Abstract

We propose a numerical technique that analyses the imaging properties of optical scanning holography (OSH) constructed using real optical components in a real optical alignment situation. Using the proposing technique, we analyze the aberrations and the vulnerability of the OSH about the optical alignment. After that, we propose a digital filter that compensates the aberrations of the OSH. Finally, we show that the digital filter removes the aberrations of an experimentally recorded OSH.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Autofocusing in optical scanning holography

Taegeun Kim and Ting-Chung Poon
Appl. Opt. 48(34) H153-H159 (2009)

Optical sectioning by optical scanning holography and a Wiener filter

Taegeun Kim
Appl. Opt. 45(5) 872-879 (2006)

Full-color optical scanning holography with common red, green, and blue channels [Invited]

Hayan Kim, You Seok Kim, and Taegeun Kim
Appl. Opt. 55(3) A17-A21 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Burckhardt and L. Enloe, “Television transmission of holograms with reduced resolution requirements on the camera tube,” Bell Syst. Tech. J. 48(5), 1529–1535 (1969).
    [Crossref]
  2. J. Berrang, “Television transmission of holograms using a narrow-band video signal,” Bell Syst. Tech. J. 49(5), 879–887 (1970).
    [Crossref]
  3. T. C. Poon and A. Korpel, “Optical transfer function of an acousto-optic heterodyning image processor,” Opt. Lett. 4(10), 317–319 (1979).
    [Crossref]
  4. T.-C. Poon, “Scanning holography and two-dimensional image processing by acousto-optic two-pupil synthesis,” J. Opt. Soc. Am. A 2(4), 521 (1985).
    [Crossref]
  5. T. C. Poon, T. Kim, G. Indebetouw, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Twin-image elimination experiments for three dimensional images in optical scanning holography,” Opt. Lett. 25(4), 215–217 (2000).
    [Crossref]
  6. Y. S. Kim, T. Kim, S. S. Woo, H. Kang, T. C. Poon, and C. Zhou, “Speckle-free digital holographic recording of a diffusely reflecting object,” Opt. Express 21(7), 8183–8189 (2013).
    [Crossref]
  7. H. Kim, Y. S. Kim, and T. Kim, “Full-color optical scanning holography with common Red, Green and Blue channels,” Appl. Opt. 50(7), B81–B87 (2011).
    [Crossref]
  8. T. Kim, “Chromatic aberration issue on full-color optical scanning holography,” IEEE INDIN 2016, (Futuroscope-Poitiers, France, 18 - 21 July 2016), pp. 532–535.
  9. G. Indebetouw and W. Zhong, “Scanning holographic microscopy of three-dimensional fluorescent specimens,” J. Opt. Soc. Am. A 23(7), 1699–1707 (2006).
    [Crossref]
  10. B. D. Duncan and T.-C. Poon, “Gaussian Beam Analysis of Optical Scanning Holography,” J. Opt. Soc. Am. A 9(2), 229–236 (1992).
    [Crossref]
  11. G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, “Imaging properties of scanning holographic microscopy,” J. Opt. Soc. Am. A 17(3), 380–390 (2000).
    [Crossref]

2013 (1)

2011 (1)

2006 (1)

2000 (2)

1992 (1)

1985 (1)

1979 (1)

1970 (1)

J. Berrang, “Television transmission of holograms using a narrow-band video signal,” Bell Syst. Tech. J. 49(5), 879–887 (1970).
[Crossref]

1969 (1)

C. Burckhardt and L. Enloe, “Television transmission of holograms with reduced resolution requirements on the camera tube,” Bell Syst. Tech. J. 48(5), 1529–1535 (1969).
[Crossref]

Berrang, J.

J. Berrang, “Television transmission of holograms using a narrow-band video signal,” Bell Syst. Tech. J. 49(5), 879–887 (1970).
[Crossref]

Burckhardt, C.

C. Burckhardt and L. Enloe, “Television transmission of holograms with reduced resolution requirements on the camera tube,” Bell Syst. Tech. J. 48(5), 1529–1535 (1969).
[Crossref]

Duncan, B. D.

Enloe, L.

C. Burckhardt and L. Enloe, “Television transmission of holograms with reduced resolution requirements on the camera tube,” Bell Syst. Tech. J. 48(5), 1529–1535 (1969).
[Crossref]

Indebetouw, G.

Kang, H.

Kim, H.

Kim, T.

Kim, Y. S.

Klysubun, P.

Korpel, A.

Poon, T. C.

