Abstract

Fluorescence detection is a well-established readout method for sensing, especially for in-vitro diagnostics (IVD). A practical way to guide the emitted signal to a detector is by means of an optical fiber. However, coupling fluorescence into a fiber is challenging and commonly lacks single-molecule sensitivity. In this work, we investigate specific fiber geometries, materials and coatings that in combination with a planar Yagi-Uda antenna reach efficient excitation and collection. The simulation of a practical setting determines more than 70% coupling efficiency for a horizontally oriented dipole, with respect to the planar antenna, emitting at 700 nm and embedded in polyvinyl alcohol (PVA). Moreover, the coupling efficiency would only scale by a factor of 2/3 for emitters with random orientation, as a result of the antenna geometry. These findings are relevant for single-molecule detection with fiber optics and have implications for other applications involving the coupling of light with nano-scale sources and detectors. Scanning the surface of a sample with such fibers could also be advantageous for imaging techniques to provide a low background noise and a high resolution.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna

Tim H. Taminiau, Fernando D. Stefani, and Niek F. van Hulst
Opt. Express 16(14) 10858-10866 (2008)

Optical horn antennas for efficiently transferring photons from a quantum emitter to a single-mode optical fiber

T. Grosjean, M. Mivelle, G.W. Burr, and F.I. Baida
Opt. Express 21(2) 1762-1772 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. W. Snyder and J. Love, Optical waveguide theory (Springer Science & Business Media, 2012).
  2. O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
    [Crossref]
  3. B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
    [Crossref]
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [Crossref]
  5. H. Mukundan, A. Anderson, W. K. Grace, K. Grace, N. Hartman, J. Martinez, and B. Swanson, “Waveguide-based biosensors for pathogen detection,” Sensors 9(7), 5783–5809 (2009).
    [Crossref]
  6. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
    [Crossref]
  7. N. Verhart, G. Lepert, A. Billing, J. Hwang, and E. Hinds, “Single dipole evanescently coupled to a multimode waveguide,” Opt. Express 22(16), 19633–19640 (2014).
    [Crossref]
  8. M. I. Davanco and K. Srinivasan, “An efficient, optical fiber-based waveguide interface to a single quantum dipole,” in Frontiers in Optics, (Optical Society of America, 2009), p. FMG2.
  9. M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
    [Crossref]
  10. H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.-C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
    [Crossref]
  11. S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2015).
    [Crossref]
  12. P. Then, G. Razinskas, T. Feichtner, P. Haas, A. Wild, N. Bellini, R. Osellame, G. Cerullo, and B. Hecht, “Remote detection of single emitters via optical waveguides,” Phys. Rev. A 89(5), 053801 (2014).
    [Crossref]
  13. K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, and K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
    [Crossref]
  14. T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
    [Crossref]
  15. R. A. Lieberman, L. Blyler, and L. G. Cohen, “A distributed fiber optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8(2), 212–220 (1990).
    [Crossref]
  16. M. Davanço and K. Srinivasan, “Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides,” Opt. Express 17(13), 10542–10563 (2009).
    [Crossref]
  17. M. Davanço and K. Srinivasan, “Fiber-coupled semiconductor waveguides as an efficient optical interface to a single quantum dipole,” Opt. Lett. 34(16), 2542–2544 (2009).
    [Crossref]
  18. L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
    [Crossref]
  19. R. S. Daveau, K. C. Balram, T. Pregnolato, J. Liu, E. H. Lee, J. D. Song, V. Verma, R. Mirin, S. W. Nam, L. Midolo, S. Stobbe, K. Srinivasan, and P. Lodahl, “Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide,” Optica 4(2), 178–184 (2017).
    [Crossref]
  20. S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. Dieleman, F. S. Cataliotti, W. H. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light: Sci. Appl. 6(4), e16245 (2017).
    [Crossref]
  21. H. Galal and M. Agio, “Highly efficient light extraction and directional emission from large refractive-index materials with a planar yagi-uda antenna,” Opt. Mater. Express 7(5), 1634–1646 (2017).
    [Crossref]
  22. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A yagi-uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
    [Crossref]
  23. J. Homola, Surface Plasmon Resonance Based Sensors, vol. 4 (Springer, 2006).
  24. A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech house, 2005).
  25. Lumerical Inc. FDTD Solutions, Verion: 8.19.1541 and MODE Solutions, Version: 7.12.1731 (2018), Vancouver, Canada (2018). Verion: 8.19.1541.
  26. W. L. Stutzman and G. A. Thiele, Antenna theory and design (John Wiley & Sons, 2013).
  27. W. S. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data 38(4), 1013–1092 (2009).
    [Crossref]
  28. S. Lagomarsino, A. M. Flatae, S. Sciortino, F. Gorelli, M. Santoro, F. Tantussi, F. De Angelis, N. Gelli, F. Taccetti, L. Giuntini, and M. Agio, “Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing,” Diamond Relat. Mater. 84, 196–203 (2018).
    [Crossref]
  29. A. M. Flatae, F. Tantussi, G. C. Messina, A. Mohammadi, F. De Angelis, and M. Agio, “Plasmonic gold nanocones in the near-infrared for quantum nano-optics,” Adv. Opt. Mater. 5(22), 1700586 (2017).
    [Crossref]
  30. X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
    [Crossref]
  31. J. Love and W. Henry, “Quantifying loss minimisation in single-mode fibre tapers,” Electron. Lett. 22(17), 912–914 (1986).
    [Crossref]
  32. S. Ravets, J. Hoffman, P. Kordell, J. Wong-Campos, S. Rolston, and L. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30(11), 2361–2371 (2013).
    [Crossref]
  33. R. Nagai and T. Aoki, “Ultra-low-loss tapered optical fibers with minimal lengths,” Opt. Express 22(23), 28427–28436 (2014).
    [Crossref]
  34. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
    [Crossref]
  35. B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of photonics, vol. 22 (Wiley, 1991).
  36. D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
    [Crossref]
  37. A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
    [Crossref]
  38. J. Li, A. Salandrino, and N. Engheta, “Optical spectrometer at the nanoscale using optical yagi-uda nanoantennas,” Phys. Rev. B 79(19), 195104 (2009).
    [Crossref]
  39. E. Snitzer and R. Tumminelli, “Sio 2-clad fibers with selectively volatilized soft-glass cores,” Opt. Lett. 14(14), 757–759 (1989).
    [Crossref]

