Abstract

A compact ultrahigh resolving power spectrometer is presented, which combines a Fabry-Perot interferometer (FPI) and a static stepped-mirror interferometer (SMI). The FPI needs to scan N steps, one spectrum per step is obtained from the SMI, and a total of N spectra constitute an ultrahigh resolution spectrum. Compared with Michelson-type interferometers for ultrahigh resolution spectral measurements, the spectrometer is much smaller in physical size and shorter in measurement time. Compared with the combination of a FPI and a Michelson-type interferometer, the spectrometer has much shorter measurement time and higher stability. Preliminary numerical simulations are given by two examples. The spectrometer offers a unique concept that not only provides resolving power higher than 1,000,000 in near-infrared, short-wave infrared or mid-wave infrared region but also achieves short measurement time and small physical size.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of a compact and ultrahigh-resolution Fourier-transform spectrometer

B. Imran Akca
Opt. Express 25(2) 1487-1494 (2017)

Cascaded interferometric imaging spectrometer

Bruce Swinyard and Marc Ferlet
Appl. Opt. 46(25) 6381-6390 (2007)

Ultrahigh-resolution spectrometer for the 5-μm wavelength region

P. Palm, D. Hanke, W. Urban, and M. Mürtz
Opt. Lett. 26(9) 641-643 (2001)

References

  • View by:
  • |
  • |
  • |

  1. C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).
  2. Q. Yang, “Compact high-resolution Littrow conical diffraction spectrometer,” Appl. Opt. 55(18), 4801–4807 (2016).
    [Crossref] [PubMed]
  3. W. M. Kunkel and J. R. Leger, “Gain dependent self-phasing in a two-core coherently combined fiber laser,” Opt. Express 26(8), 9373–9388 (2018).
    [Crossref] [PubMed]
  4. L. Yu, H. Xue, and J. X. Chen, “Dual concave grating anastigmatic spectrometer with high spectral resolution for remote sensing,” Appl. Opt. 57(33), 9789–9796 (2018).
    [Crossref] [PubMed]
  5. N. Danz, B. Höfer, E. Förster, T. Flügel-Paul, T. Harzendorf, P. Dannberg, R. Leitel, S. Kleinle, and R. Brunner, “Miniature integrated micro-spectrometer array for snap shot multispectral sensing,” Opt. Express 27(4), 5719–5728 (2019).
    [Crossref] [PubMed]
  6. W. H. Steel, Interferometry (Cambridge University, 1983).
  7. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 2007).
  8. J. Kauppinen and V. M. Horneman, “Large aperture cube corner interferometer with a resolution of 0.001 cm(-1).,” Appl. Opt. 30(18), 2575–2578 (1991).
    [Crossref] [PubMed]
  9. G. Durry and G. Guelachvili, “High-information time-resolved step-scan Fourier interferometer,” Appl. Opt. 34(12), 1971–1981 (1995).
    [Crossref] [PubMed]
  10. Q. Yang, “Moving corner-cube mirror interferometer and reflection characteristic of corner-cube mirror,” Appl. Opt. 49(21), 4088–4095 (2010).
    [Crossref] [PubMed]
  11. Q. Yang, L. Liu, and P. Lv, “Principle of a two-output-difference interferometer for removing the most important interference distortions,” J. Mod. Opt. 65(19), 2234–2242 (2018).
    [Crossref]
  12. G. Hernandez, Fabry-Perot Interferometers (Cambridge University, 1986).
  13. P. B. Hays and H. E. Snell, “Multiplex Fabry-Perot interferometer,” Appl. Opt. 30(22), 3108–3113 (1991).
    [Crossref] [PubMed]
  14. G. Hernandez and K. C. Clark, “Electro-optic high-resolution Fabry-Perot spectrometer,” Appl. Opt. 33(10), 1989–1992 (1994).
    [Crossref] [PubMed]
  15. M. Pisani and M. Zucco, “Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry-Perot interferometer,” Opt. Express 17(10), 8319–8331 (2009).
    [Crossref] [PubMed]
  16. M. Zucco, M. Pisani, V. Caricato, and A. Egidi, “A hyperspectral imager based on a Fabry-Perot interferometer with dielectric mirrors,” Opt. Express 22(2), 1824–1834 (2014).
    [Crossref] [PubMed]
  17. T. A. Al-Saeed and D. A. Khalil, “Fourier transform spectrometer based on Fabry-Perot interferometer,” Appl. Opt. 55(20), 5322–5331 (2016).
    [Crossref] [PubMed]
  18. P. Metz, H. Block, C. Behnke, M. Krantz, M. Gerken, and J. Adam, “Tunable elastomer-based virtually imaged phased array,” Opt. Express 21(3), 3324–3335 (2013).
    [Crossref] [PubMed]
  19. P. Metz, J. Adam, M. Gerken, and B. Jalali, “Compact, transmissive two-dimensional spatial disperser design with application in simultaneous endoscopic imaging,” Appl. Opt. 53(3), 376–382 (2014).
