Abstract

The photothermal characteristics of nanoparticles are of particular interest to biophotonic and biomedical applications due to their ability to efficiently localize thermal energy down to the nanometer scale. However, few works had demonstrated an efficient dissipation of heat to their nanoscale surrounding in response to optical excitation. Here, we demonstrate an efficient platform for optical nanoheating based on silicon nanocuboids. Based on Green’s tensor formalism and temperature-dependent Raman spectroscopy analyses, we found that the significant nanoheating effect is a consequence of the resonant modes specifically, to the high degree of overlap between the different resonant modes of the silicon nanocuboids. Currently, the temperature rise of up to 300 K was measured with incident power density of 2.9 mW/µm2. Such effective nanoheating platform would be suitable in applications where controllable optical nanoheating is crucial, such as nanosurgery, photochemistry, and nanofabrication.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Solar water heating and vaporization with silicon nanoparticles at mie resonances

Satoshi Ishii, Ramu Pasupathi Sugavaneshwar, Kai Chen, Thang Duy Dao, and Tadaaki Nagao
Opt. Mater. Express 6(2) 640-648 (2016)

Nanoscale heating of laser irradiated single gold nanoparticles in liquid

Mitsuhiro Honda, Yuika Saito, Nicholas I Smith, Katsumasa Fujita, and Satoshi Kawata
Opt. Express 19(13) 12375-12383 (2011)

Optical vortex trap for resonant confinement of metal nanoparticles

Maria Dienerowitz, Michael Mazilu, Peter J. Reece, Thomas F. Krauss, and Kishan Dholakia
Opt. Express 16(7) 4991-4999 (2008)

References

  • View by:
  • |
  • |
  • |

  1. W. Q. Lim and Z. Gao, “Plasmonic nanoparticles in biomedicine,” Nano Today 11(2), 168–188 (2016).
    [Crossref]
  2. D. J. de Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: from energy to health,” Adv. Opt. Mater. 3(5), 602–617 (2015).
    [Crossref]
  3. P. Muehlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref]
  4. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref]
  5. J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, and M. Nieto-Vesperinas, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
    [Crossref]
  6. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
    [Crossref]
  7. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref]
  8. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref]
  9. I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
    [Crossref]
  10. G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
    [Crossref]
  11. L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
    [Crossref]
  12. M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
    [Crossref]
  13. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
    [Crossref]
  14. M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
    [Crossref]
  15. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
    [Crossref]
  16. G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
    [Crossref]
  17. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
    [Crossref]
  18. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
    [Crossref]
  19. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
    [Crossref]
  20. S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
    [Crossref]
  21. H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
    [Crossref]
  22. S. Ishii, R. P. Sugavaneshwar, K. Chen, T. D. Dao, and T. Nagao, “Solar water heating and vaporization with silicon nanoparticles at Mie resonances,” Opt. Mater. Express 6(2), 640–648 (2016).
    [Crossref]
  23. K. Nakamura, “Synthesis of nanoparticles by thermal plasma processing and its applications,” Earozoru Kenkyu. 29, 98–103 (2014).
    [Crossref]
  24. G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
    [Crossref]
  25. S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20(22), 15307–15315 (2018).
    [Crossref]
  26. P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
    [Crossref]
  27. M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
    [Crossref]
  28. T. Søndergaard, “Modeling of plasmonic nanostructures: Green's function integral equation methods,” Phys. Status Solidi B 244(10), 3448–3462 (2007).
    [Crossref]
  29. E. D. Palik, Handbook of optical constants of solids (Academic, 1998).
  30. R. P. Chhabra, CRC handbook of thermal engineering (CRC, 2017).
  31. V. Savinov, V. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
    [Crossref]
  32. N. Papasimakis, V. Fedotov, V. Savinov, T. Raybould, and N. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
    [Crossref]
  33. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
    [Crossref]
  34. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
    [Crossref]
  35. V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, and B. De Clercq, “Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets,” Adv. Mater. 24(10), OP29–OP35 (2012).
    [Crossref]
  36. Q. Jiang, S. Zhang, and M. Zhao, “Size-dependent melting point of noble metals,” Mater. Chem. Phys. 82(1), 225–227 (2003).
    [Crossref]

2018 (1)

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20(22), 15307–15315 (2018).
[Crossref]

2017 (2)

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

2016 (7)

W. Q. Lim and Z. Gao, “Plasmonic nanoparticles in biomedicine,” Nano Today 11(2), 168–188 (2016).
[Crossref]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