2018 (2)

S. Lagomarsino, A. M. Flatae, S. Sciortino, F. Gorelli, M. Santoro, F. Tantussi, F. De Angelis, N. Gelli, F. Taccetti, L. Giuntini, and M. Agio, “Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing,” Diamond Relat. Mater. 84, 196–203 (2018).
[Crossref]

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

2017 (4)

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. Dieleman, F. S. Cataliotti, W. H. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light: Sci. Appl. 6(4), e16245 (2017).
[Crossref]

R. S. Daveau, K. C. Balram, T. Pregnolato, J. Liu, E. H. Lee, J. D. Song, V. Verma, R. Mirin, S. W. Nam, L. Midolo, S. Stobbe, K. Srinivasan, and P. Lodahl, “Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide,” Optica 4(2), 178–184 (2017).
[Crossref]

H. Galal and M. Agio, “Highly efficient light extraction and directional emission from large refractive-index materials with a planar yagi-uda antenna,” Opt. Mater. Express 7(5), 1634–1646 (2017).
[Crossref]

A. M. Flatae, F. Tantussi, G. C. Messina, A. Mohammadi, F. De Angelis, and M. Agio, “Plasmonic gold nanocones in the near-infrared for quantum nano-optics,” Adv. Opt. Mater. 5(22), 1700586 (2017).
[Crossref]

2016 (2)

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.-C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

2015 (2)

S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2015).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

2014 (4)

P. Then, G. Razinskas, T. Feichtner, P. Haas, A. Wild, N. Bellini, R. Osellame, G. Cerullo, and B. Hecht, “Remote detection of single emitters via optical waveguides,” Phys. Rev. A 89(5), 053801 (2014).
[Crossref]

N. Verhart, G. Lepert, A. Billing, J. Hwang, and E. Hinds, “Single dipole evanescently coupled to a multimode waveguide,” Opt. Express 22(16), 19633–19640 (2014).
[Crossref]

R. Nagai and T. Aoki, “Ultra-low-loss tapered optical fibers with minimal lengths,” Opt. Express 22(23), 28427–28436 (2014).
[Crossref]

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

2010 (1)

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[Crossref]

2009 (5)

H. Mukundan, A. Anderson, W. K. Grace, K. Grace, N. Hartman, J. Martinez, and B. Swanson, “Waveguide-based biosensors for pathogen detection,” Sensors 9(7), 5783–5809 (2009).
[Crossref]

W. S. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data 38(4), 1013–1092 (2009).
[Crossref]

J. Li, A. Salandrino, and N. Engheta, “Optical spectrometer at the nanoscale using optical yagi-uda nanoantennas,” Phys. Rev. B 79(19), 195104 (2009).
[Crossref]

M. Davanço and K. Srinivasan, “Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides,” Opt. Express 17(13), 10542–10563 (2009).
[Crossref]

M. Davanço and K. Srinivasan, “Fiber-coupled semiconductor waveguides as an efficient optical interface to a single quantum dipole,” Opt. Lett. 34(16), 2542–2544 (2009).
[Crossref]

2007 (1)

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A yagi-uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
[Crossref]

2004 (4)

X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref]

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
[Crossref]

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, and K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[Crossref]

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref]

1990 (1)

R. A. Lieberman, L. Blyler, and L. G. Cohen, “A distributed fiber optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8(2), 212–220 (1990).
[Crossref]

1989 (1)

1986 (1)

J. Love and W. Henry, “Quantifying loss minimisation in single-mode fibre tapers,” Electron. Lett. 22(17), 912–914 (1986).
[Crossref]

Agio, M.