    [Crossref] [PubMed]
  20. W. Bao, Z. Ding, P. Li, Z. Chen, Y. Shen, and C. Wang, “Orthogonal dispersive spectral-domain optical coherence tomography,” Opt. Express 22(8), 10081–10090 (2014).
    [Crossref] [PubMed]
  21. W. Bao, Y. Shen, T. Chen, P. Li, and Z. Ding, “High-speed high-precision and ultralong-range complex spectral domain dimensional metrology,” Opt. Express 23(9), 11013–11022 (2015).
    [Crossref] [PubMed]
  22. P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
    [Crossref]
  23. G. R. Davis, I. Furniss, W. A. Towlson, P. A. R. Ade, R. J. Emery, W. M. Glencross, D. A. Naylor, T. J. Patrick, R. C. Sidey, and B. M. Swinyard, “Design and performance of cryogenic, scanning Fabry-Perot interferometers for the Long-Wavelength Spectrometer on the Infrared Space Observatory,” Appl. Opt. 34(1), 92–107 (1995).
    [Crossref] [PubMed]
  24. S. M. Lindsay, M. W. Anderson, and J. R. Sandercock, “Construction and alignment of a high performance multipass vernier tandem Fabry-Perot interferometer,” Rev. Sci. Instrum. 52(10), 1478–1486 (1981).
    [Crossref]
  25. G. Hernandez, “Afocal coupled etalons. DEM: a high-resolution doubleetalon modulator spectrometer,” Appl. Opt. 26(22), 4857–4869 (1987).
    [Crossref] [PubMed]
  26. G. Hernandez and F. G. McCormac, “Afocal coupled etalons: experimental confirmation of a high-resolution double-etalon modulator spectrometer,” Appl. Opt. 27(16), 3492–3495 (1988).
    [Crossref] [PubMed]
  27. P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high-resolution doppler imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98(D6), 10713–10723 (1993).
    [Crossref]
  28. M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
    [Crossref]
  29. Y. M. Eltagoury, Y. M. Sabry, and D. A. Khalil, “Novel Fourier transform infrared spectrometer architecture based on cascaded Fabry-Perot interferometers,” Proc. SPIE 9760, 97600L (2016).
    [Crossref]
  30. I. S. El-Sayed, Y. M. Sabry, W. E. ElZeiny, N. Badra, and D. A. Khalil, “Transformation algorithm and analysis of the Fourier transform spectrometer based on cascaded Fabry-Perot interferometers,” Appl. Opt. 57(25), 7225–7231 (2018).
    [Crossref] [PubMed]
  31. J. M. Helbert, P. Laforie, and P. Miche, “Conditions of pressure scanning of a Fabry-Perot interferometer over a wide spectrum range,” Appl. Opt. 16(8), 2119–2126 (1977).
    [Crossref] [PubMed]
  32. B. Swinyard and M. Ferlet, “Cascaded interferometric imaging spectrometer,” Appl. Opt. 46(25), 6381–6390 (2007).
    [Crossref] [PubMed]
  33. K. D. Möller, “Wave-front-dividing array interferometers without moving parts for real-time spectroscopy from the IR to the UV,” Appl. Opt. 34(9), 1493–1501 (1995).
    [Crossref] [PubMed]
  34. E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt. A, Pure Appl. Opt. 2(6), 519–528 (2000).
    [Crossref]
  35. A. Lacan, F. M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express 18(8), 8311–8331 (2010).
    [Crossref] [PubMed]
  36. Y. Zheng, J. Liang, and Z. Liang, “Design and fabrication of step mirrors used in space-modulated Fourier transform infrared spectrometer,” Opt. Express 21(1), 884–892 (2013).
    [Crossref] [PubMed]
  37. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  38. H. Nyquist, “Certain factors affecting telegraph speed,” Bell Syst. Tech. J. 3(2), 324–346 (1924).
    [Crossref]
  39. C. E. Shannon, “Communication in the presence of noise,” Proc. IEEE 37(1), 10–21 (1949).
  40. P. Jacquinot, “The luminosity of spectrometers with Prisms, Grating, or Fabry-Perot Etalons,” J. Opt. Soc. Am. 44(10), 761–765 (1954).
    [Crossref]
  41. P. Jacquinot, “How the search for a throughput advantage led to Fourier transform spectroscopy,” Infrared Phys. 24, 99–101 (1984).
    [Crossref]
  42. P. B. Fellgett, “Three concepts make a million points,” Infrared Phys. 24(2–3), 95–98 (1984).
    [Crossref]
  43. P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc. 60(1), 91–93 (2006).
    [Crossref]
  44. A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Theoretical aspects of Fourier Transform Spectrometry and common path triangular interferometers,” Opt. Express 18(11), 11622–11649 (2010).
    [Crossref] [PubMed]
  45. A. Barducci, D. Guzzi, C. Lastri, V. Nardino, P. Marcoionni, and I. Pippi, “Radiometric and SNR properties of multiplex dispersive spectrometry,” Appl. Opt. 49(28), 5366–5373 (2010).
    [Crossref] [PubMed]

