Abstract

To extend the metamaterial applications on simultaneously regulating multiple fields with transformation optics, we propose a class of manipulative cell here to manipulate thermal and DC fields simultaneously in non-conformal angular schemes. Significant behaviors of thermal cloaking, electrical concentration, and related switched functions are numerically demonstrated with appropriate media. The findings not only present an efficient method for simultaneously manipulating various energy, but also break the limitation of structural profiles in the designs of bi-functional meta-device. Moreover, it may also provide references for efficient energy manipulation and management in conventional energy techniques.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields

Chuwen Lan, Ke Bi, Xiaojian Fu, Bo Li, and Ji Zhou
Opt. Express 24(20) 23072-23080 (2016)

Arbitrarily shaped thermal cloaks with non-uniform profiles in homogeneous media configurations

Guoqiang Xu, Haochun Zhang, Kexin Wang, Yan Jin, and Yan Li
Opt. Express 26(19) 25265-25279 (2018)

Highly efficient manipulation of Laplace fields in film system with structured bilayer composite

Chuwen Lan, Ming Lei, Ke Bi, Bo Li, and Ji Zhou
Opt. Express 24(26) 29537-29546 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref]
  2. K. Bi, W. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
    [Crossref]
  3. P. Xie, Z. Zhang, Z. Wang, K. Sun, and R. Fan, “Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures,” Research 2019, 1–11 (2019).
    [Crossref]
  4. Z. Wang, X. Fu, Z. Zhang, Y. Jiang, M. Waqar, P. Xie, K. Bi, Y. Liu, X. Yin, and R. Fan, “Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution,” J. Cleaner Prod. 234, 588–596 (2019).
    [Crossref]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref]
  6. J. Xia and H. Sun, “Acoustic focusing by metal circular ring structure,” Appl. Phys. Lett. 106(6), 063505 (2015).
    [Crossref]
  7. T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. commun. 5(1), 4130 (2014).
    [Crossref]
  8. A. Sanchez, C. Navau, J. Prat-Camps, and D. X. Chen, “Antimagnets: controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys. 13(9), 093034 (2011).
    [Crossref]
  9. F. Yang, Z. L. Mei, X. Y. Yang, T. Y. Jin, and T. J. Cui, “A negative conductivity material makes a dc invisibility cloak hide an object at a distance,” Adv. Funct. Mater. 23(35), 4306–4310 (2013).
    [Crossref]
  10. S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
    [Crossref]
  11. C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
    [Crossref]
  12. J. M. Restrepo-Flórez and M. Maldovan, “Mass separation by metamaterials,” Sci. Rep. 6(1), 21971 (2016).
    [Crossref]
  13. Y. A. Urzhumov and D. R. Smith, “Fluid flow control with transformation media,” Phys. Rev. Lett. 107(7), 074501 (2011).
    [Crossref]
  14. S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
    [Crossref]
  15. F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
    [Crossref]
  16. H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
    [Crossref]
  17. T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
    [Crossref]
  18. F. Chen and D. Y. Lei, “Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials,” Sci. Rep. 5(1), 11552 (2015).
    [Crossref]
  19. R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
    [Crossref]
  20. F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “DC electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
    [Crossref]
  21. T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
    [Crossref]
  22. W. Liu, C. Lan, Z. Gao, K. Bi, X. Fu, B. Li, and J. Zhou, “Enhancement of electrostatic field by a metamaterial electrostatic concentrator,” J. Alloys Compd. 724, 1064–1069 (2017).
    [Crossref]
  23. Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
    [Crossref]
  24. T. Yang, X. Bai, X. D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. W. Qiu, “Invisible sensors: Simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
    [Crossref]
  25. C. Lan, B. Li, and J. Zhou, “Simultaneously concentrated electric and thermal fields using fan-shaped structure,” Opt. Express 23(19), 24475–24483 (2015).
    [Crossref]
  26. M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
    [Crossref]
  27. C. Lan, K. Bi, X. Fu, B. Li, and J. Zhou, “Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields,” Opt. Express 24(20), 23072–23080 (2016).
    [Crossref]
  28. T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
    [Crossref]
  29. Y. Liu, W. Guo, and T. Han, “Arbitrarily polygonal transient thermal cloaks with natural bulk materials in bilayer configurations,” Int. J. Heat Mass Transfer 115, 1–5 (2017).
    [Crossref]
  30. G. Xu, H. Zhang, and Y. Jin, “Achieving arbitrarily polygonal thermal harvesting devices with homogeneous parameters through linear mapping function,” Energy Convers. Manage. 165, 263–275 (2018).
    [Crossref]
  31. G. Xu, H. Zhang, K. Wang, Y. Jin, and Y. Li, “Arbitrarily shaped thermal cloaks with non-uniform profiles in homogeneous media configurations,” Opt. Express 26(19), 25265–25279 (2018).
    [Crossref]
  32. Y. Liu, F. Sun, and S. He, “Novel thermal lens for remote heating/cooling designed with transformation optics,” Opt. Express 24(6), 5683–5692 (2016).
    [Crossref]