S. Lagomarsino, A. M. Flatae, S. Sciortino, F. Gorelli, M. Santoro, F. Tantussi, F. De Angelis, N. Gelli, F. Taccetti, L. Giuntini, and M. Agio, “Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing,” Diamond Relat. Mater. 84, 196–203 (2018).
[Crossref]

H. Galal and M. Agio, “Highly efficient light extraction and directional emission from large refractive-index materials with a planar yagi-uda antenna,” Opt. Mater. Express 7(5), 1634–1646 (2017).
[Crossref]

A. M. Flatae, F. Tantussi, G. C. Messina, A. Mohammadi, F. De Angelis, and M. Agio, “Plasmonic gold nanocones in the near-infrared for quantum nano-optics,” Adv. Opt. Mater. 5(22), 1700586 (2017).
[Crossref]

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. Dieleman, F. S. Cataliotti, W. H. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light: Sci. Appl. 6(4), e16245 (2017).
[Crossref]

Almeida, V.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
[Crossref]

Ambrosch-Draxl, C.

W. S. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data 38(4), 1013–1092 (2009).
[Crossref]

Anderson, A.

H. Mukundan, A. Anderson, W. K. Grace, K. Grace, N. Hartman, J. Martinez, and B. Swanson, “Waveguide-based biosensors for pathogen detection,” Sensors 9(7), 5783–5809 (2009).
[Crossref]

Aoki, T.

S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2015).
[Crossref]

R. Nagai and T. Aoki, “Ultra-low-loss tapered optical fibers with minimal lengths,” Opt. Express 22(23), 28427–28436 (2014).
[Crossref]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref]

Balram, K. C.

Bazin, M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[Crossref]

Bellini, N.

P. Then, G. Razinskas, T. Feichtner, P. Haas, A. Wild, N. Bellini, R. Osellame, G. Cerullo, and B. Hecht, “Remote detection of single emitters via optical waveguides,” Phys. Rev. A 89(5), 053801 (2014).
[Crossref]

Benedikter, J.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.-C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Benson, O.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
[Crossref]

Billing, A.

Birks, T. A.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

Bleuse, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[Crossref]

Blyler, L.

R. A. Lieberman, L. Blyler, and L. G. Cohen, “A distributed fiber optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8(2), 212–220 (1990).
[Crossref]

Bouwmans, G.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

Braakman, F. R.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Burchardt, D.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Cadeddu, D.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Cataliotti, F. S.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. Dieleman, F. S. Cataliotti, W. H. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light: Sci. Appl. 6(4), e16245 (2017).
[Crossref]

Cerullo, G.

P. Then, G. Razinskas, T. Feichtner, P. Haas, A. Wild, N. Bellini, R. Osellame, G. Cerullo, and B. Hecht, “Remote detection of single emitters via optical waveguides,” Phys. Rev. A 89(5), 053801 (2014).
[Crossref]

Chang, H.-C.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.-C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Checcucci, S.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. Dieleman, F. S. Cataliotti, W. H. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light: Sci. Appl. 6(4), e16245 (2017).
[Crossref]

Chonan, S.

S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2015).
[Crossref]

Chung, L. W.

X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref]

Claudon, J.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[Crossref]

Cohen, L. G.

R. A. Lieberman, L. Blyler, and L. G. Cohen, “A distributed fiber optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8(2), 212–220 (1990).
[Crossref]

Cui, Y.

X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref]

Davanco, M. I.

M. I. Davanco and K. Srinivasan, “An efficient, optical fiber-based waveguide interface to a single quantum dipole,” in Frontiers in Optics, (Optical Society of America, 2009), p. FMG2.

Davanço, M.

Daveau, R. S.

De Angelis, F.

