Abstract

Recent progress in designing optimized microstructured optical fiber spreads an application scenario of optical fiber sensing. Here, we investigate the bending measurement based on a specially designed hollow core photonic crystal fiber (HC-PCF). Numerical simulation indicates that the bending sensitivity is mainly determined by the diameter of the hollow core and also depends on the coupled modes. Experimentally, a direction-independent bending sensor is fabricated by sandwiching a segment of specially designed HC-PCF into two segments of single mode fibers. The bending sensitivity of our device is improved 10 times by increasing the diameter of the hollow core. Bending measurement is validated at two orthogonal planes. The maximum sensitivity up to 2.8 nm/deg is obtained at 14° bending angle. Additionally, a low thermal sensitivity of 2.5 pm/°C is observed from 18°C to 1000°C. The sensor is robust, easy to fabricate and cost effective, which is promising in the field of small-angle bending measurement under a large temperature range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Numerical and experimental investigations of pressure-driven gas flow in hollow-core photonic crystal fibers

Billah M. Masum, Saiied M. Aminossadati, Mehmet S. Kizil, and Christopher R. Leonardi
Appl. Opt. 58(4) 963-972 (2019)

Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing

Zhilong Ou, Yongqin Yu, Peiguang Yan, Jishun Wang, Quandong Huang, Xue Chen, Chenlin Du, and Huifeng Wei
Opt. Express 21(20) 23812-23821 (2013)

Low-temperature crosstalk and surrounding refractive index insensitive vector bending sensor based on hole-assistant dual-core fiber

Jing Yang, Chunying Guan, Jiaming Zhang, Mingjie Wang, Min Yang, Zheng Zhu, Pengfei Wang, Jun Yang, and Libo Yuan
Appl. Opt. 58(24) 6597-6603 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, F. Ai, Q. Sun, T. Liu, H. Li, Z. Yan, and D. Liu, “Diaphragm-based optical fiber sensor array for multipoint acoustic detection,” Opt. Express 26(19), 25293–25304 (2018).
    [Crossref]
  2. N. M. Y. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” Sens. Actuators, B 5(2), 347–352 (2018).
    [Crossref]
  3. K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
    [Crossref]
  4. N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators, B 223, 195–201 (2016).
    [Crossref]
  5. B. Shuai, L. Xia, and D. Liu, “Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor,” Opt. Express 20(23), 25858–25866 (2012).
    [Crossref]
  6. Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
    [Crossref]
  7. G. Kim, T. Cho, K. Hwang, K. Lee, K. S. Lee, Y.-G. Han, and S. B. Lee, “Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer,” Opt. Express 17(4), 2481–2486 (2009).
    [Crossref]
  8. S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach–Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett. 37(21), 4480–4482 (2012).
    [Crossref]
  9. W. Cui, J. Si, T. Chen, and X. Hou, “Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper,” Opt. Express 23(9), 11031–11036 (2015).
    [Crossref]
  10. K. Ni, T. Li, L. Hu, W. Qian, Q. Zhang, and S. Jin, “Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer,” Opt. Commun. 285(24), 5148–5150 (2012).
    [Crossref]
  11. Y. Wang, D. Richardson, G. Brambilla, X. Feng, M. Petrovich, M. Ding, and Z. Song, “Intensity measurement bend sensors based on periodically tapered soft glass fibers,” Opt. Lett. 36(4), 558–560 (2011).
    [Crossref]
  12. L. C. Bobb, P. Shankar, and H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8(7), 1084–1090 (1990).
    [Crossref]
  13. S. Dass and R. Jha, “Microfiber-Wrapped Bi-Conical-Tapered SMF for Curvature Sensing,” IEEE Sens. J. 16(10), 3649–3652 (2016).
    [Crossref]
  14. J. N. Dash, S. Dass, and R. Jha, “Photonic crystal fiber microcavity based bend and temperature sensor using micro fiber,” Sens. Actuators, A 244, 24–29 (2016).
    [Crossref]
  15. G. Flockhart, W. MacPherson, J. Barton, J. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
    [Crossref]
  16. W. MacPherson, M. Gander, R. McBride, J. Jones, P. Blanchard, J. Burnett, A. Greenaway, B. Mangan, T. Birks, and J. Knight, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
    [Crossref]
  17. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20(3), 2967–2973 (2012).
    [Crossref]
  18. P. Saffari, T. Allsop, A. Adebayo, D. Webb, R. Haynes, and M. M. Roth, “Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures,” Opt. Lett. 39(12), 3508–3511 (2014).
    [Crossref]
  19. J. Kong, X. Ouyang, A. Zhou, H. Yu, and L. Yuan, “Pure Directional Bending Measurement With a Fiber Bragg Grating at the Connection Joint of Eccentric-Core and Single-Mode Fibers,” J. Lightwave Technol. 34(14), 3288–3292 (2016).
    [Crossref]
  20. J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
    [Crossref]
  21. H. J. Patrick, “Self-aligning bipolar bend transducer based on long period grating written in eccentric core fibre,” Electron. Lett. 36(21), 1763–1764 (2000).
    [Crossref]
  22. X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
    [Crossref]
  23. X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
    [Crossref]
  24. S. Liu, N. Liu, M. Hou, J. Guo, Z. Li, and P. Lu, “Direction-independent fiber inclinometer based on simplified hollow core photonic crystal fiber,” Opt. Lett. 38(4), 449–451 (2013).
    [Crossref]
  25. J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric vector bending sensor,” Opt. Lett. 40(13), 3113–3116 (2015).
    [Crossref]
  26. H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
    [Crossref]
  27. A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depre, “Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring,” IEEE Sens. J. 8(7), 1215–1222 (2008).
    [Crossref]
  28. C. Zhan, Y. Zhu, S. Yin, and P. Ruffin, “Multi-parameter harsh environment sensing using asymmetric Bragg gratings inscribed by IR femtosecond irradiation,” Opt. Fiber Technol. 13(2), 98–107 (2007).
    [Crossref]
  29. R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
    [Crossref]
  30. J. Su, X. Dong, and C. Lu, “Characteristics of Few Mode Fiber Under Bending,” IEEE J. Sel. Top. Quantum Electron. 22(2), 139–145 (2016).
    [Crossref]
  31. M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
    [Crossref]