2019 (2)

P. Xie, Z. Zhang, Z. Wang, K. Sun, and R. Fan, “Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures,” Research 2019, 1–11 (2019).
[Crossref]

Z. Wang, X. Fu, Z. Zhang, Y. Jiang, M. Waqar, P. Xie, K. Bi, Y. Liu, X. Yin, and R. Fan, “Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution,” J. Cleaner Prod. 234, 588–596 (2019).
[Crossref]

2018 (3)

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref]

G. Xu, H. Zhang, and Y. Jin, “Achieving arbitrarily polygonal thermal harvesting devices with homogeneous parameters through linear mapping function,” Energy Convers. Manage. 165, 263–275 (2018).
[Crossref]

G. Xu, H. Zhang, K. Wang, Y. Jin, and Y. Li, “Arbitrarily shaped thermal cloaks with non-uniform profiles in homogeneous media configurations,” Opt. Express 26(19), 25265–25279 (2018).
[Crossref]

2017 (2)

Y. Liu, W. Guo, and T. Han, “Arbitrarily polygonal transient thermal cloaks with natural bulk materials in bilayer configurations,” Int. J. Heat Mass Transfer 115, 1–5 (2017).
[Crossref]

W. Liu, C. Lan, Z. Gao, K. Bi, X. Fu, B. Li, and J. Zhou, “Enhancement of electrostatic field by a metamaterial electrostatic concentrator,” J. Alloys Compd. 724, 1064–1069 (2017).
[Crossref]

2016 (4)

2015 (5)

K. Bi, W. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

J. Xia and H. Sun, “Acoustic focusing by metal circular ring structure,” Appl. Phys. Lett. 106(6), 063505 (2015).
[Crossref]

T. Yang, X. Bai, X. D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. W. Qiu, “Invisible sensors: Simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

C. Lan, B. Li, and J. Zhou, “Simultaneously concentrated electric and thermal fields using fan-shaped structure,” Opt. Express 23(19), 24475–24483 (2015).
[Crossref]

F. Chen and D. Y. Lei, “Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials,” Sci. Rep. 5(1), 11552 (2015).
[Crossref]

2014 (6)

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref]

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. commun. 5(1), 4130 (2014).
[Crossref]

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref]

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref]

2013 (1)

F. Yang, Z. L. Mei, X. Y. Yang, T. Y. Jin, and T. J. Cui, “A negative conductivity material makes a dc invisibility cloak hide an object at a distance,” Adv. Funct. Mater. 23(35), 4306–4310 (2013).
[Crossref]

2012 (3)

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “DC electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[Crossref]

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref]

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref]

2011 (2)

Y. A. Urzhumov and D. R. Smith, “Fluid flow control with transformation media,” Phys. Rev. Lett. 107(7), 074501 (2011).
[Crossref]

A. Sanchez, C. Navau, J. Prat-Camps, and D. X. Chen, “Antimagnets: controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys. 13(9), 093034 (2011).
[Crossref]

2008 (2)

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref]

C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[Crossref]

2006 (2)

J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Bai, X.

T. Yang, X. Bai, X. D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. W. Qiu, “Invisible sensors: Simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref]

Bi, K.

Z. Wang, X. Fu, Z. Zhang, Y. Jiang, M. Waqar, P. Xie, K. Bi, Y. Liu, X. Yin, and R. Fan, “Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution,” J. Cleaner Prod. 234, 588–596 (2019).
[Crossref]

W. Liu, C. Lan, Z. Gao, K. Bi, X. Fu, B. Li, and J. Zhou, “Enhancement of electrostatic field by a metamaterial electrostatic concentrator,” J. Alloys Compd. 724, 1064–1069 (2017).
[Crossref]

C. Lan, K. Bi, X. Fu, B. Li, and J. Zhou, “Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields,” Opt. Express 24(20), 23072–23080 (2016).
[Crossref]

K. Bi, W. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

Bückmann, T.