S. Lagomarsino, A. M. Flatae, S. Sciortino, F. Gorelli, M. Santoro, F. Tantussi, F. De Angelis, N. Gelli, F. Taccetti, L. Giuntini, and M. Agio, “Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing,” Diamond Relat. Mater. 84, 196–203 (2018).
[Crossref]

A. M. Flatae, F. Tantussi, G. C. Messina, A. Mohammadi, F. De Angelis, and M. Agio, “Plasmonic gold nanocones in the near-infrared for quantum nano-optics,” Adv. Opt. Mater. 5(22), 1700586 (2017).
[Crossref]

Dieleman, F. B.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. Dieleman, F. S. Cataliotti, W. H. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light: Sci. Appl. 6(4), e16245 (2017).
[Crossref]

Engheta, N.

J. Li, A. Salandrino, and N. Engheta, “Optical spectrometer at the nanoscale using optical yagi-uda nanoantennas,” Phys. Rev. B 79(19), 195104 (2009).
[Crossref]

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A yagi-uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
[Crossref]

Fedder, H.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.-C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Feichtner, T.

P. Then, G. Razinskas, T. Feichtner, P. Haas, A. Wild, N. Bellini, R. Osellame, G. Cerullo, and B. Hecht, “Remote detection of single emitters via optical waveguides,” Phys. Rev. A 89(5), 053801 (2014).
[Crossref]

Ferrari, S.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

Fischbach, S.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Flatae, A. M.

S. Lagomarsino, A. M. Flatae, S. Sciortino, F. Gorelli, M. Santoro, F. Tantussi, F. De Angelis, N. Gelli, F. Taccetti, L. Giuntini, and M. Agio, “Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing,” Diamond Relat. Mater. 84, 196–203 (2018).
[Crossref]

A. M. Flatae, F. Tantussi, G. C. Messina, A. Mohammadi, F. De Angelis, and M. Agio, “Plasmonic gold nanocones in the near-infrared for quantum nano-optics,” Adv. Opt. Mater. 5(22), 1700586 (2017).
[Crossref]

Fujiwara, M.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
[Crossref]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Galal, H.

Gao, X.

X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref]

Gelli, N.

S. Lagomarsino, A. M. Flatae, S. Sciortino, F. Gorelli, M. Santoro, F. Tantussi, F. De Angelis, N. Gelli, F. Taccetti, L. Giuntini, and M. Agio, “Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing,” Diamond Relat. Mater. 84, 196–203 (2018).
[Crossref]

Gérard, J.-M.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[Crossref]

Giuntini, L.

S. Lagomarsino, A. M. Flatae, S. Sciortino, F. Gorelli, M. Santoro, F. Tantussi, F. De Angelis, N. Gelli, F. Taccetti, L. Giuntini, and M. Agio, “Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing,” Diamond Relat. Mater. 84, 196–203 (2018).
[Crossref]

Glantschnig, K.

W. S. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data 38(4), 1013–1092 (2009).
[Crossref]

Goltsman, G. N.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

Gorelli, F.

S. Lagomarsino, A. M. Flatae, S. Sciortino, F. Gorelli, M. Santoro, F. Tantussi, F. De Angelis, N. Gelli, F. Taccetti, L. Giuntini, and M. Agio, “Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing,” Diamond Relat. Mater. 84, 196–203 (2018).
[Crossref]

Grace, K.

H. Mukundan, A. Anderson, W. K. Grace, K. Grace, N. Hartman, J. Martinez, and B. Swanson, “Waveguide-based biosensors for pathogen detection,” Sensors 9(7), 5783–5809 (2009).
[Crossref]

Grace, W. K.

H. Mukundan, A. Anderson, W. K. Grace, K. Grace, N. Hartman, J. Martinez, and B. Swanson, “Waveguide-based biosensors for pathogen detection,” Sensors 9(7), 5783–5809 (2009).
[Crossref]

Gregersen, N.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[Crossref]

Gruhler, N.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. Dieleman, F. S. Cataliotti, W. H. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light: Sci. Appl. 6(4), e16245 (2017).
[Crossref]

Haas, P.

P. Then, G. Razinskas, T. Feichtner, P. Haas, A. Wild, N. Bellini, R. Osellame, G. Cerullo, and B. Hecht, “Remote detection of single emitters via optical waveguides,” Phys. Rev. A 89(5), 053801 (2014).
[Crossref]

Haeusser, P.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.-C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech house, 2005).

Hänsch, T. W.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.-C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref]

Hartman, N.

H. Mukundan, A. Anderson, W. K. Grace, K. Grace, N. Hartman, J. Martinez, and B. Swanson, “Waveguide-based biosensors for pathogen detection,” Sensors 9(7), 5783–5809 (2009).
[Crossref]

Hecht, B.

P. Then, G. Razinskas, T. Feichtner, P. Haas, A. Wild, N. Bellini, R. Osellame, G. Cerullo, and B. Hecht, “Remote detection of single emitters via optical waveguides,” Phys. Rev. A 89(5), 053801 (2014).
[Crossref]

Hedley, T. D.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

Heindel, T.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Henry, W.