2018 (4)

J. Wang, F. Ai, Q. Sun, T. Liu, H. Li, Z. Yan, and D. Liu, “Diaphragm-based optical fiber sensor array for multipoint acoustic detection,” Opt. Express 26(19), 25293–25304 (2018).
[Crossref]

N. M. Y. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” Sens. Actuators, B 5(2), 347–352 (2018).
[Crossref]

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref]

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

2017 (1)

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

2016 (7)

J. Su, X. Dong, and C. Lu, “Characteristics of Few Mode Fiber Under Bending,” IEEE J. Sel. Top. Quantum Electron. 22(2), 139–145 (2016).
[Crossref]

J. Kong, X. Ouyang, A. Zhou, H. Yu, and L. Yuan, “Pure Directional Bending Measurement With a Fiber Bragg Grating at the Connection Joint of Eccentric-Core and Single-Mode Fibers,” J. Lightwave Technol. 34(14), 3288–3292 (2016).
[Crossref]

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

S. Dass and R. Jha, “Microfiber-Wrapped Bi-Conical-Tapered SMF for Curvature Sensing,” IEEE Sens. J. 16(10), 3649–3652 (2016).
[Crossref]

J. N. Dash, S. Dass, and R. Jha, “Photonic crystal fiber microcavity based bend and temperature sensor using micro fiber,” Sens. Actuators, A 244, 24–29 (2016).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators, B 223, 195–201 (2016).
[Crossref]

2015 (2)

2014 (1)

2013 (1)

2012 (4)

2011 (1)

2010 (2)

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[Crossref]

2009 (1)

2008 (1)

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depre, “Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring,” IEEE Sens. J. 8(7), 1215–1222 (2008).
[Crossref]

2007 (2)

C. Zhan, Y. Zhu, S. Yin, and P. Ruffin, “Multi-parameter harsh environment sensing using asymmetric Bragg gratings inscribed by IR femtosecond irradiation,” Opt. Fiber Technol. 13(2), 98–107 (2007).
[Crossref]

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

2003 (1)

2001 (1)

W. MacPherson, M. Gander, R. McBride, J. Jones, P. Blanchard, J. Burnett, A. Greenaway, B. Mangan, T. Birks, and J. Knight, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]

2000 (1)

H. J. Patrick, “Self-aligning bipolar bend transducer based on long period grating written in eccentric core fibre,” Electron. Lett. 36(21), 1763–1764 (2000).
[Crossref]

1990 (1)

L. C. Bobb, P. Shankar, and H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8(7), 1084–1090 (1990).
[Crossref]

Adebayo, A.