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. commun. 5(1), 4130 (2014).
[Crossref]

Castaldi, G.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Chen, D. X.

A. Sanchez, C. Navau, J. Prat-Camps, and D. X. Chen, “Antimagnets: controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys. 13(9), 093034 (2011).
[Crossref]

Chen, F.

T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
[Crossref]

F. Chen and D. Y. Lei, “Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials,” Sci. Rep. 5(1), 11552 (2015).
[Crossref]

Cui, T. J.

F. Yang, Z. L. Mei, X. Y. Yang, T. Y. Jin, and T. J. Cui, “A negative conductivity material makes a dc invisibility cloak hide an object at a distance,” Adv. Funct. Mater. 23(35), 4306–4310 (2013).
[Crossref]

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “DC electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Fan, C. Z.

C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[Crossref]

Fan, R.

Z. Wang, X. Fu, Z. Zhang, Y. Jiang, M. Waqar, P. Xie, K. Bi, Y. Liu, X. Yin, and R. Fan, “Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution,” J. Cleaner Prod. 234, 588–596 (2019).
[Crossref]

P. Xie, Z. Zhang, Z. Wang, K. Sun, and R. Fan, “Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures,” Research 2019, 1–11 (2019).
[Crossref]

Fu, X.

Z. Wang, X. Fu, Z. Zhang, Y. Jiang, M. Waqar, P. Xie, K. Bi, Y. Liu, X. Yin, and R. Fan, “Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution,” J. Cleaner Prod. 234, 588–596 (2019).
[Crossref]

W. Liu, C. Lan, Z. Gao, K. Bi, X. Fu, B. Li, and J. Zhou, “Enhancement of electrostatic field by a metamaterial electrostatic concentrator,” J. Alloys Compd. 724, 1064–1069 (2017).
[Crossref]

C. Lan, K. Bi, X. Fu, B. Li, and J. Zhou, “Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields,” Opt. Express 24(20), 23072–23080 (2016).
[Crossref]

Galdi, V.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Gao, D.

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref]

Gao, F.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref]

Gao, X. D.

T. Yang, X. Bai, X. D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. W. Qiu, “Invisible sensors: Simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Gao, Y.

C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[Crossref]

Gao, Z.

W. Liu, C. Lan, Z. Gao, K. Bi, X. Fu, B. Li, and J. Zhou, “Enhancement of electrostatic field by a metamaterial electrostatic concentrator,” J. Alloys Compd. 724, 1064–1069 (2017).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref]

Gömöry, F.

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref]

Guo, W.

Y. Liu, W. Guo, and T. Han, “Arbitrarily polygonal transient thermal cloaks with natural bulk materials in bilayer configurations,” Int. J. Heat Mass Transfer 115, 1–5 (2017).
[Crossref]

Han, T.

Y. Liu, W. Guo, and T. Han, “Arbitrarily polygonal transient thermal cloaks with natural bulk materials in bilayer configurations,” Int. J. Heat Mass Transfer 115, 1–5 (2017).
[Crossref]

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref]

He, S.

Y. Liu, F. Sun, and S. He, “Novel thermal lens for remote heating/cooling designed with transformation optics,” Opt. Express 24(6), 5683–5692 (2016).
[Crossref]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref]

Hu, R.

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref]

Huang, J. P.

C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[Crossref]

Huang, L.

T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
[Crossref]

Jiang, Y.

Z. Wang, X. Fu, Z. Zhang, Y. Jiang, M. Waqar, P. Xie, K. Bi, Y. Liu, X. Yin, and R. Fan, “Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution,” J. Cleaner Prod. 234, 588–596 (2019).
[Crossref]

Jin, T. Y.

F. Yang, Z. L. Mei, X. Y. Yang, T. Y. Jin, and T. J. Cui, “A negative conductivity material makes a dc invisibility cloak hide an object at a distance,” Adv. Funct. Mater. 23(35), 4306–4310 (2013).
[Crossref]

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “DC electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[Crossref]

Jin, Y.