J. Love and W. Henry, “Quantifying loss minimisation in single-mode fibre tapers,” Electron. Lett. 22(17), 912–914 (1986).
[Crossref]

Hermelbracht, J.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Hinds, E.

Hoffman, J.

Homola, J.

J. Homola, Surface Plasmon Resonance Based Sensors, vol. 4 (Springer, 2006).

Hümmer, T.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.-C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Hunger, D.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.-C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Hwang, J.

Iwasaki, Y.

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, and K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[Crossref]

Jaffrennou, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[Crossref]

Kaganskiy, A.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Kahl, O.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

Kato, S.

S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2015).
[Crossref]

Kaupp, H.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.-C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref]

Knight, J. C.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref]

Kordell, P.

Korneev, A.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

Kovalyuk, V.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

Krueger, A.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Kurihara, K.

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, and K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[Crossref]

Lagomarsino, S.

S. Lagomarsino, A. M. Flatae, S. Sciortino, F. Gorelli, M. Santoro, F. Tantussi, F. De Angelis, N. Gelli, F. Taccetti, L. Giuntini, and M. Agio, “Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing,” Diamond Relat. Mater. 84, 196–203 (2018).
[Crossref]

Lalanne, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[Crossref]

Lee, E. H.

Lepert, G.

Levenson, R. M.

X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref]

Li, J.

J. Li, A. Salandrino, and N. Engheta, “Optical spectrometer at the nanoscale using optical yagi-uda nanoantennas,” Phys. Rev. B 79(19), 195104 (2009).
[Crossref]

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A yagi-uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
[Crossref]

Lieberman, R. A.

R. A. Lieberman, L. Blyler, and L. G. Cohen, “A distributed fiber optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8(2), 212–220 (1990).
[Crossref]

Liebermeister, L.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Lipson, M.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
[Crossref]

Liu, J.

Lodahl, P.

Lombardi, P.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. Dieleman, F. S. Cataliotti, W. H. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light: Sci. Appl. 6(4), e16245 (2017).
[Crossref]

Love, J.

J. Love and W. Henry, “Quantifying loss minimisation in single-mode fibre tapers,” Electron. Lett. 22(17), 912–914 (1986).
[Crossref]

A. W. Snyder and J. Love, Optical waveguide theory (Springer Science & Business Media, 2012).

Mader, M.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.-C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref]

Malik, N. S.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[Crossref]

Manolatou, C.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
[Crossref]

Martinez, J.

H. Mukundan, A. Anderson, W. K. Grace, K. Grace, N. Hartman, J. Martinez, and B. Swanson, “Waveguide-based biosensors for pathogen detection,” Sensors 9(7), 5783–5809 (2009).
[Crossref]

Meinhardt, T.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref]

Messina, G. C.

A. M. Flatae, F. Tantussi, G. C. Messina, A. Mohammadi, F. De Angelis, and M. Agio, “Plasmonic gold nanocones in the near-infrared for quantum nano-optics,” Adv. Opt. Mater. 5(22), 1700586 (2017).
[Crossref]

Midolo, L.

Mirin, R.

Mohammadi, A.

A. M. Flatae, F. Tantussi, G. C. Messina, A. Mohammadi, F. De Angelis, and M. Agio, “Plasmonic gold nanocones in the near-infrared for quantum nano-optics,” Adv. Opt. Mater. 5(22), 1700586 (2017).
[Crossref]

Mukundan, H.

H. Mukundan, A. Anderson, W. K. Grace, K. Grace, N. Hartman, J. Martinez, and B. Swanson, “Waveguide-based biosensors for pathogen detection,” Sensors 9(7), 5783–5809 (2009).
[Crossref]

Munsch, M.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Nagai, R.

Nam, S. W.

Nie, S.

X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref]

Niwa, O.

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, and K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[Crossref]

Noda, T.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
[Crossref]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Ohkawa, H.

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, and K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[Crossref]

Orozco, L.

Osellame, R.

P. Then, G. Razinskas, T. Feichtner, P. Haas, A. Wild, N. Bellini, R. Osellame, G. Cerullo, and B. Hecht, “Remote detection of single emitters via optical waveguides,” Phys. Rev. A 89(5), 053801 (2014).
[Crossref]

Percival, R. M.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

Pernice, W. H.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. Dieleman, F. S. Cataliotti, W. H. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light: Sci. Appl. 6(4), e16245 (2017).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

Petersen, F.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Poggio, M.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Preble, S.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
[Crossref]

Pregnolato, T.

Rauschenbeutel, A.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Ravets, S.

Razinskas, G.