Ai, F.

Allsop, T.

Auguste, J.-L.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators, B 223, 195–201 (2016).
[Crossref]

Barton, J.

Bennion, I.

Birks, T.

W. MacPherson, M. Gander, R. McBride, J. Jones, P. Blanchard, J. Burnett, A. Greenaway, B. Mangan, T. Birks, and J. Knight, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]

Blanchard, P.

W. MacPherson, M. Gander, R. McBride, J. Jones, P. Blanchard, J. Burnett, A. Greenaway, B. Mangan, T. Birks, and J. Knight, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]

Bobb, L. C.

L. C. Bobb, P. Shankar, and H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8(7), 1084–1090 (1990).
[Crossref]

Brambilla, G.

Burnett, J.

W. MacPherson, M. Gander, R. McBride, J. Jones, P. Blanchard, J. Burnett, A. Greenaway, B. Mangan, T. Birks, and J. Knight, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]

Chen, T.

Chen, X.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[Crossref]

Cheng, C.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Cho, T.

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Cui, W.

Dash, J. N.

J. N. Dash, S. Dass, and R. Jha, “Photonic crystal fiber microcavity based bend and temperature sensor using micro fiber,” Sens. Actuators, A 244, 24–29 (2016).
[Crossref]

Dass, S.

J. N. Dash, S. Dass, and R. Jha, “Photonic crystal fiber microcavity based bend and temperature sensor using micro fiber,” Sens. Actuators, A 244, 24–29 (2016).
[Crossref]

S. Dass and R. Jha, “Microfiber-Wrapped Bi-Conical-Tapered SMF for Curvature Sensing,” IEEE Sens. J. 16(10), 3649–3652 (2016).
[Crossref]

Depre, A.

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depre, “Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring,” IEEE Sens. J. 8(7), 1215–1222 (2008).
[Crossref]

Ding, M.

Dinh, Q. X.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators, B 223, 195–201 (2016).
[Crossref]

Dinh, X. Q.

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Dong, X.

J. Su, X. Dong, and C. Lu, “Characteristics of Few Mode Fiber Under Bending,” IEEE J. Sel. Top. Quantum Electron. 22(2), 139–145 (2016).
[Crossref]

Feng, X.

Flockhart, G.

Frosz, M. H.

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

Fu, S.

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Gander, M.

W. MacPherson, M. Gander, R. McBride, J. Jones, P. Blanchard, J. Burnett, A. Greenaway, B. Mangan, T. Birks, and J. Knight, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]

Gao, S.

Geng, P.

Gong, T.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators, B 223, 195–201 (2016).
[Crossref]

Greenaway, A.

W. MacPherson, M. Gander, R. McBride, J. Jones, P. Blanchard, J. Burnett, A. Greenaway, B. Mangan, T. Birks, and J. Knight, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]

Grillet, A.

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depre, “Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring,” IEEE Sens. J. 8(7), 1215–1222 (2008).
[Crossref]

Günendi, M. C.

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

Guo, J.

Han, Y.-G.

Haynes, R.

Hou, M.

Hou, X.

Hu, D. J. J.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators, B 223, 195–201 (2016).
[Crossref]

Hu, L.

K. Ni, T. Li, L. Hu, W. Qian, Q. Zhang, and S. Jin, “Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer,” Opt. Commun. 285(24), 5148–5150 (2012).
[Crossref]

Humbert, G.

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators, B 223, 195–201 (2016).
[Crossref]

Hwang, K.

Jha, R.

S. Dass and R. Jha, “Microfiber-Wrapped Bi-Conical-Tapered SMF for Curvature Sensing,” IEEE Sens. J. 16(10), 3649–3652 (2016).
[Crossref]

J. N. Dash, S. Dass, and R. Jha, “Photonic crystal fiber microcavity based bend and temperature sensor using micro fiber,” Sens. Actuators, A 244, 24–29 (2016).
[Crossref]

Jin, S.

K. Ni, T. Li, L. Hu, W. Qian, Q. Zhang, and S. Jin, “Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer,” Opt. Commun. 285(24), 5148–5150 (2012).
[Crossref]

Jones, J.