G. Xu, H. Zhang, and Y. Jin, “Achieving arbitrarily polygonal thermal harvesting devices with homogeneous parameters through linear mapping function,” Energy Convers. Manage. 165, 263–275 (2018).
[Crossref]

G. Xu, H. Zhang, K. Wang, Y. Jin, and Y. Li, “Arbitrarily shaped thermal cloaks with non-uniform profiles in homogeneous media configurations,” Opt. Express 26(19), 25265–25279 (2018).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Kadic, M.

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. commun. 5(1), 4130 (2014).
[Crossref]

Lan, C.

Lei, D. Y.

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref]

F. Chen and D. Y. Lei, “Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials,” Sci. Rep. 5(1), 11552 (2015).
[Crossref]

Lei, M.

K. Bi, W. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

Li, B.

W. Liu, C. Lan, Z. Gao, K. Bi, X. Fu, B. Li, and J. Zhou, “Enhancement of electrostatic field by a metamaterial electrostatic concentrator,” J. Alloys Compd. 724, 1064–1069 (2017).
[Crossref]

C. Lan, K. Bi, X. Fu, B. Li, and J. Zhou, “Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields,” Opt. Express 24(20), 23072–23080 (2016).
[Crossref]

C. Lan, B. Li, and J. Zhou, “Simultaneously concentrated electric and thermal fields using fan-shaped structure,” Opt. Express 23(19), 24475–24483 (2015).
[Crossref]

T. Yang, X. Bai, X. D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. W. Qiu, “Invisible sensors: Simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref]

Li, Y.

Liu, D.

T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
[Crossref]

Liu, W.

W. Liu, C. Lan, Z. Gao, K. Bi, X. Fu, B. Li, and J. Zhou, “Enhancement of electrostatic field by a metamaterial electrostatic concentrator,” J. Alloys Compd. 724, 1064–1069 (2017).
[Crossref]

Liu, Y.

Z. Wang, X. Fu, Z. Zhang, Y. Jiang, M. Waqar, P. Xie, K. Bi, Y. Liu, X. Yin, and R. Fan, “Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution,” J. Cleaner Prod. 234, 588–596 (2019).
[Crossref]

Y. Liu, W. Guo, and T. Han, “Arbitrarily polygonal transient thermal cloaks with natural bulk materials in bilayer configurations,” Int. J. Heat Mass Transfer 115, 1–5 (2017).
[Crossref]

Y. Liu, F. Sun, and S. He, “Novel thermal lens for remote heating/cooling designed with transformation optics,” Opt. Express 24(6), 5683–5692 (2016).
[Crossref]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref]

Luo, X.

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref]

Luo, Y.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

Ma, Y.

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref]

Maldovan, M.

J. M. Restrepo-Flórez and M. Maldovan, “Mass separation by metamaterials,” Sci. Rep. 6(1), 21971 (2016).
[Crossref]

Mei, Z. L.

F. Yang, Z. L. Mei, X. Y. Yang, T. Y. Jin, and T. J. Cui, “A negative conductivity material makes a dc invisibility cloak hide an object at a distance,” Adv. Funct. Mater. 23(35), 4306–4310 (2013).
[Crossref]

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “DC electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[Crossref]

Moccia, M.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Narayana, S.

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref]

Navau, C.

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref]

A. Sanchez, C. Navau, J. Prat-Camps, and D. X. Chen, “Antimagnets: controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys. 13(9), 093034 (2011).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Prat-Camps, J.

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref]

A. Sanchez, C. Navau, J. Prat-Camps, and D. X. Chen, “Antimagnets: controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys. 13(9), 093034 (2011).
[Crossref]

Qiu, C. W.

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref]

T. Yang, X. Bai, X. D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. W. Qiu, “Invisible sensors: Simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref]

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

Raza, M.

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref]

Restrepo-Flórez, J. M.

J. M. Restrepo-Flórez and M. Maldovan, “Mass separation by metamaterials,” Sci. Rep. 6(1), 21971 (2016).
[Crossref]

Sanchez, A.

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref]

A. Sanchez, C. Navau, J. Prat-Camps, and D. X. Chen, “Antimagnets: controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys. 13(9), 093034 (2011).
[Crossref]

Sato, Y.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref]

Savo, S.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Schittny, R.

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. commun. 5(1), 4130 (2014).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Shi, X.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref]

Shurig, D.

J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Smith, D. R.

Y. A. Urzhumov and D. R. Smith, “Fluid flow control with transformation media,” Phys. Rev. Lett. 107(7), 074501 (2011).
[Crossref]

J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Solovyov, M.