2019 (1)

2018 (4)

2016 (3)

2015 (1)

2014 (3)

2013 (2)

2010 (4)

2009 (1)

2007 (1)

2006 (1)

P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc. 60(1), 91–93 (2006).
[Crossref]

2000 (1)

E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt. A, Pure Appl. Opt. 2(6), 519–528 (2000).
[Crossref]

1998 (1)

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

1995 (3)

1994 (1)

1993 (1)

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high-resolution doppler imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98(D6), 10713–10723 (1993).
[Crossref]

1991 (2)

1988 (1)

1987 (1)

1984 (2)

P. Jacquinot, “How the search for a throughput advantage led to Fourier transform spectroscopy,” Infrared Phys. 24, 99–101 (1984).
[Crossref]

P. B. Fellgett, “Three concepts make a million points,” Infrared Phys. 24(2–3), 95–98 (1984).
[Crossref]

1982 (1)

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

1981 (1)

S. M. Lindsay, M. W. Anderson, and J. R. Sandercock, “Construction and alignment of a high performance multipass vernier tandem Fabry-Perot interferometer,” Rev. Sci. Instrum. 52(10), 1478–1486 (1981).
[Crossref]

1977 (1)

1954 (1)

1949 (1)

C. E. Shannon, “Communication in the presence of noise,” Proc. IEEE 37(1), 10–21 (1949).

1924 (1)

H. Nyquist, “Certain factors affecting telegraph speed,” Bell Syst. Tech. J. 3(2), 324–346 (1924).
[Crossref]

Abreu, V. J.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high-resolution doppler imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98(D6), 10713–10723 (1993).
[Crossref]

Adam, J.

Ade, P. A. R.

Al-Saeed, T. A.

Anderson, M. W.

S. M. Lindsay, M. W. Anderson, and J. R. Sandercock, “Construction and alignment of a high performance multipass vernier tandem Fabry-Perot interferometer,” Rev. Sci. Instrum. 52(10), 1478–1486 (1981).
[Crossref]

Atherton, P. D.

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

Badra, N.

Bao, W.

Barducci, A.

Behnke, C.

Block, H.

Bolatto, A. D.

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Brachet, F.

Bradford, C. M.

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Bréon, F. M.

Brunner, R.

Caricato, V.

Casteras, C.

Chen, J. X.

Chen, T.

Chen, Z.

Clark, K. C.

Dannberg, P.