G. Flockhart, W. MacPherson, J. Barton, J. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref]

W. MacPherson, M. Gander, R. McBride, J. Jones, P. Blanchard, J. Burnett, A. Greenaway, B. Mangan, T. Birks, and J. Knight, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]

Kalli, K.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[Crossref]

Keiser, G.

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Kim, G.

Kinet, D.

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depre, “Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring,” IEEE Sens. J. 8(7), 1215–1222 (2008).
[Crossref]

Knight, J.

W. MacPherson, M. Gander, R. McBride, J. Jones, P. Blanchard, J. Burnett, A. Greenaway, B. Mangan, T. Birks, and J. Knight, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]

Kong, J.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

J. Kong, X. Ouyang, A. Zhou, H. Yu, and L. Yuan, “Pure Directional Bending Measurement With a Fiber Bragg Grating at the Connection Joint of Eccentric-Core and Single-Mode Fibers,” J. Lightwave Technol. 34(14), 3288–3292 (2016).
[Crossref]

Krebber, K.

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depre, “Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring,” IEEE Sens. J. 8(7), 1215–1222 (2008).
[Crossref]

Krumboltz, H. D.

L. C. Bobb, P. Shankar, and H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8(7), 1084–1090 (1990).
[Crossref]

Lee, K.

Lee, K. S.

Lee, S. B.

Li, H.

Li, K.

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref]

N. M. Y. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” Sens. Actuators, B 5(2), 347–352 (2018).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators, B 223, 195–201 (2016).
[Crossref]

Li, T.

K. Ni, T. Li, L. Hu, W. Qian, Q. Zhang, and S. Jin, “Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer,” Opt. Commun. 285(24), 5148–5150 (2012).
[Crossref]

Li, Z.

Liu, D.

Liu, G.

Liu, N.

Liu, S.

Liu, T.

Lu, C.

J. Su, X. Dong, and C. Lu, “Characteristics of Few Mode Fiber Under Bending,” IEEE J. Sel. Top. Quantum Electron. 22(2), 139–145 (2016).
[Crossref]

Lu, P.

Luan, F.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators, B 223, 195–201 (2016).
[Crossref]

MacPherson, W.

G. Flockhart, W. MacPherson, J. Barton, J. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref]

W. MacPherson, M. Gander, R. McBride, J. Jones, P. Blanchard, J. Burnett, A. Greenaway, B. Mangan, T. Birks, and J. Knight, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]

Mangan, B.

W. MacPherson, M. Gander, R. McBride, J. Jones, P. Blanchard, J. Burnett, A. Greenaway, B. Mangan, T. Birks, and J. Knight, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]

McBride, R.

W. MacPherson, M. Gander, R. McBride, J. Jones, P. Blanchard, J. Burnett, A. Greenaway, B. Mangan, T. Birks, and J. Knight, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]

Minkovich, V. P.

Moore, J. P.

Ni, K.

K. Ni, T. Li, L. Hu, W. Qian, Q. Zhang, and S. Jin, “Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer,” Opt. Commun. 285(24), 5148–5150 (2012).
[Crossref]

Olivo, M.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators, B 223, 195–201 (2016).
[Crossref]

Ouyang, X.

Patrick, H. J.

H. J. Patrick, “Self-aligning bipolar bend transducer based on long period grating written in eccentric core fibre,” Electron. Lett. 36(21), 1763–1764 (2000).
[Crossref]

Peng, G. D.

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[Crossref]

Peng, G.-D.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Petrovich, M.

Ping Shum, P.

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Pirotte, F.

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depre, “Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring,” IEEE Sens. J. 8(7), 1215–1222 (2008).
[Crossref]

Qian, W.

K. Ni, T. Li, L. Hu, W. Qian, Q. Zhang, and S. Jin, “Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer,” Opt. Commun. 285(24), 5148–5150 (2012).
[Crossref]

Quyen Dinh, X.

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Richardson, D.

Rogge, M. D.

Roth, M. M.

Roth, P.

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

Ruffin, P.

C. Zhan, Y. Zhu, S. Yin, and P. Ruffin, “Multi-parameter harsh environment sensing using asymmetric Bragg gratings inscribed by IR femtosecond irradiation,” Opt. Fiber Technol. 13(2), 98–107 (2007).
[Crossref]

Russell, P. S. J.

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

Saffari, P.

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Schukar, M.