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref]

Šouc, J.

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Sun, C.

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref]

Sun, F.

Sun, H.

J. Xia and H. Sun, “Acoustic focusing by metal circular ring structure,” Appl. Phys. Lett. 106(6), 063505 (2015).
[Crossref]

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref]

Sun, K.

P. Xie, Z. Zhang, Z. Wang, K. Sun, and R. Fan, “Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures,” Research 2019, 1–11 (2019).
[Crossref]

Teng, J.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

Thiel, M.

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. commun. 5(1), 4130 (2014).
[Crossref]

Thong, J. T. L.

T. Yang, X. Bai, X. D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. W. Qiu, “Invisible sensors: Simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref]

Urzhumov, Y. A.

Y. A. Urzhumov and D. R. Smith, “Fluid flow control with transformation media,” Phys. Rev. Lett. 107(7), 074501 (2011).
[Crossref]

Wang, K.

Wang, Y.

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref]

Wang, Z.

P. Xie, Z. Zhang, Z. Wang, K. Sun, and R. Fan, “Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures,” Research 2019, 1–11 (2019).
[Crossref]

Z. Wang, X. Fu, Z. Zhang, Y. Jiang, M. Waqar, P. Xie, K. Bi, Y. Liu, X. Yin, and R. Fan, “Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution,” J. Cleaner Prod. 234, 588–596 (2019).
[Crossref]

Waqar, M.

Z. Wang, X. Fu, Z. Zhang, Y. Jiang, M. Waqar, P. Xie, K. Bi, Y. Liu, X. Yin, and R. Fan, “Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution,” J. Cleaner Prod. 234, 588–596 (2019).
[Crossref]

Wegener, M.

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. commun. 5(1), 4130 (2014).
[Crossref]

Wu, L.

T. Yang, X. Bai, X. D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. W. Qiu, “Invisible sensors: Simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Wu, Q.

T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
[Crossref]

Xia, J.

J. Xia and H. Sun, “Acoustic focusing by metal circular ring structure,” Appl. Phys. Lett. 106(6), 063505 (2015).
[Crossref]

Xie, P.

Z. Wang, X. Fu, Z. Zhang, Y. Jiang, M. Waqar, P. Xie, K. Bi, Y. Liu, X. Yin, and R. Fan, “Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution,” J. Cleaner Prod. 234, 588–596 (2019).
[Crossref]

P. Xie, Z. Zhang, Z. Wang, K. Sun, and R. Fan, “Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures,” Research 2019, 1–11 (2019).
[Crossref]

Xu, G.

G. Xu, H. Zhang, and Y. Jin, “Achieving arbitrarily polygonal thermal harvesting devices with homogeneous parameters through linear mapping function,” Energy Convers. Manage. 165, 263–275 (2018).
[Crossref]

G. Xu, H. Zhang, K. Wang, Y. Jin, and Y. Li, “Arbitrarily shaped thermal cloaks with non-uniform profiles in homogeneous media configurations,” Opt. Express 26(19), 25265–25279 (2018).
[Crossref]

Xu, H.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref]

Xu, W.

T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
[Crossref]

Yang, F.

F. Yang, Z. L. Mei, X. Y. Yang, T. Y. Jin, and T. J. Cui, “A negative conductivity material makes a dc invisibility cloak hide an object at a distance,” Adv. Funct. Mater. 23(35), 4306–4310 (2013).
[Crossref]

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “DC electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[Crossref]

Yang, T.

T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
[Crossref]

T. Yang, X. Bai, X. D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. W. Qiu, “Invisible sensors: Simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Yang, X. Y.

F. Yang, Z. L. Mei, X. Y. Yang, T. Y. Jin, and T. J. Cui, “A negative conductivity material makes a dc invisibility cloak hide an object at a distance,” Adv. Funct. Mater. 23(35), 4306–4310 (2013).
[Crossref]

Ye, H.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

Yeo, S. P.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

Yin, X.

Z. Wang, X. Fu, Z. Zhang, Y. Jiang, M. Waqar, P. Xie, K. Bi, Y. Liu, X. Yin, and R. Fan, “Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution,” J. Cleaner Prod. 234, 588–596 (2019).
[Crossref]

Zhang, B.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref]

Zhang, H.