S. Ishii, R. P. Sugavaneshwar, K. Chen, T. D. Dao, and T. Nagao, “Solar water heating and vaporization with silicon nanoparticles at Mie resonances,” Opt. Mater. Express 6(2), 640–648 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

N. Papasimakis, V. Fedotov, V. Savinov, T. Raybould, and N. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

2015 (1)

D. J. de Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: from energy to health,” Adv. Opt. Mater. 3(5), 602–617 (2015).
[Crossref]

2014 (3)

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref]

V. Savinov, V. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
[Crossref]

K. Nakamura, “Synthesis of nanoparticles by thermal plasma processing and its applications,” Earozoru Kenkyu. 29, 98–103 (2014).
[Crossref]

2013 (3)

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

2012 (4)

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, and M. Nieto-Vesperinas, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref]

V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, and B. De Clercq, “Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets,” Adv. Mater. 24(10), OP29–OP35 (2012).
[Crossref]

2011 (2)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref]

2010 (3)

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

2009 (1)

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

2008 (1)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref]

2007 (2)

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

T. Søndergaard, “Modeling of plasmonic nanostructures: Green's function integral equation methods,” Phys. Status Solidi B 244(10), 3448–3462 (2007).
[Crossref]

2006 (1)

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[Crossref]

2005 (1)

P. Muehlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

2003 (1)

Q. Jiang, S. Zhang, and M. Zhao, “Size-dependent melting point of noble metals,” Mater. Chem. Phys. 82(1), 225–227 (2003).
[Crossref]

1983 (1)

M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
[Crossref]

Albella, P.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, and M. Nieto-Vesperinas, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Alcubilla, R.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref]

Alessandri, I.

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20(22), 15307–15315 (2018).
[Crossref]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref]

Baffou, G.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref]

Balkanski, M.

M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
[Crossref]

Banfi, F.

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20(22), 15307–15315 (2018).
[Crossref]

Baranov, D. G.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref]

Barten, T.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Belov, P. A.

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref]

Bontempi, N.

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20(22), 15307–15315 (2018).
[Crossref]

Boriskina, S. V.

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Cao, L.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref]

Carletti, L.

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20(22), 15307–15315 (2018).
[Crossref]

Chen, G.

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

Chen, K.

Chen, X.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref]

Chen, Y.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref]

Chhabra, R. P.

R. P. Chhabra, CRC handbook of thermal engineering (CRC, 2017).

Chichkov, B. N.

V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, and B. De Clercq, “Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets,” Adv. Mater. 24(10), OP29–OP35 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Clemens, B.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref]

Danesi, S.

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20(22), 15307–15315 (2018).
[Crossref]

Dao, T. D.

de Aberasturi, D. J.

D. J. de Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: from energy to health,” Adv. Opt. Mater. 3(5), 602–617 (2015).
[Crossref]

De Angelis, C.

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20(22), 15307–15315 (2018).
[Crossref]

De Clercq, B.

V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, and B. De Clercq, “Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets,” Adv. Mater. 24(10), OP29–OP35 (2012).
[Crossref]

Decker, M.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Denkova, D.

V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, and B. De Clercq, “Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets,” Adv. Mater. 24(10), OP29–OP35 (2012).
[Crossref]

Dmitriev, P. A.

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

Eisler, H.-J.

P. Muehlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Eyraud, C.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, and M. Nieto-Vesperinas, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Fan, P.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref]

Fedotov, V.

N. Papasimakis, V. Fedotov, V. Savinov, T. Raybould, and N. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

V. Savinov, V. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
[Crossref]

Fenollosa, R.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref]

Fontana, Y.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Froufe-Pérez, L.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, and M. Nieto-Vesperinas, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Gandolfi, M.

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20(22), 15307–15315 (2018).
[Crossref]

Gao, Z.

W. Q. Lim and Z. Gao, “Plasmonic nanoparticles in biomedicine,” Nano Today 11(2), 168–188 (2016).
[Crossref]

García de Abajo, F. J.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref]

García-Cámara, B.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, and M. Nieto-Vesperinas, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Garín, M.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref]

Geffrin, J.-M.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, and M. Nieto-Vesperinas, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Ghasemi, H.

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

Gómez Rivas, J.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Gómez-Medina, R.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, and M. Nieto-Vesperinas, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

González, F.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, and M. Nieto-Vesperinas, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Govorov, A. O.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[Crossref]

Grzela, G.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Haro, E.

M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
[Crossref]

Hecht, B.

P. Muehlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Hickman, Z. N.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[Crossref]

Ishii, S.

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

Jiang, Q.

Q. Jiang, S. Zhang, and M. Zhao, “Size-dependent melting point of noble metals,” Mater. Chem. Phys. 82(1), 225–227 (2003).
[Crossref]

Kivshar, Y. S.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

Kordesch, M. E.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[Crossref]

Krasnok, A. E.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, and B. De Clercq, “Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets,” Adv. Mater. 24(10), OP29–OP35 (2012).
[Crossref]

Lim, W. Q.

W. Q. Lim and Z. Gao, “Plasmonic nanoparticles in biomedicine,” Nano Today 11(2), 168–188 (2016).
[Crossref]

Litman, A.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, and M. Nieto-Vesperinas, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Liz-Marzán, L. M.

D. J. de Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: from energy to health,” Adv. Opt. Mater. 3(5), 602–617 (2015).
[Crossref]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Makarov, S. V.

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

Marsal, L.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref]

Martin, O. J.

P. Muehlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Meseguer, F.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref]

Milichko, V. A.

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Muehlschlegel, P.

P. Muehlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Mukhin, I. S.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

Nagao, T.

Nakamura, K.

K. Nakamura, “Synthesis of nanoparticles by thermal plasma processing and its applications,” Earozoru Kenkyu. 29, 98–103 (2014).
[Crossref]

Nieto-Vesperinas, M.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, and M. Nieto-Vesperinas, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Osley, E. J.

V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, and B. De Clercq, “Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets,” Adv. Mater. 24(10), OP29–OP35 (2012).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids (Academic, 1998).

Paniagua-Domínguez, R.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Papasimakis, N.

N. Papasimakis, V. Fedotov, V. Savinov, T. Raybould, and N. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

Park, J.-S.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref]

Petkov, V.

V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, and B. De Clercq, “Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets,” Adv. Mater. 24(10), OP29–OP35 (2012).
[Crossref]

Petrov, M. I.

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

Pohl, D.

P. Muehlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Qiu, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Quidant, R.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref]

Raybould, T.

N. Papasimakis, V. Fedotov, V. Savinov, T. Raybould, and N. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

Reinhardt, C.

V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, and B. De Clercq, “Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets,” Adv. Mater. 24(10), OP29–OP35 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Richardson, H. H.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[Crossref]

Samusev, A. K.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

Sánchez-Gil, J. A.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Savinov, V.

N. Papasimakis, V. Fedotov, V. Savinov, T. Raybould, and N. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

V. Savinov, V. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
[Crossref]

Schilling, J.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

Schuller, J. A.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Serrano-Montes, A. B.

D. J. de Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: from energy to health,” Adv. Opt. Mater. 3(5), 602–617 (2015).
[Crossref]

Shi, L.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref]

Søndergaard, T.

T. Søndergaard, “Modeling of plasmonic nanostructures: Green's function integral equation methods,” Phys. Status Solidi B 244(10), 3448–3462 (2007).
[Crossref]

Staude, I.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Sugavaneshwar, R. P.

Taubner, T.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Thomas, A. C.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[Crossref]

Tsutsumanova, G.

V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, and B. De Clercq, “Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets,” Adv. Mater. 24(10), OP29–OP35 (2012).
[Crossref]

Vaillon, R.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, and M. Nieto-Vesperinas, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Valev, V. K.

V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, and B. De Clercq, “Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets,” Adv. Mater. 24(10), OP29–OP35 (2012).
[Crossref]

Wallis, R.

M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
[Crossref]

Yan, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Zhang, S.

Q. Jiang, S. Zhang, and M. Zhao, “Size-dependent melting point of noble metals,” Mater. Chem. Phys. 82(1), 225–227 (2003).
[Crossref]

Zhang, W.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[Crossref]

Zhao, M.

Q. Jiang, S. Zhang, and M. Zhao, “Size-dependent melting point of noble metals,” Mater. Chem. Phys. 82(1), 225–227 (2003).
[Crossref]

Zheludev, N.

N. Papasimakis, V. Fedotov, V. Savinov, T. Raybould, and N. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

Zheludev, N. I.

V. Savinov, V. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
[Crossref]

Zheng, X.

V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, and B. De Clercq, “Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets,” Adv. Mater. 24(10), OP29–OP35 (2012).
[Crossref]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Zograf, G. P.

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

Zuev, D. A.