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depre, “Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring,” IEEE Sens. J. 8(7), 1215–1222 (2008).
[Crossref]

Shankar, P.

L. C. Bobb, P. Shankar, and H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8(7), 1084–1090 (1990).
[Crossref]

Shuai, B.

Shum, P.

N. M. Y. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” Sens. Actuators, B 5(2), 347–352 (2018).
[Crossref]

Shum, P. P.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators, B 223, 195–201 (2016).
[Crossref]

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Si, J.

Song, Z.

Su, J.

J. Su, X. Dong, and C. Lu, “Characteristics of Few Mode Fiber Under Bending,” IEEE J. Sel. Top. Quantum Electron. 22(2), 139–145 (2016).
[Crossref]

Sun, Q.

Tang, M.

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Tong, W.

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Villatoro, J.

Wang, J.

Wang, R.

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Wang, Y.

Wang, Z.

N. M. Y. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” Sens. Actuators, B 5(2), 347–352 (2018).
[Crossref]

N. M. Y. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” Sens. Actuators, B 5(2), 347–352 (2018).
[Crossref]

Webb, D.

Webb, D. J.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[Crossref]

Wei, L.

N. M. Y. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” Sens. Actuators, B 5(2), 347–352 (2018).
[Crossref]

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators, B 223, 195–201 (2016).
[Crossref]

Witt, J.

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depre, “Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring,” IEEE Sens. J. 8(7), 1215–1222 (2008).
[Crossref]

Wu, T.

N. M. Y. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” Sens. Actuators, B 5(2), 347–352 (2018).
[Crossref]

Wu, Z.

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators, B 223, 195–201 (2016).
[Crossref]

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Xia, L.

Xu, Z.

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Xue, X.

Yan, Z.

Yang, J.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Yin, S.

C. Zhan, Y. Zhu, S. Yin, and P. Ruffin, “Multi-parameter harsh environment sensing using asymmetric Bragg gratings inscribed by IR femtosecond irradiation,” Opt. Fiber Technol. 13(2), 98–107 (2007).
[Crossref]

Yu, H.

Yuan, L.

J. Kong, X. Ouyang, A. Zhou, H. Yu, and L. Yuan, “Pure Directional Bending Measurement With a Fiber Bragg Grating at the Connection Joint of Eccentric-Core and Single-Mode Fibers,” J. Lightwave Technol. 34(14), 3288–3292 (2016).
[Crossref]

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Zeng, S.

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Zhan, C.

C. Zhan, Y. Zhu, S. Yin, and P. Ruffin, “Multi-parameter harsh environment sensing using asymmetric Bragg gratings inscribed by IR femtosecond irradiation,” Opt. Fiber Technol. 13(2), 98–107 (2007).
[Crossref]

Zhang, C.

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[Crossref]

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Zhang, H.

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Zhang, J.

N. M. Y. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” Sens. Actuators, B 5(2), 347–352 (2018).
[Crossref]

Zhang, L.

Zhang, N.

N. M. Y. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” Sens. Actuators, B 5(2), 347–352 (2018).
[Crossref]

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators, B 223, 195–201 (2016).
[Crossref]

Zhang, N. M. Y.

N. M. Y. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” Sens. Actuators, B 5(2), 347–352 (2018).
[Crossref]

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref]

Zhang, Q.

K. Ni, T. Li, L. Hu, W. Qian, Q. Zhang, and S. Jin, “Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer,” Opt. Commun. 285(24), 5148–5150 (2012).
[Crossref]

Zhang, S.

Zhang, T.

N. M. Y. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” Sens. Actuators, B 5(2), 347–352 (2018).
[Crossref]

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref]

Zhang, W.

Zheng, Y.

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Zhou, A.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

J. Kong, X. Ouyang, A. Zhou, H. Yu, and L. Yuan, “Pure Directional Bending Measurement With a Fiber Bragg Grating at the Connection Joint of Eccentric-Core and Single-Mode Fibers,” J. Lightwave Technol. 34(14), 3288–3292 (2016).
[Crossref]

Zhu, Y.

C. Zhan, Y. Zhu, S. Yin, and P. Ruffin, “Multi-parameter harsh environment sensing using asymmetric Bragg gratings inscribed by IR femtosecond irradiation,” Opt. Fiber Technol. 13(2), 98–107 (2007).
[Crossref]

Zubia, J.