G. Xu, H. Zhang, and Y. Jin, “Achieving arbitrarily polygonal thermal harvesting devices with homogeneous parameters through linear mapping function,” Energy Convers. Manage. 165, 263–275 (2018).
[Crossref]

G. Xu, H. Zhang, K. Wang, Y. Jin, and Y. Li, “Arbitrarily shaped thermal cloaks with non-uniform profiles in homogeneous media configurations,” Opt. Express 26(19), 25265–25279 (2018).
[Crossref]

Zhang, S.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref]

Zhang, X.

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref]

Zhang, Z.

P. Xie, Z. Zhang, Z. Wang, K. Sun, and R. Fan, “Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures,” Research 2019, 1–11 (2019).
[Crossref]

Z. Wang, X. Fu, Z. Zhang, Y. Jiang, M. Waqar, P. Xie, K. Bi, Y. Liu, X. Yin, and R. Fan, “Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution,” J. Cleaner Prod. 234, 588–596 (2019).
[Crossref]

Zhou, J.

W. Liu, C. Lan, Z. Gao, K. Bi, X. Fu, B. Li, and J. Zhou, “Enhancement of electrostatic field by a metamaterial electrostatic concentrator,” J. Alloys Compd. 724, 1064–1069 (2017).
[Crossref]

C. Lan, K. Bi, X. Fu, B. Li, and J. Zhou, “Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields,” Opt. Express 24(20), 23072–23080 (2016).
[Crossref]

C. Lan, B. Li, and J. Zhou, “Simultaneously concentrated electric and thermal fields using fan-shaped structure,” Opt. Express 23(19), 24475–24483 (2015).
[Crossref]

K. Bi, W. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

Zhou, S.

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref]

Zhu, W.

K. Bi, W. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

Adv. Funct. Mater. (1)

F. Yang, Z. L. Mei, X. Y. Yang, T. Y. Jin, and T. J. Cui, “A negative conductivity material makes a dc invisibility cloak hide an object at a distance,” Adv. Funct. Mater. 23(35), 4306–4310 (2013).
[Crossref]

Adv. Mater. (3)

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref]

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

T. Yang, X. Bai, X. D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. W. Qiu, “Invisible sensors: Simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Appl. Phys. Lett. (3)

C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[Crossref]

J. Xia and H. Sun, “Acoustic focusing by metal circular ring structure,” Appl. Phys. Lett. 106(6), 063505 (2015).
[Crossref]

K. Bi, W. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

Energy Convers. Manage. (1)

G. Xu, H. Zhang, and Y. Jin, “Achieving arbitrarily polygonal thermal harvesting devices with homogeneous parameters through linear mapping function,” Energy Convers. Manage. 165, 263–275 (2018).
[Crossref]

Int. J. Heat Mass Transfer (1)

Y. Liu, W. Guo, and T. Han, “Arbitrarily polygonal transient thermal cloaks with natural bulk materials in bilayer configurations,” Int. J. Heat Mass Transfer 115, 1–5 (2017).
[Crossref]

J. Alloys Compd. (1)

W. Liu, C. Lan, Z. Gao, K. Bi, X. Fu, B. Li, and J. Zhou, “Enhancement of electrostatic field by a metamaterial electrostatic concentrator,” J. Alloys Compd. 724, 1064–1069 (2017).
[Crossref]

J. Cleaner Prod. (1)

Z. Wang, X. Fu, Z. Zhang, Y. Jiang, M. Waqar, P. Xie, K. Bi, Y. Liu, X. Yin, and R. Fan, “Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution,” J. Cleaner Prod. 234, 588–596 (2019).
[Crossref]

Nat. commun. (1)

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. commun. 5(1), 4130 (2014).
[Crossref]

New J. Phys. (1)

A. Sanchez, C. Navau, J. Prat-Camps, and D. X. Chen, “Antimagnets: controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys. 13(9), 093034 (2011).
[Crossref]

Opt. Express (4)

Phys. Lett. A (1)

T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
[Crossref]

Phys. Rev. Lett. (7)

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref]

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref]

Y. A. Urzhumov and D. R. Smith, “Fluid flow control with transformation media,” Phys. Rev. Lett. 107(7), 074501 (2011).
[Crossref]

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref]

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “DC electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[Crossref]

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref]

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref]

Phys. Rev. X (1)

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Research (1)

P. Xie, Z. Zhang, Z. Wang, K. Sun, and R. Fan, “Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures,” Research 2019, 1–11 (2019).
[Crossref]