Danz, N.

Davidson, J.

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Davis, G. R.

Ding, Z.

Dobbs, M. E.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high-resolution doppler imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98(D6), 10713–10723 (1993).
[Crossref]

Durry, G.

Egidi, A.

El-Sayed, I. S.

Eltagoury, Y. M.

Y. M. Eltagoury, Y. M. Sabry, and D. A. Khalil, “Novel Fourier transform infrared spectrometer architecture based on cascaded Fabry-Perot interferometers,” Proc. SPIE 9760, 97600L (2016).
[Crossref]

ElZeiny, W. E.

Emery, R. J.

Etcheto, P.

Fellgett, P. B.

P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc. 60(1), 91–93 (2006).
[Crossref]

P. B. Fellgett, “Three concepts make a million points,” Infrared Phys. 24(2–3), 95–98 (1984).
[Crossref]

Ferlet, M.

Flügel-Paul, T.

Förster, E.

Furniss, I.

Gell, D. A.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high-resolution doppler imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98(D6), 10713–10723 (1993).
[Crossref]

Gerken, M.

Glencross, W. M.

Grassl, H. J.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high-resolution doppler imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98(D6), 10713–10723 (1993).
[Crossref]

Guelachvili, G.

Guzzi, D.

Harmer, C. F. W.

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

Harzendorf, T.

Hays, P. B.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high-resolution doppler imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98(D6), 10713–10723 (1993).
[Crossref]

P. B. Hays and H. E. Snell, “Multiplex Fabry-Perot interferometer,” Appl. Opt. 30(22), 3108–3113 (1991).
[Crossref] [PubMed]

Helbert, J. M.

Hernandez, G.

Höfer, B.

Hook, R. N.

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

Horneman, V. M.

Ivanov, E. V.

E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt. A, Pure Appl. Opt. 2(6), 519–528 (2000).
[Crossref]

Jackson, J. M.

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Jacquinot, P.

P. Jacquinot, “How the search for a throughput advantage led to Fourier transform spectroscopy,” Infrared Phys. 24, 99–101 (1984).
[Crossref]

P. Jacquinot, “The luminosity of spectrometers with Prisms, Grating, or Fabry-Perot Etalons,” J. Opt. Soc. Am. 44(10), 761–765 (1954).
[Crossref]

Jalali, B.

Kauppinen, J.

Khalil, D. A.

Kleinle, S.

Krantz, M.

Kunkel, W. M.

Lacan, A.

Laforie, P.

Lastri, C.

Leger, J. R.

Leitel, R.

Li, P.

Liang, J.

Liang, Z.

Lindsay, S. M.

S. M. Lindsay, M. W. Anderson, and J. R. Sandercock, “Construction and alignment of a high performance multipass vernier tandem Fabry-Perot interferometer,” Rev. Sci. Instrum. 52(10), 1478–1486 (1981).
[Crossref]

Liu, L.

Q. Yang, L. Liu, and P. Lv, “Principle of a two-output-difference interferometer for removing the most important interference distortions,” J. Mod. Opt. 65(19), 2234–2242 (2018).
[Crossref]

Lv, P.

Q. Yang, L. Liu, and P. Lv, “Principle of a two-output-difference interferometer for removing the most important interference distortions,” J. Mod. Opt. 65(19), 2234–2242 (2018).
[Crossref]

Marcoionni, P.

McCormac, F. G.

Metz, P.

Miche, P.

Möller, K. D.

Nardino, V.

Naylor, D. A.

Nyquist, H.

H. Nyquist, “Certain factors affecting telegraph speed,” Bell Syst. Tech. J. 3(2), 324–346 (1924).
[Crossref]

Parker, N. M.

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

Patrick, T. J.

Pike, C. D.

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

Pippi, I.

Pisani, M.

Rosak, A.

Roucayrol, L.

Sabry, Y. M.

I. S. El-Sayed, Y. M. Sabry, W. E. ElZeiny, N. Badra, and D. A. Khalil, “Transformation algorithm and analysis of the Fourier transform spectrometer based on cascaded Fabry-Perot interferometers,” Appl. Opt. 57(25), 7225–7231 (2018).
[Crossref] [PubMed]

Y. M. Eltagoury, Y. M. Sabry, and D. A. Khalil, “Novel Fourier transform infrared spectrometer architecture based on cascaded Fabry-Perot interferometers,” Proc. SPIE 9760, 97600L (2016).
[Crossref]

Salaün, Y.