P. Then, G. Razinskas, T. Feichtner, P. Haas, A. Wild, N. Bellini, R. Osellame, G. Cerullo, and B. Hecht, “Remote detection of single emitters via optical waveguides,” Phys. Rev. A 89(5), 053801 (2014).
[Crossref]

Reitzenstein, S.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Requicha, A. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref]

Rizvi, S.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. Dieleman, F. S. Cataliotti, W. H. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light: Sci. Appl. 6(4), e16245 (2017).
[Crossref]

Rodt, S.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Rolston, S.

Russell, P. S. J.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

Salandrino, A.

J. Li, A. Salandrino, and N. Engheta, “Optical spectrometer at the nanoscale using optical yagi-uda nanoantennas,” Phys. Rev. B 79(19), 195104 (2009).
[Crossref]

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A yagi-uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
[Crossref]

Saleh, B. E.

B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of photonics, vol. 22 (Wiley, 1991).

B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of photonics, vol. 22 (Wiley, 1991).

Santoro, M.

S. Lagomarsino, A. M. Flatae, S. Sciortino, F. Gorelli, M. Santoro, F. Tantussi, F. De Angelis, N. Gelli, F. Taccetti, L. Giuntini, and M. Agio, “Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing,” Diamond Relat. Mater. 84, 196–203 (2018).
[Crossref]

Sauvan, C.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[Crossref]

Schell, A. W.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Schlederer, B.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.-C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Schlehahn, A.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Schmidt, B.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
[Crossref]

Schmidt, R.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Schröder, T.

Sciortino, S.

S. Lagomarsino, A. M. Flatae, S. Sciortino, F. Gorelli, M. Santoro, F. Tantussi, F. De Angelis, N. Gelli, F. Taccetti, L. Giuntini, and M. Agio, “Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing,” Diamond Relat. Mater. 84, 196–203 (2018).
[Crossref]

Sgrignuoli, F.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. Dieleman, F. S. Cataliotti, W. H. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light: Sci. Appl. 6(4), e16245 (2017).
[Crossref]

Snitzer, E.

Snyder, A. W.

A. W. Snyder and J. Love, Optical waveguide theory (Springer Science & Business Media, 2012).

Song, J. D.

Srinivasan, K.

Stepanov, P.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Stiebeiner, A.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Stobbe, S.

Strittmatter, A.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Stutzman, W. L.

W. L. Stutzman and G. A. Thiele, Antenna theory and design (John Wiley & Sons, 2013).

Suzuki, K.

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, and K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[Crossref]

Swanson, B.

H. Mukundan, A. Anderson, W. K. Grace, K. Grace, N. Hartman, J. Martinez, and B. Swanson, “Waveguide-based biosensors for pathogen detection,” Sensors 9(7), 5783–5809 (2009).
[Crossref]

Taccetti, F.

S. Lagomarsino, A. M. Flatae, S. Sciortino, F. Gorelli, M. Santoro, F. Tantussi, F. De Angelis, N. Gelli, F. Taccetti, L. Giuntini, and M. Agio, “Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing,” Diamond Relat. Mater. 84, 196–203 (2018).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech house, 2005).

Takeuchi, S.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
[Crossref]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Tantussi, F.

S. Lagomarsino, A. M. Flatae, S. Sciortino, F. Gorelli, M. Santoro, F. Tantussi, F. De Angelis, N. Gelli, F. Taccetti, L. Giuntini, and M. Agio, “Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing,” Diamond Relat. Mater. 84, 196–203 (2018).
[Crossref]

A. M. Flatae, F. Tantussi, G. C. Messina, A. Mohammadi, F. De Angelis, and M. Agio, “Plasmonic gold nanocones in the near-infrared for quantum nano-optics,” Adv. Opt. Mater. 5(22), 1700586 (2017).
[Crossref]

Tashima, T.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Teich, M. C.

B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of photonics, vol. 22 (Wiley, 1991).

Teissier, J.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Then, P.

P. Then, G. Razinskas, T. Feichtner, P. Haas, A. Wild, N. Bellini, R. Osellame, G. Cerullo, and B. Hecht, “Remote detection of single emitters via optical waveguides,” Phys. Rev. A 89(5), 053801 (2014).
[Crossref]

Thiele, G. A.

W. L. Stutzman and G. A. Thiele, Antenna theory and design (John Wiley & Sons, 2013).

Tobita, T.

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, and K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[Crossref]

Toninelli, C.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. Dieleman, F. S. Cataliotti, W. H. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light: Sci. Appl. 6(4), e16245 (2017).
[Crossref]

Toubaru, K.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Tumminelli, R.

v. Münchow, A.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Verhart, N.

Verma, V.