Poon, T.-C.

Schilling, B. W.

Shinoda, K.

Suzuki, Y.

Woo, S. S.

Wu, M. H.

Zhong, W.

Zhou, C.

Appl. Opt. (1)

Bell Syst. Tech. J. (2)

C. Burckhardt and L. Enloe, “Television transmission of holograms with reduced resolution requirements on the camera tube,” Bell Syst. Tech. J. 48(5), 1529–1535 (1969).
[Crossref]

J. Berrang, “Television transmission of holograms using a narrow-band video signal,” Bell Syst. Tech. J. 49(5), 879–887 (1970).
[Crossref]

J. Opt. Soc. Am. A (4)

Opt. Express (1)

Opt. Lett. (2)

Other (1)

T. Kim, “Chromatic aberration issue on full-color optical scanning holography,” IEEE INDIN 2016, (Futuroscope-Poitiers, France, 18 - 21 July 2016), pp. 532–535.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. OSH system. (L, laser; HW 1,2, half wave plates; EOM, electro-optic modulator; M 1,2,3, mirrors; PBS, polarization beam splitter; BE 1,2, beam expanders; L 1,2, lens; BS, beam splitter; PD 1,2, photo detectors; LIA, lock-in amplifier;)
Fig. 2.
Fig. 2. Top: ZEMAX simulation information. (a) ZMEAX generated MZI layout. The red path beam is a plane wave, the blue path beam is a spherical wave. (BS 1,2, beam splitters; M 1,2, mirrors; FG, a flat glass; IP, an image plane; L, a bi-convex), (b) magnification of a red dotted box in Fig. 2(a) (The $\mathop \theta \nolimits_x ,\mathop \theta \nolimits_y $ are tilting angles which are the angles of the transverse-axes of the lens to x- and y- axis respectively, $\mathop d\nolimits_x ,\mathop d\nolimits_y$ are the shifting distance between the optic axles of the lens and the MZI). Bottom: I- and Q- phase of the ZEMAX generated interferogram when the bi-convex lens is perfectly aligned. (c) I-phase of the interferogram. (d) Q-phase of the interferogram.
Fig. 3.
Fig. 3. PSFs of OSH. (a) PSFs of OSH according to the shifted distance of the optics axis of the bi-convex lens. (b) PSFs of OSH according to the tilting angle of the bi-convex lens.
Fig. 4.
Fig. 4. OTFs according to the shift distance and the tilting angle of optic axis. (a) Contour map of the OTF when the optic axis of the lens is tilted by ${\theta _x},{\theta _y} = ({3^ \circ },{3^ \circ })$. (b) Profiles of the major axes and the minor axes of OTFs according to the shifting of the optic axis, (c) Profiles of the major axes and the minor axes of OTFs according to the tilting of the optic axis.
Fig. 5.
Fig. 5. Simulation of ACF. (a) Cross sections of compensated OTF when the shift distance changes (b) Cross sections of compensated OTF when the tilting angle changes
Fig. 6.
Fig. 6. Reconstructions of the recorded hologram. (a) reconstructed image using FSIRF, (b) reconstructed image using ACF, (c) contour map of the reconstructed image using FSIRF, (d) contour map of the reconstructed image using ACF (yellow, lime, cyan and blue colors represent the 90% of the peak intensity, the 3dB of the peak value, the full-width at half maximum and the 36% of the peak intensity respectively) (e) power spectrums of the reconstructed images using FSIRF and ACF. (red lines are major and minor axes of reconstructed image using FSIRF, blue lines are major and minor axes of the reconstructed image using ACF)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T D F Z P ( x , y , z n ; t ) = c i r c ( x 2 + y 2 R ) × ( 1 + 1 ( λ z ) 2 + 2 λ z sin [ π λ z ( x 2 + y 2 ) + A ( x , y ; z ) Ω t ] )
H = I ( x , y , z ) { c i r c ( x 2 + y 2 R ) × F Z P a b b ( x , y ; z ) } d z
P S F ( x , y ; z ) = F Z P a b b ( x , y , ; z ) h ( x , y , ; z )
F Z P ( x , y ; z ) = F Z P I p h a s e ( x , y ; z ) + j F Z P Q p h a s e ( x , y ; z ) = c i r c ( x 2 + y 2 R ) × j λ z exp [ ( j π λ z ( x 2 + y 2 ) + j × A ( x , y ; z ) ) ]
I r e c ( x , y ; z ) = H ( x , y ) A C F ( x , y ; z )

Metrics