Sandercock, J. R.

S. M. Lindsay, M. W. Anderson, and J. R. Sandercock, “Construction and alignment of a high performance multipass vernier tandem Fabry-Perot interferometer,” Rev. Sci. Instrum. 52(10), 1478–1486 (1981).
[Crossref]

Savage, M. L.

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Shannon, C. E.

C. E. Shannon, “Communication in the presence of noise,” Proc. IEEE 37(1), 10–21 (1949).

Shen, Y.

Sidey, R. C.

Skinner, W. R.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high-resolution doppler imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98(D6), 10713–10723 (1993).
[Crossref]

Snell, H. E.

Stacey, G. J.

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Swain, M. R.

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Swinyard, B.

Swinyard, B. M.

Taylor, K.

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

Towlson, W. A.

Wang, C.

Xue, H.

Yang, Q.

Yu, L.

Zheng, Y.

Zucco, M.

Appl. Opt. (17)

L. Yu, H. Xue, and J. X. Chen, “Dual concave grating anastigmatic spectrometer with high spectral resolution for remote sensing,” Appl. Opt. 57(33), 9789–9796 (2018).
[Crossref] [PubMed]

J. Kauppinen and V. M. Horneman, “Large aperture cube corner interferometer with a resolution of 0.001 cm(-1).,” Appl. Opt. 30(18), 2575–2578 (1991).
[Crossref] [PubMed]

G. Durry and G. Guelachvili, “High-information time-resolved step-scan Fourier interferometer,” Appl. Opt. 34(12), 1971–1981 (1995).
[Crossref] [PubMed]

Q. Yang, “Moving corner-cube mirror interferometer and reflection characteristic of corner-cube mirror,” Appl. Opt. 49(21), 4088–4095 (2010).
[Crossref] [PubMed]

P. B. Hays and H. E. Snell, “Multiplex Fabry-Perot interferometer,” Appl. Opt. 30(22), 3108–3113 (1991).
[Crossref] [PubMed]

G. Hernandez and K. C. Clark, “Electro-optic high-resolution Fabry-Perot spectrometer,” Appl. Opt. 33(10), 1989–1992 (1994).
[Crossref] [PubMed]

Q. Yang, “Compact high-resolution Littrow conical diffraction spectrometer,” Appl. Opt. 55(18), 4801–4807 (2016).
[Crossref] [PubMed]

T. A. Al-Saeed and D. A. Khalil, “Fourier transform spectrometer based on Fabry-Perot interferometer,” Appl. Opt. 55(20), 5322–5331 (2016).
[Crossref] [PubMed]

P. Metz, J. Adam, M. Gerken, and B. Jalali, “Compact, transmissive two-dimensional spatial disperser design with application in simultaneous endoscopic imaging,” Appl. Opt. 53(3), 376–382 (2014).
[Crossref] [PubMed]

G. Hernandez, “Afocal coupled etalons. DEM: a high-resolution doubleetalon modulator spectrometer,” Appl. Opt. 26(22), 4857–4869 (1987).
[Crossref] [PubMed]

G. Hernandez and F. G. McCormac, “Afocal coupled etalons: experimental confirmation of a high-resolution double-etalon modulator spectrometer,” Appl. Opt. 27(16), 3492–3495 (1988).
[Crossref] [PubMed]

I. S. El-Sayed, Y. M. Sabry, W. E. ElZeiny, N. Badra, and D. A. Khalil, “Transformation algorithm and analysis of the Fourier transform spectrometer based on cascaded Fabry-Perot interferometers,” Appl. Opt. 57(25), 7225–7231 (2018).
[Crossref] [PubMed]

J. M. Helbert, P. Laforie, and P. Miche, “Conditions of pressure scanning of a Fabry-Perot interferometer over a wide spectrum range,” Appl. Opt. 16(8), 2119–2126 (1977).
[Crossref] [PubMed]

