phase coupling,” J. Opt. 19(12), 125005 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in plasmonic waveguide system based on phase coupling between two stub resonators,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling,” Opt. Express 25(20), 24281–24289 (2017).
[Crossref]

X. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25(10), 11778–11787 (2017).
[Crossref]

Guo, C. C.

Han, G.

G. Han, R. Bai, X. Jin, Y. Zhang, C. An, and Y. Lee, “Dual-band unidirectional reflectionless propagation in metamaterial based on two circular-hole resonators,” Materials 11(12), 2353 (2018).
[Crossref]

He, J.

He, S.

S. Zhang, Z. Yong, Y. Zhang, and S. He, “Parity-time symmetry breaking in coupled nanobeam cavities,” Sci. Rep. 6(1), 24487 (2016).
[Crossref]

Hoga, M.

Hori, H.

Huang, D.

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76(2), 026606 (2007).
[Crossref]

Huang, Y.

Huant, S.

Ishii, S.

Jin, X.

G. Han, R. Bai, X. Jin, Y. Zhang, C. An, and Y. Lee, “Dual-band unidirectional reflectionless propagation in metamaterial based on two circular-hole resonators,” Materials 11(12), 2353 (2018).
[Crossref]

Jin, X. R.

F. Zhao, Y. Dai, C. Zhang, R. Bai, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Dual-band unidirectional reflectionlessness at exceptional points in plasmonic waveguide system based on near-field coupling between two resonators,” Nanotechnology 30(4), 045205 (2019).
[Crossref]

H. Yin, R. Bai, X. Gu, C. Zhang, G. R. Gu, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Unidirectional reflectionless propagation in non-Hermitian metamaterial based on phase coupling between two resonators,” Opt. Commun. 414, 172–176 (2018).
[Crossref]

C. Zhang, R. Bai, X. Gu, Y. Jin, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless phenomenon in ultracompact non-Hermitian plasmonic waveguide system based on phase coupling,” J. Opt. 19(12), 125005 (2017).
[Crossref]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionlessness and perfect nonreciprocal absorption in stacked asymmetric metamaterial based on near-field coupling,” Appl. Phys. Express 10(11), 112001 (2017).
[Crossref]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Switching the unidirectional refectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling,” Sci. Rep. 7(1), 10742 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in plasmonic waveguide system based on phase coupling between two stub resonators,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

X. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25(10), 11778–11787 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling,” Opt. Express 25(20), 24281–24289 (2017).
[Crossref]

Jin, Y.

C. Zhang, R. Bai, X. Gu, Y. Jin, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless phenomenon in ultracompact non-Hermitian plasmonic waveguide system based on phase coupling,” J. Opt. 19(12), 125005 (2017).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Kang, M.

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Kivshar, Y. S.

M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E 71(3), 037602 (2005).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J Mock, D. R Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Lee, Y.

G. Han, R. Bai, X. Jin, Y. Zhang, C. An, and Y. Lee, “Dual-band unidirectional reflectionless propagation in metamaterial based on two circular-hole resonators,” Materials 11(12), 2353 (2018).
[Crossref]

Lee, Y. P.

F. Zhao, Y. Dai, C. Zhang, R. Bai, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Dual-band unidirectional reflectionlessness at exceptional points in plasmonic waveguide system based on near-field coupling between two resonators,” Nanotechnology 30(4), 045205 (2019).
[Crossref]

H. Yin, R. Bai, X. Gu, C. Zhang, G. R. Gu, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Unidirectional reflectionless propagation in non-Hermitian metamaterial based on phase coupling between two resonators,” Opt. Commun. 414, 172–176 (2018).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in plasmonic waveguide system based on phase coupling between two stub resonators,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, Y. Jin, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless phenomenon in ultracompact non-Hermitian plasmonic waveguide system based on phase coupling,” J. Opt. 19(12), 125005 (2017).
[Crossref]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Switching the unidirectional refectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling,” Sci. Rep. 7(1), 10742 (2017).
[Crossref]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionlessness and perfect nonreciprocal absorption in stacked asymmetric metamaterial based on near-field coupling,” Appl. Phys. Express 10(11), 112001 (2017).
[Crossref]

X. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25(10), 11778–11787 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling,” Opt. Express 25(20), 24281–24289 (2017).
[Crossref]

Li, T. F.

M. Kang, H. X. Cui, T. F. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89(6), 065801 (2014).
[Crossref]

Liang, E.

Lide, D. R.

D. R. Lide, “CRC handbook of chemistry and physics,” 90th ed (CRC Press, 2009).

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Liu, Q. H.

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Liu, R.

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76(2), 026606 (2007).
[Crossref]

Liu, Y.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurface,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Long, L. L.