Sci. Rep. (2)

F. Chen and D. Y. Lei, “Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials,” Sci. Rep. 5(1), 11552 (2015).
[Crossref]

J. M. Restrepo-Flórez and M. Maldovan, “Mass separation by metamaterials,” Sci. Rep. 6(1), 21971 (2016).
[Crossref]

Science (3)

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Supplementary Material (4)

NameDescription
» Visualization 1       Field distributions of the hexagonal schemes under different flow direction.
» Visualization 2       Field distributions of the heptagonal schemes under different flow direction.
» Visualization 3       Field distributions of the hexagonal schemes with inverse behaviors under different flow direction.
» Visualization 4       Field distributions of the heptagonal schemes with inverse behaviors under different flow direction.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. General transformations of the target manipulations and medium arrangements for each independent cell. Among these, (a) – (f) are the transformation processes of the manipulations. (a) and (b) denote the conformal structures in the original domain, and the first step of internal rotation for the cloaking behavior; (c) and (d) are the first step of rotation for the harvesting performance. Both of the rotations shown in (b) and (d) would be further transformed into the one presented in (e) through second steps of regional expansion and compression. (f) is the enlarged view of the functional regions after the final transformations; In addition, (g) – (i) denote the medium arrangements of the functional regions shown in (e) and (f). (g) Schematic cell for simultaneously and independently concentrating electric current and cloaking thermal flux; (h) Independent cell employed in Types I/III, in which the extension cords of layers AD and BC intersect at one vertex of the internal region; (i) Independent cell employed in Types II/IV, in which the extension cords of layers AD and BC intersect at one vertex of the external region.
Fig. 2.
Fig. 2. Geometry simples of the proposed schemes. (a) Hexagonal scheme; (b) Heptagonal scheme; (c) and (d) are the enlarged view of functional regions I (III) and II (IV).
Fig. 3.
Fig. 3. Field distributions of the bare plate and proposed schemes. Among the subgraphs, (a1) – (c1) illustrate the DC fields, and (a2) – (c2) present the thermal fields. (a) Contrast bare plate; (b) Hexagonal scheme; (c) Heptagonal scheme. (The field distributions under arbitrary field flow directions can be found in the Visualization 1, Visualization 2, Visualization 3, Visualization 4)
Fig. 4.
Fig. 4. Temperature and current distributions along the central lines of y = 0 of the proposed schemes and related contrasts. (a) Hexagonal scheme; (b) Heptagonal scheme.
Fig. 5.
Fig. 5. Rotated schematic cell and field distributions of the switched functions. Among these, (a1) and (a2) respectively denote the original and rotated schematic cells; (b1) and (b2) are the thermal cloaking behaviors of the proposed schemes with rotated schematic cells; (c1) and (c2) present the electrical harvesting performances of the proposed schemes with rotated schematic cells.

Tables (2)

Tables Icon

Table 1. Satisfied electrical and thermal conductivities of media B, C, and D for hexagonal scheme

Tables Icon

Table 2. Satisfied electrical and thermal conductivities of media B, C, and D for heptagonal scheme