B. Swinyard and M. Ferlet, “Cascaded interferometric imaging spectrometer,” Appl. Opt. 46(25), 6381–6390 (2007).
[Crossref] [PubMed]

K. D. Möller, “Wave-front-dividing array interferometers without moving parts for real-time spectroscopy from the IR to the UV,” Appl. Opt. 34(9), 1493–1501 (1995).
[Crossref] [PubMed]

G. R. Davis, I. Furniss, W. A. Towlson, P. A. R. Ade, R. J. Emery, W. M. Glencross, D. A. Naylor, T. J. Patrick, R. C. Sidey, and B. M. Swinyard, “Design and performance of cryogenic, scanning Fabry-Perot interferometers for the Long-Wavelength Spectrometer on the Infrared Space Observatory,” Appl. Opt. 34(1), 92–107 (1995).
[Crossref] [PubMed]

A. Barducci, D. Guzzi, C. Lastri, V. Nardino, P. Marcoionni, and I. Pippi, “Radiometric and SNR properties of multiplex dispersive spectrometry,” Appl. Opt. 49(28), 5366–5373 (2010).
[Crossref] [PubMed]

Bell Syst. Tech. J. (1)

H. Nyquist, “Certain factors affecting telegraph speed,” Bell Syst. Tech. J. 3(2), 324–346 (1924).
[Crossref]

Infrared Phys. (2)

P. Jacquinot, “How the search for a throughput advantage led to Fourier transform spectroscopy,” Infrared Phys. 24, 99–101 (1984).
[Crossref]

P. B. Fellgett, “Three concepts make a million points,” Infrared Phys. 24(2–3), 95–98 (1984).
[Crossref]

J. Geophys. Res. (1)

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high-resolution doppler imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98(D6), 10713–10723 (1993).
[Crossref]

J. Mod. Opt. (1)

Q. Yang, L. Liu, and P. Lv, “Principle of a two-output-difference interferometer for removing the most important interference distortions,” J. Mod. Opt. 65(19), 2234–2242 (2018).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt. A, Pure Appl. Opt. 2(6), 519–528 (2000).
[Crossref]

J. Opt. Soc. Am. (1)

Mon. Not. R. Astron. Soc. (1)

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

Notes Rec. R. Soc. (1)

P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc. 60(1), 91–93 (2006).
[Crossref]

Opt. Express (10)

A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Theoretical aspects of Fourier Transform Spectrometry and common path triangular interferometers,” Opt. Express 18(11), 11622–11649 (2010).
[Crossref] [PubMed]

W. Bao, Z. Ding, P. Li, Z. Chen, Y. Shen, and C. Wang, “Orthogonal dispersive spectral-domain optical coherence tomography,” Opt. Express 22(8), 10081–10090 (2014).
[Crossref] [PubMed]

W. Bao, Y. Shen, T. Chen, P. Li, and Z. Ding, “High-speed high-precision and ultralong-range complex spectral domain dimensional metrology,” Opt. Express 23(9), 11013–11022 (2015).
[Crossref] [PubMed]

A. Lacan, F. M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express 18(8), 8311–8331 (2010).
[Crossref] [PubMed]

Y. Zheng, J. Liang, and Z. Liang, “Design and fabrication of step mirrors used in space-modulated Fourier transform infrared spectrometer,” Opt. Express 21(1), 884–892 (2013).
[Crossref] [PubMed]

N. Danz, B. Höfer, E. Förster, T. Flügel-Paul, T. Harzendorf, P. Dannberg, R. Leitel, S. Kleinle, and R. Brunner, “Miniature integrated micro-spectrometer array for snap shot multispectral sensing,” Opt. Express 27(4), 5719–5728 (2019).
[Crossref] [PubMed]

P. Metz, H. Block, C. Behnke, M. Krantz, M. Gerken, and J. Adam, “Tunable elastomer-based virtually imaged phased array,” Opt. Express 21(3), 3324–3335 (2013).
[Crossref] [PubMed]

W. M. Kunkel and J. R. Leger, “Gain dependent self-phasing in a two-core coherently combined fiber laser,” Opt. Express 26(8), 9373–9388 (2018).
[Crossref] [PubMed]