Lu, M. H.

Y. L. Xu, L. Feng, M. H. Lu, M. H. Lu, and Y. F. Chen, “Unidirectional transmission based on a passive PT symmetric grating with a nonlinear silicon distributed bragg reflector cavity,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

Y. L. Xu, L. Feng, M. H. Lu, M. H. Lu, and Y. F. Chen, “Unidirectional transmission based on a passive PT symmetric grating with a nonlinear silicon distributed bragg reflector cavity,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Lu, Y.

Matsumoto, T.

Min, C.

Mock, J. J

N. I. Landy, S. Sajuyigbe, J. J Mock, D. R Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Naruse, M.

Nepal, D.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref]

Ohtsu, M.

Ohyagi, Y.

Oliveira, J. E. B.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Ordal, M. A.

Ozbay, E.

Pachter, R.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J Mock, D. R Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Park, K.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Premaratne, M.

M. Kang, W. Zhu, H. T. Wang, and M. Premaratne, “Spawning a ring of exceptional points from a metamaterial,” Opt. Express 25(15), 18265–18273 (2017).
[Crossref]

M. Kang, H. X. Cui, T. F. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89(6), 065801 (2014).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J Mock, D. R Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Scherer, A.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Serebryannikov, A. E.

Shadrivov, I. V.

M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E 71(3), 037602 (2005).
[Crossref]

Smith, D. R

N. I. Landy, S. Sajuyigbe, J. J Mock, D. R Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Smith, D. R.

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76(2), 026606 (2007).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Song, Z.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurface,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Tate, N.

Vaia, R. A.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref]

Veronis, G.

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of $\epsilon$ϵ and $\mu$μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Wang, C.

Wang, H. T.

Wang, J.

Wang, P.

Wang, Y.

Wang, Z.

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurface,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Ward, C. A.

Wei, M.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurface,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Xiao, J.

Xu, J.

Xu, Y. L.

Y. L. Xu, L. Feng, M. H. Lu, M. H. Lu, and Y. F. Chen, “Unidirectional transmission based on a passive PT symmetric grating with a nonlinear silicon distributed bragg reflector cavity,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Yang, E.

Ye, W. M.

Yin, H.

H. Yin, R. Bai, X. Gu, C. Zhang, G. R. Gu, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Unidirectional reflectionless propagation in non-Hermitian metamaterial based on phase coupling between two resonators,” Opt. Commun. 414, 172–176 (2018).
[Crossref]

Yong, Z.

S. Zhang, Z. Yong, Y. Zhang, and S. He, “Parity-time symmetry breaking in coupled nanobeam cavities,” Sci. Rep. 6(1), 24487 (2016).
[Crossref]

Yuan, X. D.

Zen, C.

Zeng, C.

Zhang, C.

F. Zhao, Y. Dai, C. Zhang, R. Bai, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Dual-band unidirectional reflectionlessness at exceptional points in plasmonic waveguide system based on near-field coupling between two resonators,” Nanotechnology 30(4), 045205 (2019).
[Crossref]

H. Yin, R. Bai, X. Gu, C. Zhang, G. R. Gu, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Unidirectional reflectionless propagation in non-Hermitian metamaterial based on phase coupling between two resonators,” Opt. Commun. 414, 172–176 (2018).
[Crossref]

C. Zhang, R. Bai, X. Gu, Y. Jin, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless phenomenon in ultracompact non-Hermitian plasmonic waveguide system based on phase coupling,” J. Opt. 19(12), 125005 (2017).
[Crossref]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Switching the unidirectional refectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling,” Sci. Rep. 7(1), 10742 (2017).
[Crossref]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionlessness and perfect nonreciprocal absorption in stacked asymmetric metamaterial based on near-field coupling,” Appl. Phys. Express 10(11), 112001 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in plasmonic waveguide system based on phase coupling between two stub resonators,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling,” Opt. Express 25(20), 24281–24289 (2017).
[Crossref]

X. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25(10), 11778–11787 (2017).
[Crossref]

Zhang, R.

Zhang, S.

X. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25(10), 11778–11787 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, Y. Jin, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless phenomenon in ultracompact non-Hermitian plasmonic waveguide system based on phase coupling,” J. Opt. 19(12), 125005 (2017).
[Crossref]

S. Zhang, Z. Yong, Y. Zhang, and S. He, “Parity-time symmetry breaking in coupled nanobeam cavities,” Sci. Rep. 6(1), 24487 (2016).
[Crossref]

Zhang, Y.