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

σ AD,III(I), y = ( 2 r 5 + Δ l III(I) ) Δ l III(I) σ A σ D ( Δ l III(I) Δ l 1 ) ( 2 r 5 + Δ l III(I) Δ l 1 ) σ A + Δ l 1 ( 2 r 5 + 2 Δ l III(I) Δ l 1 ) σ D tan ( α 1 + α 3 ) tan α 3 tan ( α 2 + α 3 ) tan α 3 .
σ AB,III(I) , x = ( tan ( α 2 + α 3 ) tan α 3 ) σ A σ B ( tan ( α 2 + α 3 ) tan ( α 1 + α 3 ) ) σ A + ( tan ( α 2 + α 3 ) tan α 3 ) σ B ( 2 r 5 + 2 Δ l III(I) Δ l 1 ) Δ l 1 ( 2 r 5 + Δ l III(I) ) Δ l III(I) .
σ CD,III(I) . x = ( tan ( α 2 + α 3 ) tan α 3 ) σ C σ D ( tan ( α 2 + α 3 ) tan ( α 1 + α 3 ) ) σ D + ( tan ( α 1 + α 3 ) tan α 3 ) σ C ( Δ l III(I) Δ l 1 ) ( 2 r 5 + Δ l III(I) Δ l 1 ) ( 2 r 5 + Δ l III(I) ) Δ l III(I) .
κ AB,I ( III ) , x = ( tan ( α 2 + α 3 ) tan α 3 ) κ A κ B ( tan ( α 2 + α 3 ) tan ( α 1 + α 3 ) ) κ A + ( tan ( α 2 + α 3 ) tan α 3 ) κ B ( 2 r 5 + 2 Δ l I ( III ) Δ l 1 ) Δ l 1 ( 2 r 5 + Δ l I ( III ) ) Δ l I ( III ) .
κ BC,I ( III ) , y = ( 2 r 5 + Δ l I ( III ) ) Δ l I ( III ) κ B κ C ( Δ l I ( III ) Δ l 1 ) ( 2 r 5 + Δ l I ( III ) Δ l 1 ) κ B + Δ l 1 ( 2 r 5 + 2 Δ l I ( III ) Δ l 1 ) κ C tan ( α 2 + α 3 ) tan ( α 1 + α 3 ) tan ( α 2 + α 3 ) tan α 3 .
κ AD,I ( III ) , y = ( 2 r 5 + Δ l I ( III ) ) Δ l I ( III ) κ A κ D ( Δ l I ( III ) Δ l 1 ) ( 2 r 5 + Δ l I ( III ) Δ l 1 ) κ A + Δ l 1 ( 2 r 5 + 2 Δ l I ( III ) Δ l 1 ) κ D tan ( α 1 + α 3 ) tan α 3 tan ( α 2 + α 3 ) tan α 3 .
σ AD,IV(II), y = ( 2 Δ l 2 Δ l IV(II) + 2 r 6 Δ l IV(II) ) σ A σ D ( tan ( α 5 + α 6 ) tan ( α 5 + α 6 α 4 ) ) ( ( Δ l IV(II) Δ l 2 ) ( 2 r 6 + Δ l IV(II) + Δ l 2 ) σ A + Δ l 2 ( 2 r 6 + Δ l 2 ) σ D ) ( tan ( α 5 + α 6 ) tan α 6 ) .
σ AB,IV(II) , x = ( tan ( α 5 + α 6 ) tan α 6 ) σ A σ B Δ l 2 ( 2 r 6 + Δ l 2 ) ( ( σ A σ B ) tan ( α 5 + α 6 α 4 ) σ A tan α 6 + σ B tan ( α 5 + α 6 ) ) ( 2 Δ l 2 Δ l IV(II) + 2 r 6 Δ l IV(II) ) .
σ CD,IV(II) . x = ( tan ( α 5 + α 6 ) tan α 6 ) σ C σ D ( Δ l IV(II) Δ l 2 ) ( 2 r 6 + Δ l IV(II) + Δ l 2 ) ( σ D tan ( α 5 + α 6 ) σ C tan α 6 + ( σ C σ D ) tan ( α 5 + α 6 α 4 ) ) ( 2 Δ l 2 Δ l IV(II) + 2 r 6 Δ l IV(II) ) .
κ AB,II(IV) , x = ( tan ( α 5 + α 6 ) tan α 6 ) κ A κ B Δ l 2 ( 2 r 6 + Δ l 2 ) 2 ( ( κ A κ B ) tan ( α 5 + α 6 α 4 ) κ A tan α 6 + κ B tan ( α 5 + α 6 ) ) ( Δ l 2 Δ l II(IV) + r 6 Δ l II(IV) ) .
κ BC,II(IV), y = ( 2 Δ l 2 Δ l II(IV) + 2 r 6 Δ l II(IV) ) κ B κ C ( Δ l II(IV) Δ l 2 ) ( 2 r 6 + Δ l II(IV) + Δ l 2 ) κ B + Δ l 2 ( 2 r 6 + Δ l 2 ) κ C tan ( α 5 + α 6 α 4 ) tan α 6 tan ( α 5 + α 6 ) tan α 6 .
κ AD,II(IV), y = ( 2 Δ l 2 Δ l II(IV) + 2 r 6 Δ l II(IV) ) κ A κ D ( Δ l II(IV) Δ l 2 ) ( 2 r 6 + Δ l II(IV) + Δ l 2 ) κ A + Δ l 2 ( 2 r 6 + Δ l 2 ) κ D tan ( α 5 + α 6 ) tan ( α 5 + α 6 α 4 ) tan ( α 5 + α 6 ) tan α 6 .

Metrics