M. Pisani and M. Zucco, “Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry-Perot interferometer,” Opt. Express 17(10), 8319–8331 (2009).
[Crossref] [PubMed]

M. Zucco, M. Pisani, V. Caricato, and A. Egidi, “A hyperspectral imager based on a Fabry-Perot interferometer with dielectric mirrors,” Opt. Express 22(2), 1824–1834 (2014).
[Crossref] [PubMed]

Proc. IEEE (1)

C. E. Shannon, “Communication in the presence of noise,” Proc. IEEE 37(1), 10–21 (1949).

Proc. SPIE (2)

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Y. M. Eltagoury, Y. M. Sabry, and D. A. Khalil, “Novel Fourier transform infrared spectrometer architecture based on cascaded Fabry-Perot interferometers,” Proc. SPIE 9760, 97600L (2016).
[Crossref]

Rev. Sci. Instrum. (1)

S. M. Lindsay, M. W. Anderson, and J. R. Sandercock, “Construction and alignment of a high performance multipass vernier tandem Fabry-Perot interferometer,” Rev. Sci. Instrum. 52(10), 1478–1486 (1981).
[Crossref]

Other (5)

C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

W. H. Steel, Interferometry (Cambridge University, 1983).

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 2007).

G. Hernandez, Fabry-Perot Interferometers (Cambridge University, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Optics of the UHRIS combining a FPI and a static SMI: (a) Basic optical layout and (b) Equivalent perspective view.
Fig. 2
Fig. 2 Resolving power of the UHRIS for the wavelength range from 0.8 µm to 2 µm when d 0 =2 cm and N=50.
Fig. 3
Fig. 3 Three interferograms produced by the SMI of the UHRIS with a spectral resolution 0.005 cm−1.
Fig. 4
Fig. 4 Spectrum obtained from Fourier transform of the three interferograms in Fig. 3.
Fig. 5
Fig. 5 Three interferograms produced by the SMI of the UHRIS with a spectral resolution 0.004 cm−1 (the second example).
Fig. 6
Fig. 6 Spectrum obtained from Fourier transform of the three interferograms in Fig. 5.
Fig. 7
Fig. 7 Resolving power of the UHRIS for the wavelength range from 0.8 µm to 2.5 µm when d 0 =2.5 cm and N=50 (the second example).

Tables (6)

Tables Icon

Table 1 Comparisons of the UHRIS with two other types of spectrometers with resolving power higher than 1,000,000 in near-infrared, short-wave infrared or mid-wave infrared region

Tables Icon

Table 2 Some key parameters of the UHRIS for the first example

Tables Icon

Table 3 Main parameters of the SMI in the UHRIS for the first example

Tables Icon

Table 4 Some parameters of both the UHRIS and a standard Michelson interferometer for the same spectral resolution 0.005 cm−1

Tables Icon

Table 5 Some key parameters of the UHRIS for the second example

Tables Icon

Table 6 Some parameters of both the UHRIS and a standard Michelson interferometer for the same spectral resolution 0.004 cm−1

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

2d=mλ.
FS R σ = 1 2d .
FS R λ = λ 2 2d .
T FPI ( σ,d )= ( 1R ) 2 1+ R 2 2Rcos( 4πσd ) .
F r = π R 1R .
I UHRIS ( σ,d,x )= 0 B( σ ) T FPI ( σ,d )[ 1+cos( 2πσx ) ]dσ = 0 ( 1R ) 2 B( σ )[ 1+cos( 2πσx ) ] 1+ R 2 2Rcos( 4πσd ) dσ .
δ σ SMI = 1 2P d 0 .
δ σ UHRIS = FS R σ( 0 ) N = 1 2N d 0 .
δ σ UHRIS = P N δ σ SMI .
R UHRIS = λ λ λ FS R λ /N =mN= 2Nd λ .
Δ d k = k d 0 mN+k = k d 0 2 d 0 σ 0 N+k .
δ σ SMI = 1 2 x max .
x max =P d 0 .
χ< 1 2Δσ .
χ=2× h 1 .
Δσ 1 4 h 1 .
K= s 1 × s 2 .
K= P d 0 2 h 1 .

Metrics