G. Han, R. Bai, X. Jin, Y. Zhang, C. An, and Y. Lee, “Dual-band unidirectional reflectionless propagation in metamaterial based on two circular-hole resonators,” Materials 11(12), 2353 (2018).
[Crossref]

S. Zhang, Z. Yong, Y. Zhang, and S. He, “Parity-time symmetry breaking in coupled nanobeam cavities,” Sci. Rep. 6(1), 24487 (2016).
[Crossref]

Zhang, Y. Q.

F. Zhao, Y. Dai, C. Zhang, R. Bai, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Dual-band unidirectional reflectionlessness at exceptional points in plasmonic waveguide system based on near-field coupling between two resonators,” Nanotechnology 30(4), 045205 (2019).
[Crossref]

H. Yin, R. Bai, X. Gu, C. Zhang, G. R. Gu, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Unidirectional reflectionless propagation in non-Hermitian metamaterial based on phase coupling between two resonators,” Opt. Commun. 414, 172–176 (2018).
[Crossref]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionlessness and perfect nonreciprocal absorption in stacked asymmetric metamaterial based on near-field coupling,” Appl. Phys. Express 10(11), 112001 (2017).
[Crossref]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Switching the unidirectional refectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling,” Sci. Rep. 7(1), 10742 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, Y. Jin, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless phenomenon in ultracompact non-Hermitian plasmonic waveguide system based on phase coupling,” J. Opt. 19(12), 125005 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in plasmonic waveguide system based on phase coupling between two stub resonators,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

X. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25(10), 11778–11787 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling,” Opt. Express 25(20), 24281–24289 (2017).
[Crossref]

Zhao, B.

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76(2), 026606 (2007).
[Crossref]

Zhao, F.

F. Zhao, Y. Dai, C. Zhang, R. Bai, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Dual-band unidirectional reflectionlessness at exceptional points in plasmonic waveguide system based on near-field coupling between two resonators,” Nanotechnology 30(4), 045205 (2019).
[Crossref]

Zheng, Z.

Zhou, Y.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurface,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Zhu, W.

M. Kang, W. Zhu, H. T. Wang, and M. Premaratne, “Spawning a ring of exceptional points from a metamaterial,” Opt. Express 25(15), 18265–18273 (2017).
[Crossref]

M. Kang, H. X. Cui, T. F. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89(6), 065801 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (2)

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionlessness and perfect nonreciprocal absorption in stacked asymmetric metamaterial based on near-field coupling,” Appl. Phys. Express 10(11), 112001 (2017).
[Crossref]

IEEE Photonics J. (3)

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in plasmonic waveguide system based on phase coupling between two stub resonators,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurface,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Y. L. Xu, L. Feng, M. H. Lu, M. H. Lu, and Y. F. Chen, “Unidirectional transmission based on a passive PT symmetric grating with a nonlinear silicon distributed bragg reflector cavity,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

J. Opt. (1)

C. Zhang, R. Bai, X. Gu, Y. Jin, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless phenomenon in ultracompact non-Hermitian plasmonic waveguide system based on phase coupling,” J. Opt. 19(12), 125005 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Mater. Lett. (2)

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

Materials (1)

G. Han, R. Bai, X. Jin, Y. Zhang, C. An, and Y. Lee, “Dual-band unidirectional reflectionless propagation in metamaterial based on two circular-hole resonators,” Materials 11(12), 2353 (2018).
[Crossref]

Nano Lett. (1)

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref]

Nanotechnology (1)

F. Zhao, Y. Dai, C. Zhang, R. Bai, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Dual-band unidirectional reflectionlessness at exceptional points in plasmonic waveguide system based on near-field coupling between two resonators,” Nanotechnology 30(4), 045205 (2019).
[Crossref]

Nat. Mater. (2)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Opt. Commun. (1)

H. Yin, R. Bai, X. Gu, C. Zhang, G. R. Gu, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, “Unidirectional reflectionless propagation in non-Hermitian metamaterial based on phase coupling between two resonators,” Opt. Commun. 414, 172–176 (2018).
[Crossref]

Opt. Express (9)

A. E. Serebryannikov and E. Ozbay, “Unidirectional transmission in non-symmetric gratings containing metallic layers,” Opt. Express 17(16), 13335–13345 (2009).
[Crossref]

W. M. Ye, X. D. Yuan, C. C. Guo, and C. Zen, “Unidirectional transmission in non-symmetric gratings made of isotropic material,” Opt. Express 18(8), 7590–7595 (2010).
[Crossref]

J. He, P. Ding, J. Wang, C. Fan, and E. Liang, “Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption,” Opt. Express 23(5), 6083–6091 (2015).
[Crossref]

Y. Huang, G. Veronis, and C. Min, “Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points,” Opt. Express 23(23), 29882–29895 (2015).
[Crossref]