Electron. Lett. (1)

H. J. Patrick, “Self-aligning bipolar bend transducer based on long period grating written in eccentric core fibre,” Electron. Lett. 36(21), 1763–1764 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Su, X. Dong, and C. Lu, “Characteristics of Few Mode Fiber Under Bending,” IEEE J. Sel. Top. Quantum Electron. 22(2), 139–145 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

IEEE Sens. J. (2)

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depre, “Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring,” IEEE Sens. J. 8(7), 1215–1222 (2008).
[Crossref]

S. Dass and R. Jha, “Microfiber-Wrapped Bi-Conical-Tapered SMF for Curvature Sensing,” IEEE Sens. J. 16(10), 3649–3652 (2016).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Meas. Sci. Technol. (1)

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[Crossref]

Opt. Commun. (2)

K. Ni, T. Li, L. Hu, W. Qian, Q. Zhang, and S. Jin, “Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer,” Opt. Commun. 285(24), 5148–5150 (2012).
[Crossref]

W. MacPherson, M. Gander, R. McBride, J. Jones, P. Blanchard, J. Burnett, A. Greenaway, B. Mangan, T. Birks, and J. Knight, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

C. Zhan, Y. Zhu, S. Yin, and P. Ruffin, “Multi-parameter harsh environment sensing using asymmetric Bragg gratings inscribed by IR femtosecond irradiation,” Opt. Fiber Technol. 13(2), 98–107 (2007).
[Crossref]

Opt. Lett. (7)

Opto-Electron. Adv. (1)

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Photonics Res. (1)

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

Sens. Actuators, A (1)

J. N. Dash, S. Dass, and R. Jha, “Photonic crystal fiber microcavity based bend and temperature sensor using micro fiber,” Sens. Actuators, A 244, 24–29 (2016).
[Crossref]

Sens. Actuators, B (2)

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators, B 223, 195–201 (2016).
[Crossref]

N. M. Y. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” Sens. Actuators, B 5(2), 347–352 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) SEM image of the cross section of the HC-PCF; (b) schematic diagram of the HC-PCF; simulated mode distributions of (c) HE11 mode, (d) TE01 mode and (e) HE12 mode at the wavelength of 1550 nm; (f) simulated modal dispersion curves for HE11 mode, TE01 mode and HE12 mode.
Fig. 2.
Fig. 2. (a) Schematic diagram of the bending sensor; (b) schematic diagram of the simulation model; (c) schematic diagram of the relationship between the bending radius R and the bending angle θ.
Fig. 3.
Fig. 3. Simulated spectrum of (a) HE11-TE01 modes of 35-µm-diameter HC-PCF, (b) HE11-TE01 modes of 50-µm-diameter HC-PCF and (c) HE11-HE12 modes of 50-µm-diameter HC-PCF; (d) wavelength shift of three kinds of interferences; (e) sensitivity of three kinds of interferences.
Fig. 4.
Fig. 4. (a) Transmission spectra of the bending sensor with a 1.0 cm, 2.5 cm and 5.0 cm long HC-PCF, respectively; mode field distribution with 5.0 cm long HC-PCF at (b) 1541 nm and (c) 1556 nm, respectively.
Fig. 5.
Fig. 5. Schematic diagram of the experimental setup; (Inset a) schematic structure of the bending sensor; (Inset b) schematic illustration of the bending angle measurement.
Fig. 6.
Fig. 6. Spectral evolution with bending angle increasing from 0° to 10° at horizontal plane.
Fig. 7.
Fig. 7. (a) Bending angle response at two orthogonal planes; (b) linear sensitivity variations from 0° to 14° at two orthogonal planes; (c) reversibility measurement of the bending sensor; (d) linear sensitivity variations for reversibility measurement.
Fig. 8.
Fig. 8. Thermal responses of dip 1 (blue) and dip 2 (green) with a 5.0 cm length HC-PCF.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 cos ( Δ φ + φ 0 ) ,
Δ φ = 2 π Δ n e f f L / λ ,
λ = 2 π Δ n e f f L / ( ( 2 m + 1 ) π φ 0 ) .
d λ d θ = λ 0 Δ n 0 d ( Δ n ) d θ ,
R = L / t a n ( θ / 2 ) .
n ( x , y ) = ( 1 + x / R e f f ) n ( x , y ) ,
Δ n e f f = λ 2 / ( Δ λ L ) ,

Metrics