Wadsworth, W. J.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

Warburton, R. J.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Weber, M.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Weinfurter, H.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Werner, W. S.

W. S. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data 38(4), 1013–1092 (2009).
[Crossref]

Wild, A.

P. Then, G. Razinskas, T. Feichtner, P. Haas, A. Wild, N. Bellini, R. Osellame, G. Cerullo, and B. Hecht, “Remote detection of single emitters via optical waveguides,” Phys. Rev. A 89(5), 053801 (2014).
[Crossref]

Wong-Campos, J.

Zhao, H.-Q.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
[Crossref]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Adv. Opt. Mater. (1)

A. M. Flatae, F. Tantussi, G. C. Messina, A. Mohammadi, F. De Angelis, and M. Agio, “Plasmonic gold nanocones in the near-infrared for quantum nano-optics,” Adv. Opt. Mater. 5(22), 1700586 (2017).
[Crossref]

Anal. Chim. Acta (1)

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, and K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[Crossref]

Appl. Phys. Lett. (3)

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
[Crossref]

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Diamond Relat. Mater. (1)

S. Lagomarsino, A. M. Flatae, S. Sciortino, F. Gorelli, M. Santoro, F. Tantussi, F. De Angelis, N. Gelli, F. Taccetti, L. Giuntini, and M. Agio, “Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing,” Diamond Relat. Mater. 84, 196–203 (2018).
[Crossref]

Electron. Lett. (1)

J. Love and W. Henry, “Quantifying loss minimisation in single-mode fibre tapers,” Electron. Lett. 22(17), 912–914 (1986).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

J. Lightwave Technol. (1)

R. A. Lieberman, L. Blyler, and L. G. Cohen, “A distributed fiber optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8(2), 212–220 (1990).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Ref. Data (1)

W. S. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data 38(4), 1013–1092 (2009).
[Crossref]

Light: Sci. Appl. (1)

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. Dieleman, F. S. Cataliotti, W. H. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light: Sci. Appl. 6(4), e16245 (2017).
[Crossref]

Nano Lett. (1)

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Nat. Biotechnol. (1)

X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref]

Nat. Photonics (1)

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. A (1)

P. Then, G. Razinskas, T. Feichtner, P. Haas, A. Wild, N. Bellini, R. Osellame, G. Cerullo, and B. Hecht, “Remote detection of single emitters via optical waveguides,” Phys. Rev. A 89(5), 053801 (2014).
[Crossref]

Phys. Rev. Appl. (1)

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.-C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Phys. Rev. B (2)

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A yagi-uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
[Crossref]

J. Li, A. Salandrino, and N. Engheta, “Optical spectrometer at the nanoscale using optical yagi-uda nanoantennas,” Phys. Rev. B 79(19), 195104 (2009).
[Crossref]

Sci. Rep. (3)

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2015).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

Sensors (1)

H. Mukundan, A. Anderson, W. K. Grace, K. Grace, N. Hartman, J. Martinez, and B. Swanson, “Waveguide-based biosensors for pathogen detection,” Sensors 9(7), 5783–5809 (2009).
[Crossref]

Other (7)

A. W. Snyder and J. Love, Optical waveguide theory (Springer Science & Business Media, 2012).

M. I. Davanco and K. Srinivasan, “An efficient, optical fiber-based waveguide interface to a single quantum dipole,” in Frontiers in Optics, (Optical Society of America, 2009), p. FMG2.

J. Homola, Surface Plasmon Resonance Based Sensors, vol. 4 (Springer, 2006).

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech house, 2005).

Lumerical Inc. FDTD Solutions, Verion: 8.19.1541 and MODE Solutions, Version: 7.12.1731 (2018), Vancouver, Canada (2018). Verion: 8.19.1541.