E. Yang, Y. Lu, Y. Wang, Y. Dai, and P. Wang, “Unidirectional reflectionless phenomenon in periodic ternary layered material,” Opt. Express 24(13), 14311–14321 (2016).
[Crossref]

Y. Huang, C. Min, and G. Veronis, “Broadband near total light absorption in non-PT-symmetric waveguide-cavity systems,” Opt. Express 24(19), 22219–22231 (2016).
[Crossref]

X. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25(10), 11778–11787 (2017).
[Crossref]

M. Kang, W. Zhu, H. T. Wang, and M. Premaratne, “Spawning a ring of exceptional points from a metamaterial,” Opt. Express 25(15), 18265–18273 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling,” Opt. Express 25(20), 24281–24289 (2017).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (1)

M. Kang, H. X. Cui, T. F. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89(6), 065801 (2014).
[Crossref]

Phys. Rev. E (2)

M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E 71(3), 037602 (2005).
[Crossref]

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76(2), 026606 (2007).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J Mock, D. R Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Sci. Rep. (2)

S. Zhang, Z. Yong, Y. Zhang, and S. He, “Parity-time symmetry breaking in coupled nanobeam cavities,” Sci. Rep. 6(1), 24487 (2016).
[Crossref]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Switching the unidirectional refectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling,” Sci. Rep. 7(1), 10742 (2017).
[Crossref]

Science (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of $\epsilon$ϵ and $\mu$μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Other (1)

D. R. Lide, “CRC handbook of chemistry and physics,” 90th ed (CRC Press, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the non-Hermitian metamaterial structure. Illustrations on the right are the cross sections of the upper and lower silver rings in $x-y$ plane, respectively. Distance $d$ is alterable and the incident wave is along +z or -z directions.
Fig. 2.
Fig. 2. (a) and (b) are analytical and simulated reflection spectra for +z and -z directions when $d$ = 222.9 nm and 259.8 nm, respectively. (c) and (d) are absorption and transmission spectra for +z and -z directions when $d$ = 222.9 nm and 259.8 nm, respectively. The relevant parameters are $\Gamma _{1}$ = 1.141 THz (1.14 THz), $\Gamma _{2}$ = 0.5351 THz (0.4013 THz), $\gamma _{1}$ = 10.219 THz (12.22 THz), $\gamma _{2}$ = 0.713 THz (0.894 THz) and $\phi$ = 0.8603$~\pi$ (1.125$~\pi$), respectively.
Fig. 3.
Fig. 3. z-component distributions of electric field for USR and LSR in +z and -z directions when $d$ is 222.9 nm (a)–(d) and 259.8 nm (e)–(h) at 461.34 THz and 456.68 THz, respectively.
Fig. 4.
Fig. 4. Reflections for +z (a) and -z (b) directions as the functions of distance $d$ and frequency.
Fig. 5.
Fig. 5. (a)–(d) Real and imaginary parts of eigenvalues $E_{\pm }$ when $d$ = 222.9 nm, 259.8 nm and $\phi$ = 0.8603 $\pi$, 1.125 $\pi$.
Fig. 6.
Fig. 6. (a)–(g) Reflection and absorption spectra of +z and -z directions for $T$ = 200 K, 150 K, 100 K, 80 K, 60 K, 40 K and 20 K, respectively. (h) Q-factor of unidirectional reflectionlessness at $T$ = 300 K, 200 K, 150 K, 100 K, 80 K and 60 K.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T all = T s 1 × T p × T s 2 = ( T 11 T 12 T 21 T 22 ) ,
T s 1 ( 2 ) = ( 1 i γ 1 ( 2 ) ω ω 1 ( 2 ) + i Γ 1 ( 2 ) 2 i γ 1 ( 2 ) ω ω 1 ( 2 ) + i Γ 1 ( 2 ) 2 i γ 1 ( 2 ) ω ω 1 ( 2 ) + i Γ 1 ( 2 ) 2 1 + i γ 1 ( 2 ) ω ω 1 ( 2 ) + i Γ 1 ( 2 ) 2 ) ,
T p = ( exp ( i ϕ ) 0 0 exp ( i ϕ ) ) ,
r +z = T 21 T 22 , r -z = T 12 T 22 , t = t +z = t -z = 1 T 22 .
ϕ 1 ( 2 ) = arctan [ Im ( T s , 21 1 ( 2 ) / T s , 22 1 ( 2 ) ) Re ( T s , 21 1 ( 2 ) / T s , 22 ) 1 ( 2 ) ] = ω ω 1 ( 2 ) γ 1 ( 2 ) + Γ 1 ( 2 ) 2 .
S = ( t r z r + z t ) .
E ±   =   t ± r + z r z .

Metrics