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

ACS Nano (2)

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref]

Adv. Mater. (1)

V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, and B. De Clercq, “Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets,” Adv. Mater. 24(10), OP29–OP35 (2012).
[Crossref]

Adv. Opt. Mater. (1)

D. J. de Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: from energy to health,” Adv. Opt. Mater. 3(5), 602–617 (2015).
[Crossref]

Earozoru Kenkyu. (1)

K. Nakamura, “Synthesis of nanoparticles by thermal plasma processing and its applications,” Earozoru Kenkyu. 29, 98–103 (2014).
[Crossref]

J. Opt. (1)

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Laser Photonics Rev. (1)

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Mater. Chem. Phys. (1)

Q. Jiang, S. Zhang, and M. Zhao, “Size-dependent melting point of noble metals,” Mater. Chem. Phys. 82(1), 225–227 (2003).
[Crossref]

Mater. Today (1)

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

Nano Lett. (4)

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[Crossref]

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref]

Nano Today (2)

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

W. Q. Lim and Z. Gao, “Plasmonic nanoparticles in biomedicine,” Nano Today 11(2), 168–188 (2016).
[Crossref]

Nanoscale (1)

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

Nat. Commun. (3)

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, and M. Nieto-Vesperinas, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref]

Nat. Mater. (1)

N. Papasimakis, V. Fedotov, V. Savinov, T. Raybould, and N. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

Nat. Photonics (2)

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20(22), 15307–15315 (2018).
[Crossref]

Phys. Rev. B (4)

M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
[Crossref]

V. Savinov, V. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Phys. Rev. Lett. (1)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref]

Phys. Status Solidi B (1)

T. Søndergaard, “Modeling of plasmonic nanostructures: Green's function integral equation methods,” Phys. Status Solidi B 244(10), 3448–3462 (2007).
[Crossref]

Science (3)

P. Muehlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

Other (2)

E. D. Palik, Handbook of optical constants of solids (Academic, 1998).

R. P. Chhabra, CRC handbook of thermal engineering (CRC, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Resonant optical nanoheating of dielectric nanocuboids. (a) Schematic of resonant thermal effect for nanoheating by a cuboid nanoparticle. (b) Theoretically calculated temperature map of cuboid nanoparticles as a function of the real and imaginary parts of complex permittivity. The nanocuboid, 150 nm by 150 nm and height 140 nm, is illuminated with a plane wave at wavelength 532 nm with unit power. ED, MD, and TD stand for electric, magnetic, and toroidal dipoles, respectively.
Fig. 2.
Fig. 2. Resonant modes in cuboid nanoparticles. The dimensions of nanoparticles are characterized as L×L×H. (a) The calculation of temperature maps from Green tensor method for silicon cuboid nanoparticles with height (H) 140 nm as a function of lateral sizes (L). (b) Four selected temperature spectra of silicon cuboid nanoparticles with varying lateral side lengths. Resonance modes of a cuboid nanoparticle with size of (180×180×140) nm3 are calculated. The distributions of electric vectors give rise to (c) the toroidal dipoles (TD) mode at 590 nm and (d) the magnetic quadrupole (MQ) mode at 522 nm.
Fig. 3.
Fig. 3. Resonant hybrid modes in nanocuboid as a function of height. (a) Calculated normalized temperature maps for silicon nanocuboids with size of 150 nm. (b) The electric vector distributions of hybrid mode of a cuboid nanoparticle with sizes of (150×150×60) nm3 come from the overlap between the TD and MQ modes at 485 nm. (c) Charge-current distributions give rise to the MD mode in a nanocuboid at 600 nm. (d) Temperature map of cubic nanoparticles with varying side lengths.
Fig. 4.
Fig. 4. Experiment verification of photothermal effect from dielectric nanoparticles. (a) Measured Raman signal for a cuboid nanoparticle at power 2.0 mW. Relation between ΔT and corresponding Raman signal is inserted. (b) Shifting of Raman signal for a cuboid nanoparticle indicates a temperature increasing. The nanoparticle is heated by a 532 nm wavelength laser with increasing powers. (c) Experimental data from a cuboid nanoparticle with sizes of (200 × 200 × 140) nm3. Inset: SEM image of a fabricated cuboid nanoparticle. (d) Nanocuboid is measured without obvious heating retardation for a repeated temperature increasing up to 200 K. Inset: temperature distribution field within a cuboid.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ω ( T ) = 528 - 2 .96 × ( 1 + 2 e A 1 )  - 0 .174 × ( 1 + 3 e B 1 + 3 ( e B 1 ) 2 )

Metrics