W. L. Stutzman and G. A. Thiele, Antenna theory and design (John Wiley & Sons, 2013).

B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of photonics, vol. 22 (Wiley, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Simulations layout. A single dipole is situated 130 nm above a gold coated substrate (reflector). The dipole emission is collected by the fiber and monitored with a frequency-domain field profile. The monitor is placed in the far field, approximately $4\lambda$ from the dipole. The cladding radius, fiber length and substrate (glass) are semi-infinite. The values of the fixed parameters are given in the figure. The distance $d$ between director and reflector is $d = d_1 + d_2 - 20$ nm.
Fig. 2.
Fig. 2. Propagation of fundamental mode in (a) reference fiber ($R_{\textrm {core}}$ = 1.6 $\mu$m, $n_{\textrm {core}} = 1.4949$ and $n_{\textrm {cladd}} = 1.4533$) and (b) custom fiber ($R_{\textrm {core}}$ = 0.8 $\mu$m, $n_{\textrm {core}} = 1.45$ and $n_{\textrm {cladd}} = 1.3$) simulated by the commercial software Mode Analysis, Lumerical Inc. [25]. In (a) and (b) the white line shows the fiber core and they have the same colour bar. The radiated field of the dipole at $4 \lambda$ away from the source for (c) reference fiber with reflector and distance $d_1 + d_2 = 295 + 20$ nm, (d) reference fiber with reflector-director and distance $d = 295$ nm, (e) custom fiber with reflector and $d_1 + d_2 = 295 + 20$ nm, and (f) custom fiber with reflector-director with distance $d = 295$ nm has been shown. (c)–(f) are normalized with respect to maximum value in (f) and have the same colour bar. In each case the geometry of the simulation is depicted below the field image. (g) Plots of the radiated field into the fiber for the reference fiber (c), (d) and the custom (e), (f) configurations with respect to the reflector-director distances, normalized by the total emitted power $P_t$ of the dipole. The right axis indicates the Purcell factor of the dipole, which can be multiplied by the coupling efficiency to determine the power coupled to the fiber. This indicates that, however, the mode reaches the maximum coupling (59%) at 285 nm, but a larger collected power is obtained at 295 nm due to the Purcell factor.
Fig. 3.
Fig. 3. NA of the fiber, represented by varying cladding refractive index $n_{\textrm {cladd}}$. The core radius here is 0.8 $\mu$m and it has a refractive index of 1.45 (custom fiber configuration). This figure indicates that for high-NA fibers there is more than one propagating mode. The curves show that for $n_{\textrm {cladd}}$ smaller than 1.3 the coupling efficiency is nearly constant for the modes. By using Eq. (5) the critical NA is equal to 0.64 (black dashed line). The radiated power curve indicates the total out-coupled light from the reflector-director configuration in the propagation direction normalized by total emitted power $P_t$.
Fig. 4.
Fig. 4. Coupling efficiency of different modes in the custom gold coated (director) fiber. The distance is fixed at $d = 295$ nm. The $1^{\textrm {st}}$, $4^{\textrm {th}}$ and $9^{\textrm {th}}$ modes with dipole emission are demonstrated. The red curve points out the Purcell factor (right axis). The radiated power shows that the out-coupled amount of light from the antenna structure does not depend on the size of the core or the cladding. For a core radius less than 1 $\mu$m there are only four modes propagating through the fiber and the fiber with less than 0.4 $\mu$m core radius is a single mode fiber.
Fig. 5.
Fig. 5. Coupling efficiency versus reflector-director distance. The coupling raises fast, but it gradually decreases by increasing the distance. The fluctuation of radiated power and mode coupling efficiency are like the Purcell factor. The distance between each two peaks is 350 nm, which corresponds to $\lambda /2$.
Fig. 6.
Fig. 6. Maximum coupling efficiency as a function of wavelength for the reflector-director distance of 260, 295 and 330 nm. It is possible to tune the coupling for the desired wavelength by changing the reflector-director distance.
Fig. 7.
Fig. 7. Maximum coupling efficiency as a function of wavelength for three different active media, with various refractive indices: $n_{\textrm {water}} \approx 1.33$,  $n_{\textrm {PVA}} \approx 1.47$ and  $n_{\textrm {dia.}} \approx 2.41$. The media have 295 nm thickness.
Fig. 8.
Fig. 8. Maximum coupling efficiency as a function of wavelength for PVA active medium, with custom fiber ($R_{\textrm {core}}$ = 0.8 $\mu$m and $n_{\textrm {core}} = 1.45$) and so-called optimal fiber ($R_{\textrm {core}}$ = 0.6 $\mu$m and $n_{\textrm {core}} = 1.77$). The inset, indicates the reflector-director distance and the dipole position. By adding a higher refractive index active medium the reflector-director distance and the core radius should be decreased.
Fig. 9.
Fig. 9. Radial distance of the dipole from the optical axis of custom design fiber. The signal has a Gaussian shape with around 800 nm full-width at half-maximum. The coupling efficiency for the higher-order modes is highly dependent on the position of the dipole (not shown).
Fig. 10.
Fig. 10. The coupling efficiency for the tilted fiber. The custom and reference fiber (Thorlabs “UHNA3”) are tilted by 1 degree and afterwards 2 degrees, showing that the coupling is slightly reduced by small tilting. The inset, shows the geometry of tilted fiber. Comparison of custom and reference fiber illustrates that the system is more sensitive to the tiling for larger fiber cores.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

a m = 0.25 ( d S E in × H m N m + d S E m × H in N m ) ,
N m = 0.5 d S E m × H m ,
F = P t P s .
T m = | a m | 2 N m P t .
NA = n core 2 n cladd 2 ,

Metrics